CONTROL LYAPUNOV FUNCTIONS AND ZUBOV’S METHOD*
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Abstract. For finite dimensional nonlinear control systems we study the relation between
asymptotic null-controllability and control Lyapunov functions. It is shown that control Lyapunov
functions may be constructed on the domain of asymptotic null-controllability as viscosity solutions
of a first order PDE that generalizes Zubov’s equation. The solution is also given as the value
function of an optimal control problem from which several regularity results may be obtained.
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1. Introduction. We consider finite-dimensional control systems of the form

@(t) = f(x(t), u(t)), (L.1)

where x € R™ denotes the state, u € R™ denotes the input, and where f is sufficiently
regular with f(0,0) = 0. We call a point zg € R™ asymptotically controllable to 0 if
there exists a measurable, essentially bounded function ug : Ry — R™ such that the
corresponding solution (¢, zg, ug) of (1.1) satisfies ¢(t,xg,up) — 0 for ¢ — oo. The
domain of asymptotic null-controllability is the collection of all points that are asym-
ptotically controllable to 0. The main results of this paper are twofold: On the one
hand we provide a converse theorem for maximal control Lyapunov functions (CLFs)
on the domain of asymptotic null-controllability. On the other hand we consider a
generalized Zubov equation and prove that the maximal control Lyapunov function
is the unique viscosity solution of this equation.5:03 pm Thus beyond the proof of
existence of CLFs a way to their numerical generation is provided.

The construction of CLFs in this paper relies on optimal control methods as they
are frequently used in Lyapunov theory. One of the contributions of the paper is to
present easily checkable conditions on the running cost that result in an appropriate
CLF and give rise to a tractable Hamilton-Jacobi equation.

Converse theorems have a fundamental role in Lyapunov theory as they state that
certain stability properties imply the existence of a Lyapunov function. The direct
implication that the existence of a Lyapunov function implies a stability property is
usually much easier to prove. Early converse results were obtained by Persidskii, see
the discussion in [20, Chapter VI], Massera [26] and Kurcveil’ [21]. In recent times
these results have been extended in several directions to cover perturbed systems and
differential inclusions [23, 12, 37, 7].

While for linear systems a constructive procedure to find Lyapunov functions
has already been given by Lyapunov, the first general constructive procedure to find
Lyapunov functions was obtained by Zubov [39]. Namely, a Lyapunov function on the
domain of attraction of an asymptotically stable fixed point x* € R™ of the system

i(t) = f(z(t), teR,zeR"
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may be found by solving the 1st order PDE, called Zubov’s equation,

Du(z)f(x) = =h(z)(1 —ov(@)V1+[f]?  =eR",

under the condition that v(0) = 0. Here h is an auxiliary function, see [39, 20]
for details. This method has been recently extended by the authors to the case of
perturbed systems, see [9] where also a discussion of the impact of Zubov’s result
may be found. Further constructive approaches valid for C? systems and based on
approximations by radial basis functions, respectively on linear programming methods
have recently been described in [18, 19].

While for (perturbed) ordinary differential equations the property of interest is
stability, for systems with control inputs a basic question concerns the existence of
control functions steering the system to a desired target. In contrast to the case of
asymptotically stable fixed points of ordinary differential equations, for which smooth
Lyapunov functions always exist, it is not reasonable to require too many regularity
properties of Lyapunov functions for controllability questions for systems of the form
(1.1). For this reason it is now standard to formulate the concept of a control Lyapu-
nov function in nondifferential terms. Recall that a function V : R — R is called
positive definite, if V(x) > 0 for all z € R™ and V(x) = 0 iff z = 0. The function V is
proper if preimages of compact sets are compact. A positive definite, proper function
V is called a control-Lyapunov function (CLF) for (1.1) if there is a positive definite
function W such that for every compact set X C R™ there is a compact set Ux of
control values so that V' is a continuous viscosity supersolution of

max —DV(x)f(x,u) >W(z), z€X. (1.2)

For the definition of viscosity solutions we refer to [3]. In many articles control
Lyapunov functions are defined in terms of proximal subgradients of V', but the two
notions are in fact equivalent, [10].

The interest in the theory of control Lyapunov has received widespread attention
in recent years, in particular in connection with the design of stabilizing feedbacks.
While design techniques using Lyapunov functions have been popular in applied con-
trol theory for a long time, the systematic study of converse theorems for control
Lyapunov functions only started with Artstein [1], who proved for the case of sy-
stems affine in the control term u that the existence of a smooth CLF is equivalent
to stabilizability by continuous state feedback. For general systems of the form (1.1)
the existence of a global continuous CLF is equivalent to global asymptotic null con-
trollability [31]. Interestingly, the existence of a differentiable CLF is equivalent to
the existence of (discontinuous) stabilizing feedbacks that are robust with respect to
perturbations in the measurement of the state, [22].

Now in general asymptotic nullcontrollability does not imply the existence of
continuous stabilizing feedback as there may be topological obstructions to this which
even carry over to the case of upper semicontinuous set-valued feedbacks, [8, 13, 29].
For this reason discontinuous feedbacks and associated solution concepts have been
one of the focal points of the research on CLF’s in recent times starting with [11].
In this context it has been shown by Clarke et al. [10], Rifford [27, 28] using tools
from nonsmooth analysis that semiconcavity of the CLF is an essential tool in order
to establish the existence of feedback with nice properties.

Usually, the knowledge of a CLF requests a certain structure of the control sy-
stem, while a general procedure for its determination is not available. Constructive
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approaches have therefore received widespread attention in literature, most notably
with techniques known as backstepping and forwarding [17, 30], which however, rely
heavily on the differentiability of the CLF that is obtained. In this article we aim
to derive a constructive approach by going back to the original ideas for the con-
struction of control Lyapunov functions. Here constructive is to be understood in
the way that we determine a class of PDEs which have unique solutions in the visco-
sity sense that are maximal control Lyapunov functions on the domain of asymptotic
nullcontrollability.

It is a classical approach to the problem to regard CLF’s as solutions of steady
state Hamilton-Jacobi (HJ) equations. In the uncontrolled case this may be regarded
as one of the central elements of the work of Zubov [20]. In [16] the connection between
smooth CLF’s and HJ equations has been studied in detail. In particular, it is shown
in that paper that smooth CLF’s may always be interpreted as value functions of
an appropriate optimal control problem. This ”inverse optimality” property can be
exploited in several ways [17]. In a different approach, in [15] a CLF was obtained
by truncating series expansion of analytical solutions of HJ equations in an approach
very similar to early studies around Zubov’s equation.

In the present paper we use ideas from [9] where, for the case of a perturbed
system, the classical Zubov method was reinterpreted using a suitable notion of weak
solution. For controlled or perturbed systems Zubov’s equation becomes a nonlinear
1%t order PDE of Hamilton-Jacobi type and it is well known that this class of equations
does not admit, in general, classical solutions. Therefore a suitable concept of weak
solution has to be introduced and the one of viscosity solution seems to be appropriate,
see [9, 25]. In the construction of the corresponding result for CLF’s several additional
technical obstacles have to be overcome, which stem from the possibility of solutions
with finite escape time and the unboundedness of the control set, both of which pose
no problem in the perturbed case. To this end reparametrization techniques are used
- an idea, which was introduced in [5] and has been applied by various authors.

A similar problem to the CLF construction in this paper has been studied in [24]
in which optimal control and viscosity methods are used in relation to the problem of
steering the state of a system to a prescribed target. This leads to an optimal control
problem with positive but vanishing Lagrangian, see [25, 24] for further references. In
[24] a ”small-time controllability” property is used, which requires in particular that
the target can be reached exactly in finite time starting from small neighborhoods of
it. In the general context of control Lyapunov functions this reachability property is
undesirable so that we have to apply different arguments.

We use this generalization of Zubov’s method to construct a CLF for a finite
dimensional nonlinear control system, that is asymptotically null controllable in a
neighborhood of the origin. Our aim is to determine a CLF as (i) an optimal value
function of a suitable control problem and (ii) as unique viscosity solution to a suitable
HJ equations which is a generalization of the Zubov’s equation.

Concerning the first point, i.e. the connection between CLF and optimal control
problems, our procedure can be viewed as an extension of [31] where the equivalence
between asymptotic null controllability and the existence of a CLF has been proved
using an optimal control approach. The significant advantage of the characterization
of a CLF as unique viscosity solution of the generalized Zubov equation is that it can
used as the basis for its numerical approximation.

From the point of view of the PDE approach the equation presents some diffi-
culties when attacked using the standard theory of viscosity solution because of the
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unbounded control set, see [4, 5, 14, 36, 35] for some related papers. In the proof of
the necessary comparison result we use the local asymptotic controllability to obtain a
local comparison result in a neighborhood of the origin. We then extend the compari-
son result to all R™ taking advantage, as in the classical Zubov method, of the freedom
in the choice of cost function of the associated control problem. For this reason we
can make rather general assumptions on the dependence of the dynamics respect to
the control variable compensating them with an appropriate choice of the cost. An
example for an explicit construction of the cost function satisfying all requirements is
provided.

The comparison result extends results in [36, 35] at the price of studying a much
more specific situation. The main difference is that in the setting studied in this paper
a uniqueness result is obtained.

We proceed as follows: In the ensuing Section 2 the class of systems under con-
sideration is defined and we prove some preliminary results. In Section 3 the optimal
control problem that characterizes the domain of asymptotic null controllability is
introduced and it is shown that under suitable conditions the corresponding value
function is continuous, positive definite and proper on the domain of asymptotic null-
controllability. In Section 4 we show that the value function of the optimal control
problem is the unique viscosity solution of the generalized Zubov equation. In Sec-
tion 5 we discuss an approximation of the problem with unbounded control set with
a sequence of problems with bounded control set. In the last section we discuss the
necessity of our assumptions at the hand of a few examples. It is also shown that
for the classical linear quadratic control problem the general equations of this paper
reduce to the standard algebraic Riccati equation.

2. The domain of null controllability. We consider nonlinear control systems
of the type

(t) = f((t), u(t)) (2.1)

where f : R” x U — R is continuous, U C R™ is a closed set and the space of
admissible control functions is given by

w e U = L®(]0,00),U)

Solutions corresponding to an initial value x and a control u € U at time t are
denoted by ¢(t,z,u), which are defined on a maximal positive interval of definition
[0, Timax(x, 1)), where we do not exclude the case that Tiax(z,u)) < co. i.e. that
solutions explode. In the following the open ball of radius 7 around a point z € RP? is
denoted by B(z,7).

Uniqueness of solutions is a consequence of our further standard assumption on
f. These are formulated using comparison functions, a fashionable approach these
days.!

There exists v € K such that for any R > 0 there is Cr > 0 with
(HO) 1f (z,u) = f(y,u)l| < CrO+~(lul)lz -yl
for all x,y with ||z|], ||ly|]| < R,

LAs usual we call a function « of class Koo if it is a homeomorphism of [0,00), a continuous
function 3 in two real nonnegative arguments is called of class KL if it is of class Koo in the first and
decreasing to zero in the second argument.
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(H1) £(0,0) =0,

There exists an open ball B(0,7), a constant & > 0, and 8 € KL
such that for any = € B(0,r) there exists u, € U with [Juz||- < @,
(H2) Tiax (T, uz) = 0o and

lo(t, 2, ug) || < S|zl 2), VE=0.

REMARK 2.1. The Lipschitz assumption (HO0) is weaker than the following as-
sumption:

For any R > 0 there exists Cr > 0 with

|F @) = fly )l < Cr(1+ ul)lle — ], (2.2)
for all v,y with |l2]., Iyl <R,

Assumption (2.2) is used in many papers on viscosity solutions, in particular in [35,
36], whose results we will use later. In order to be able to use these results under the
weaker assumption (H0) we define the map R : R™ — R™ by R(u) = v~ 1(||ul|)u/||u]
and consider the vector field

[z u) = f(z, R(u))
with u € U = R™(u). This input transformed system satisfies

1 (z,u) = fly, w)]| < CrA+(IR@)ID)llz =yl = Cr+ [[ul))llz =yl

i.e., (2.2). Hence by applying the results from [35, 36] to f these immediately carry
over to f under the weaker assumption (HO).

Property (H2) is a local asymptotic controllability property, which ensures that
at least from a neighborhood of 0 the system may be steered to 0.

For certain systems it makes sense to strengthen this local asymptotic controlla-
bility property (H2) by requiring that u, is not only bounded but also converges to 0
as t — oo. In this case we can strengthen (H2) to the so-called small control property

There exists an open ball B(0,7) and 8 € KL such that for any
(H2)) x € B(0,r) there exists u, € U with Tipax(z,u,) = co and

le(t, @, uz) | + [Jua (O] < B(Jlz[l2),  ae. t>0.

Note that (H2’) implies (H2) with @ = g(r,0).

It is known [32] that for any 8 € KL there exist two functions oy, as € Ko such
that B(r,t) < as(ai(r)et). These functions can be computed from 3, e.g., in the case
of exponential convergence, i.e., 3(r,t) = ce~'r for ¢,o > 0, one obtains o, (r) = /7
and as(r) = er?. Note that (H2) or (H2’) immediately imply 8(r,0) > r and thus

azoay(r) = as(ag(r)e™?) > B(r,0) = 7.

We note for later use that by applying al_l o a;l = (g 0 a1)~! on both sides of this
inequality we obtain

r>aytoay(r). (2.3)
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For ease of presentation we will work with these two functions from now on. Fur-
thermore, we will from now on tacitly assume that Thax(z,u) = oo, if we write
o(t,z,u) — 0 as t — oo.

We define the domain of null controllability by

Do := {x € R" | there exists u € U with ||o(t,z,u)| — 0 for t — oo},
and the first hitting time with respect to B(0,r) by
t(z,u) ;= inf{t > 0| p(t,z,u) € B(O,r)},

with the convention inf ) = co. The following lemma shows how Dy and ¢(z,u) are
related.
LEMMA 2.2. The set Dy is given by

Dy ={z € R"| ingt(x,u) < o0}
ue

Proof. If we find v € U with t(z,u) < oo then for some ¢(x,u) < t; we have
@(t1,7,u) € B(0,r) and we can concatenate ulj,] with the control uy(, 4. from
(H2), which implies ¢(t, x,u) — 0. Hence we obtain

Dy C{z €R"| inzf4 t(z,u) < 00}.
ue

Conversely, if 2 € Dy then we have (¢, z,u) — 0 for some suitable u € U, which
implies ¢(t1,z,u) € B(0,r) for some t; > 0 and consequently ¢(z,u) < t; < oo which
implies the converse direction. O

For the formulation of the next result recall that a set M is called wviable (or
controlled or weakly invariant) if for every x € M thereis a u € U such that p(t, z,u) €
M for all t > 0 (see [2]). In the following the convex hull of a set M is denoted by
coM.

PROPOSITION 2.3. Assume (H0), (H1) and (H2) or (H2’). Then the following
properties hold.

(i) c1B(0,r) C Dy,

(ii) the set Dy is open, connected and viable.

Proof. (i): Tt is clear that B(0,r) C Dy. In order to show cl B(0,r) C Dy pick
x € 0B(0,r) and a sequence {x,} C B(0,r) with lim, . x, = z. By assumption
for each x,, there exists a control w,, € U N L>®(R, B(0,u)) such that |o(t, z,, uy)|| <
as(a(r)e™t). This shows that on each compact interval the solutions are bounded
uniformly in n. Since, furthermore, the w, are uniformly bounded by continuity we
get limy, oo ||@(t, Tn, un) — @(t, 2, uy)|| = 0 for each ¢t > 0. Thus, picking ¢t* > 0 such
that as(ay(r)e™") < r/2 for n* sufficiently large we obtain ||@(t*, z, un-)|| < 3r/4,
hence p(t*, x, u,~) € B(0,r) and consequently ¢(x, u,) < co. Now Lemma 2.2 yields
the assertion.

(ii): Let @o € Dy and w € U with ¢(t,z9,u) — 0 for t — oo. Then there exists
T > 0 such that ¢(T, zo,u) € B(0,r). By continuous dependence on the initial value
we obtain

o(T, z,u) € B(0,r)

for all z in a neighborhood of zy. Thus ¢(-,u) is finite on that neighborhood which
shows that it is contained in Dy. As xy was arbitrary this shows the assertion.
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Since for any « € Dy there exists a trajectory from x to B(0,r) we obtain that
Dy is connected.

In order to see viability, consider a point « € Dy and the trajectory ¢(t, z,u) — 0.
Clearly, each point x(t) = ¢(¢,z,u), t > 0 can be controlled to the origin by the control
u(t + -), thus z(t) € Dy and hence (¢, z,u) € Dy for all ¢ > 0, i.e., Dy is viable. O

REMARK 2.4. Note that the domain of nullcontrollability Dy is in general not
diffeomorphic to R™. This is in contrast to the theory of domains of attraction of
(perturbed) ordinary differential equations, i.e. the set {xg € R™ : @(t,zg,u) —
0 ast — 4oo for any w € U}. In the case of asymptotically stable fized points the
domain of attraction is diffeomorphic to R™ even for perturbed systems, see e.g. [9,
38].

3. Characterization of Dy using Optimal Control. In this section we des-
cribe how to characterize the domain of asymptotic nullcontrollability via an optimal
control problem and show continuity of the corresponding value function. In order to
set up the problem we need a running cost g : R™ x U — R. The assumptions on g
are as follows:

The function g : R" x U — R is continuous and satisfies (H0) with

(H3) the same v € K, as f. Furthermore, for all ¢ > 0 we have

inf {g(z,u) | ||z|]| > c,u €U} =1 g, > 0.

Note that the assumption “with the same v € K as f” can always be met by
enlarging the v from (HO) for f, if necessary.

We need to ensure convergence of the integral cost that is introduced shortly
for the “right” stabilizing solutions. Recall that we use the simplification B(r,t) <
az(ay(r)e™?) for B from (H2) and choose some arbitrary n > 0. We assume that there
exists a constant C' > 0 such that

(H4) g(x,u) < Claz ' (J|z|)" for all (z,u) € B(0,r) x B(0,a).

(H5) g, u) = |[f(z, w)|| +y([lul]) whenever [lz|| > 2r or [lu]| > 2u.

REMARK 3.1. If the small control asymptotic controllability property (H2’) holds
then we can weaken assumption (H4) to

(H{’) g(z,u) < Clag (=]l + [[ul))” for all (z,u) € B(0,r) x B(0,u).
In what follows we will always assume that either (H2) and (H4) or (H2’) and
(H4’) hold.
We now define the functional
J(l’ ’LL) — fooo g(@(t7x7u)vu(t))dta lf TInaX(x7u) = (3 1)
T 00 else ’ '
the (extended real valued) optimal value function
V(z) = Jreng(%u), zeR", (3.2)

and the function

v(a)=1—eV® reR". (3.3)
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Note that both V' and v satisfy appropriate dynamic programming principles (see
for example [35, 36)), i.e., for each T' > 0 we have

T
V(z) = inf { /O g(<p(t,x,u),u(t))dt+V(@(T,x,u))} , (3.4)

ueU

and
v(z) = irelzg{l + Gz, T,u)(v(p(T,z,u)) — 1)}, (3.5)

where
T
G(z,T,u) := exp (/0 g(go(t,x,u),u(t))dt) .

We now investigate the properties of V' and v. For this purpose we need the
following observation on the solutions of (2.1). Using the function v from (HO) we
define for u e U

T
el = / () )de

LEMMA 3.2. Let T > 0. If ¢ € R"™ and u € U are such that ||o(t,z,u)| > 2r,t €
[0,T] or |Ju(t)|| > 2@ a.e. t € [0,T), then

T
/0 g(o(t, 2 u), u(t))dt > [ o(T, ) — 2| + [Jull

Proof. Using (H5) we have that
T

/Og(w(tﬁf»U),U(t))dtZ/o Hf(SO(t,év»U)m(t))HdtJr/o Y(llu(@®))dt,

and the claim follows. O

PROPOSITION 3.3. Assume (H0)-(H4) or the respective variants from Remark
3.1. Then

(i) the inequalities V(r) < oo and v(x) < 1 hold if and only if © € Dy,

(i) if in addition (H5) holds, then V(z) =0 2 =0 and v(z) =0< = = 0.

Proof. From the definition of v it immediately follows that that the claims for V'
and v are equivalent. We show the statements for V.

(i) Pick a point # € Dy. Then there exists u € U and t; > 0 such that
lo(t, z,u)|| < a;'oay’(r). (Note that ;' o ay'(r) < r by (2.3).) By assumption
(H1) we can assume (by changing w on [t1,00) if necessary) that ||p(t1 + ¢, 2,u)| <
as(ay(|le(ty, z,u)||)e) < r for all ¢ > 0. Since u € U = L>°([0,00),U) is essentially
bounded we can find @ > 0 such that ||u(t)|| < @ for almost all £ > 0. Furthermore, by
continuity of ¢(¢,z,u) in t we find R > 0 such that ||¢(t, z,u)| < R for all ¢t € [0,t1].
Hence using (H4) we can estimate

Vi) < [ ottt i+ [ " gl(t ), u(t))dt

t1

oo
<t sup g(a,u) + [ Clag ' (le(t,z,u)]))"dt (3.6)
z€B(0,R),uc B(0,u) t1
¢ n
<t sup 9(z,u) + —an(lle(ty, z,u)|)? < oo.
z€B(0,R),ucB(0,a) n
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If (H2’) and (H4’) hold, then the proof is completely analogous.
Conversely, let & Dy. Then we obtain t(z,u) = oo for all u € U which implies

J(x,u) = /000 g(p(t, z,u),u(t))dt > /000 grdt = 00

for each u € U and thus also V(z) = inf, ¢y J(x,u) = oo.
(ii) Tt is clear that V' (0) = 0, so let « # 0. Assume to the contrary that there is
a sequence {uy} C U such that J(x,ur) — 0. Let ¢ :=||z||/2 and denote

tr :=1inf{t > 0| |lo(t, z,ur)| < c}.

By (H3) we have for all k that J(z,uy) > fg" g(o(s,z,u), ugp(s))ds > trg. which
implies that ty — 0. Now ||f|| is bounded on B(0,2r) x B(0,2u) by the constant
C := Co.(1 + v(2u))2r. Denote

B(k) = {t € [0,tx] | (p(t, z,ur), u(t)) € B(0,2r) x B(0,2a)},

which is well defined up to a set of measure zero. Then

[5Gt ) e < .
E(k)
On the other hand we have for all k£ that

tr
/O 1S (ot @, up), ur ()| dt = ||z — oty z,ue)|| = c.

Using (H5) this implies that

J(a,up) > / 9o (s, ), () )ds
[0,t,]\E(k)

> / 1 (s, i), un(s))|ds > ¢ — £
[0,tx]\E(k)

As ty — 0 this contradicts J(x,ux) — 0. O
Next we turn to the investigation of the regularity properties of the functions V'
and v. We start by proving continuity properties for the trajectories of (2.1).
LEMMA 3.4. Assume (HO) and let T > 0 and R > 0 be arbitrary constants. Then
for all x,y € R™ and all u € U satisfying

lp(t,z,u)| < R, |lot,y,uw)|]| <R, Vtel0,T]
we have

lo(t, 2, u) = ot y, )| < e“rlltlt Dz —y)) (3.7)

for all t €10,T).
Proof. The assumption (HO) yields for almost all ¢ € [0, T]

Hf(cp(t,x,u),u(t)) - f(cp(t,y,U), u(t))” <

Cr(1+ (@) (t, 2, 0) — o(t, .0 (3:8)
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Using (3.8) Gronwall’s Lemma we then obtain
lo(t. 2, u) = (b y.w)]| < UM gy

and the assertion follows. O

Using this lemma we can prove the following continuity statement.

PROPOSITION 3.5. Assume (HO)-(H5) or their respective variants from Remark
3.1. Then V and v are continuous on Dy.

Proof. We show the continuity of V', then the statement for v follows immediately
from its definition. The proof is performed in several steps. Throughout the proof
the constants Cg, C' etc. are those defined in (HO) and (H4), resp. (H4).

First note that from (3.6) we have

Viz) < %al(HxH)", for = € B(0, afl o a;l(r)) . (3.9)

(i) (Local boundedness of V on Dy)

Pick an arbitrary zg € Dy and fix € > 0. Then there exists a ug € U such that
J(x0,u0) < V(zg)+e. Since J(xzg, ug) is finite it follows from (H3) there exists a time
Ty > 0 such that |o(Tp, xo, uo)|| < a;' o ay'(r)/2. By continuity of ¢ in  we can
pick a ball B(xg,d) such that

llo(To, x,uo)|| < aytoayt(r), forall x € cl B(xqg,d). (3.10)
We define the set
K = {p(t,z,up) |z € cl B(xg,4), t € [0,Tp]}

which is compact since @ is continuous in ¢ and = (recall that ug is essentially boun-
ded). Using (3.10) we obtain from Bellman’s optimality principle for all x € B(xy, 9)
the inequality

To
W@SA gt 2, ), u(t))dt + V(o(To, 2, 0)

C
< max z,u)Ty + —ai(r)”,
- a:EK,uEB(O,HuoHoo)g( ) 0 n 1( )

where we have used (3.9). This shows that sup,cp(,,,5) V(z) =t By is finite.

(ii) (Bounds on e—optimal controls and trajectories)

For any © € B(zg,6) and any ¢ € (0, 1] we pick an e—optimal control function
Uy e €U, ie.,

J(z,upe) <V(z)+e.
We claim that for any ,T > 0 the set
K. :={p(t,z,uze) |t > 0,2 € B(xo,d)}
and the sets

{luzclly.z | 2 € B(wo,6)}
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are bounded. If the first set were unbounded then there would be an x € B(xo, )
and ¢1 > 0 such that [|@(t1, 2, uzc)| > V(x) + 2 + 2r. If to > ¢1 is the first time at
which ||p(te, z, ug)|| = 2r again, then we obtain using Lemma 3.2 that

ta
']('r’ uI,E) > / g(@(ta Z, U%&-), u%f:‘(t))dt > ||90(t1’ €, ul@)_(p(t% €, uwﬁ)” > V(l‘)—‘r?é‘,

ty
a contradiction.
On the other hand, if {||uz ||, 7 | z € B(xo,d)} is unbounded for a given T > 0,

then there have to be x,u, . such that ||uy .||y, 7 > V(x) + 2e + Ty(2u). This implies
that if we integrate over the (measurable) set

E:={t €[0,T]] uze(®)ll = 2a},

then we obtain
[ At = Vi) 422
E

as the contribution of the integral over [0,T]\ E to ||ug. ||y, 7 can be at most Ty (2u).
Using an estimate over the set E and again Lemma 3.2 we obtain again a contradiction
to J(z,uz ) < V(z)+e.

(iii) (Continuity of trajectories)

We denote by R. an upper bound on the set K.. By Lemma 3.4 we can conclude
that for x,y € B(zp,0) and all ¢ > 0 such that

[z =yl < Reexp(=Car. ([[ta,clly.c + 1))

we have

ot @, ) = @t Y, uae) | < exp(Cor. ([uzcllye + 1) 2 =yl (3.11)

(iv) (Continuity of V)

We show the continuity of V' on B(zg,d). Since zy € Dy was arbitrary this
proves the proposition. So pick ¢ > 0 and assume without loss of generality that
e <ay'(r)C.

From the lower bound g. on ¢ in (H3) and the boundedness of J(x,u;c) on
B(xo,0) it follows that for any p > 0 there is a time 7}, such that for z € B(xo,0) we
have ¢(t,z,uze) € B(0, p) for some ¢t < T),. Using (3.9) we may thus assume that the
controls u, . are chosen in such a way that there exists 7. > 0 (depending on By)
such that for all t > T,,x € B(0,¢) we have

p(t,2,us) € B(0,a7(/C)/2) € B(0,a7 " 0ay ' (r)/2).

Denote

m = exp(=Cor. (| max  luz.clly.z. + 7)),

z€B(zo,0

and note that the right hand side is finite by (ii). Choose two points z,y € B(xo, J)
such that

[ =yl < Rem.
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Without loss of generality assume V(y) > V(z). Abbreviating u := ug ., T =T,
we obtain

V(y) =V(z)] = V(y) - V(z)

V(y) — /0°° glp(t,z,u),u(t))dt + ¢

IN

T
< /O 19(p(t, y, w), u(t) — g(o(t, 2, u), u(t)|dt + V(p(T,y,u)) + &

using the Lipschitz condition in (H3) and (3.11) we continue

g(A<%&ﬂ+vmwﬂmwﬂx—wﬁ+ﬁqﬂﬂymn+E

and we obtain
< Cor. (T + |ully,r)mllz -y + 2,

provided ||y — z|| < a7 *(ne'/"/C)/(2m), because in this case we obtain from (3.11)
that (T, y,u) € B(0,a;  (ne'/"/C)) and thus from (3.9)

V@@ww»ﬁ%aMW@wwWWSa

Thus for any € € (0,1] and any = € B(xg,d) we can find d. > 0 such that |V (y) —
V(z)| < 3e, for all z,y € B(xg,d) with ||z — y|| < d.. This implies continuity of V' in
B(xg,0) and, since xy € Dy was arbitrary, continuity on the whole set Dy. O

The next proposition makes a statement of the behavior of V' (x) near the boun-
dary of Dy or at oco.

PROPOSITION 3.6. Assume (HO)-(H5) or their respective variants from Remark
3.1. Then for any sequence xy, which satisfies dist(zy,dDy) — 0 or ||zk| — oo we
have V(xg) — oo and v(z) — 1. In particular, v is continuous on R™.

Proof. If ||zk|| — oo, then we have for every k either that zj ¢ Dy, in which
case V(xy) = 0o or x € Dy. In the latter case we have by Lemma 3.2 that V(xy) >
|zg]| — 2r, for all k large enough. This shows the assertion for V' and the conclusion
for v is immediate from the definition.

To prove the assertion for dist(zy,dDp) — 0, we may now assume that there
exists a sequence xp — xg € 9Dy and some C > 0 such that V() < C holds for all
k € N. Pick € > 0 and for each k£ choose a control function u; € U such that we have

J(zp,up) < V(zg) +e < C+e.

Following Step (ii) of the proof of Proposition 3.5 we obtain that {¢(t, g, ug) | t >
0,k € N} is bounded and that ||ug]|,, is uniformly bounded in & for all ¢ > 0. Then
we may apply (3.11) as in Step (iv) of the proof of Proposition 3.5 to conclude that
for every t > 0 and every ¢ > 0 there is a ko such that ||¢(¢, zk, ur) — @(t, o, u)|| < 0
for all k > kg.

Because of the lower bound on ¢ in (H3) we may assume that there exists T > 0
(independent of k) such that

o(t, xg,u) € B(0,r/2) for all t > T,k € N.

This implies ¢(T, zg,ux) € B(0,7/2) for all sufficiently large k¥ € N which in turn
implies xg € Dy. This contradicts zg € 0Dy because Dy is open. O
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4. Characterizations of V and v by Zubov’s Method. The aim of this
section is to characterize the functions V' and v introduced in (3.2) and (3.3) as (the
unique) viscosity solutions of the equations

%yFDVWHWJO—M%W}ZO (4.1)
and
sup{—Dv(z)f(z,u) — (1 —v(z))g(z,u)} = 0, (4.2)

uelU

respectively (for the definition of viscosity solution we refer to [6, 3]).

Recalling that V is locally bounded in Dy and v is bounded in R", our first result
follows from a standard application of the dynamic programming principles (3.4) and
(3.5), see [3].

PROPOSITION 4.1. Assume (HO) - (H5) or their respective variants from Remark
3.1. Then the functions V and v defined in (3.2) and (3.3) are viscosity solutions of
(4.1) in Dy and of of (4.2) in R™, respectively.

REMARK 4.2. Note that it follows from these characterizations that v is a control
Lyapunov function on Dy in the usual sense, [34]. In fact, a small calculation shows
that v is a viscosity supersolution on Dy of

inf Dv(z)f(x,u) < 7W(:C)g|\w|| ;

uelU
where 0 < W(z) < 1—wv(x) for x € Do\ {0} and g denotes the constant from (H3)
for ¢ = |z||.

The main result in this section will be a uniqueness statement for the equations
(4.1) and (4.2), showing that the above functions are the unique viscosity solutions
of these equations.

In order to obtain such a result we make use of the so called optimality principles
developed by Soravia [35, 36]. For the application of the results from these references
we need that our system is defined by a bounded vector field f. To this end we
introduce a standard tool for unbounded control systems which consists in rescaling
the coefficients of the equations (see [5], [35])

r3 _ f(:L‘ﬂlL)
o) = 5 o s
o) = A2 |

= T @]

The following proposition summarizes the main properties of the rescaled functi-
ons.

PROPOSITION 4.3. Assume (H0)-(H3) and (H5) or their respective variants
from Remark 3.1. Then f and § satisfy (H0)-(H3) for suitably adjusted Koo and KL
functions and the optimal value functions V and v of the original and the rescaled
problems coincide.

Proof. First note that (HO), (H1), and the first part of (H3) follow by straight-
forward computations. In order to prove the second part of (H3) we fix an arbitrary
¢ > 0 and show that

ge = inf {g(z,u) | ||z|]| = c,u € U}
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is positive. To this end we pick arbitrary z € R", u € U with ||z|| > ¢ and distinguish
three cases:

Case 1 ||f(x,u)|| < 1: In this case from (H3) we get g(z,u) > g./2.

Case 2 ||f(z,u)|| > 1 and (z,u) € B(0,2r) x B(0,2a): In this case from (H3) we
get §(w,u) > go/(1+ f) with f := max{||f(z,u)| | (x,u) € B(0,2r) x B(0,2u)} < occ.

Case 3 ||f(z,u)|| > 1 and (z,u) ¢ B(0,2r) x B(0,2u). In this case (H5) implies
3w 0) 2 £ (e wl/(+ | f @ w)l) > 1/2.

Combining the three cases we obtain

ge > min{g./2,9./(1+ f),1/2} > 0

which shows the second part of (H3).

In order to show that the optimal value functions coincide, observe that the
introduction of the vector field f and the running cost ¢ amounts to nothing more
than a rescaling of time, that does not change trajectories or values associated to a
particular control. To see this let x € R™, u € U be given. Now introduce a new time
variable 7 through the differential equation

dt(r) 1
dr 14| f(St(r),z,u),u(t(r)))

and a control @(7) := u(t(7)), a.e. Then the function (1) := ¢(t(7), z,u) satisfies
the differential equation

dip() f(o(t(7), x,u)

0 a.e.,

»u(t(r)))
w), u(t(7)))]

dr 1+ | f(o(t(r),x,

So if we consider the system

i(t) = flz(t), u(t), (4.4)

then using standard transformation of integral formulas it is also easy to see that
if T(z,u) = oo then J(z,%) = J(x,u), where J defines the value along a rescaled
trajectory using the running cost g in (3.1). If the solution explodes, i.e. T'(z,u) < 00
then we have so far simply defined the value to be infinity. However, since (H3) holds
for g, the associated integral of the transformed system also diverges because it will
never enter B(0,7). Thus, the optimal value functions coincide. O

Note that we do not need (H4) and (H5) for the rescaled problem in order to
establish the previous result: (H4) is needed in order to ensure finiteness of V' on Dy
while (H5) is needed in order to establish the continuity of V. Both properties readily
carry over to the rescaled problem via the integral transformations.

In order to prove our uniqueness statement we need one final assumption.

The rescaled function g satisfies

(H6) g(x,u) — oo as |lu|]| — oo for each x € R™.

To Zubov’s equations (4.1) and (4.2) we associate the Hamiltonians

Hy :R" x (R")* =R, Hy(z,p)= s:g{—f(x,u)p—g(:r,u)},

and

Hy :R" xR x (R")" =R, Hy(z,rp)=sup{—f(z,u)p—(1—r)g(z,u)}.
uelU
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From (H5) we obtain that the supremum in these Hamiltonians is attained in a
compact subset of U for r < 1 in the case of H,. This implies that the Hamiltonians
Hy and H, are locally Lipschitz continuous with respect to their arguments, again
for » < 1 in the case of H,.

The following Theorem 4.4 and its Corollary 4.5 are the main results of this paper.

THEOREM 4.4. Assume that f and g satisfy the assumptions (HO)-(HG6) (or their
respective variants from Remark 3.1). Then

(i) The function v from (3.3) is the unique bounded viscosity solution of (4.2)

with v(0) =0

(ii) There exists a unique couple (O, V) such that O is an open set containing the

origin and V' is a locally bounded, nonnegative continuous viscosity solution
of (4.1) in O with V(0) =0 and V(z) — +oo for x — 0O. Here V is the
function from (3.2).

(iii) The functions v and V' characterize the domain of asymptotic controllability

via

Do={zeR"|v(zx) <1} ={z e R"|V(z) < oo}.

(iv) The functions v and V satisfy v(zy) — 1 and V(xp) — oo for all sequences
with xp, — 0Dy or ||zk|| — oo.

Before turning to the proof we state the following corollary, whose proof in par-
ticular shows how a cost function g meeting the assumptions of Theorem 4.4 can be
constructed.

COROLLARY 4.5. Assume that f satisfies the conditions (H0)-(H2). Then there
exists a continuous function v : R™ — [0, 1] which is a control Lyapunov function (in
the usual sense, cf. Remark 4.2) on the domain of asymptotic controllability Dy and
constant equal to 1 on R™ \ Dy. Furthermore, this v is the unique bounded viscosity
solution of (4.2) with v(0) = 0 for some suitable g : R™ x U — R.

Proof. In order to prove the theorem it is sufficient to construct a function g
satisfying (H4)—(H6). Then the Lyapunov function property follows immediately from
Theorem 4.4 and Remark 4.2.

To this end, consider the Lipschitz function p : Rar — Rar given by

0, s €0,1]
p(s):=¢ s—1, s€]l,2]
1, s € [2,00)
and set
gla,u) == oy (|zll) + p(s(z, w) [L+ || f (@, )] [+ [[ul]
with

T
swu) =5\ T T

For this function (H3), (H4) and (H6) follows immediately from the construction. We
obtain the desired g by modifying g as follows: Let v € Ko such that (HO) and (H3)
are satisfied and set

g(x,u) = gz, u) + p(s(z, u)y([Jul)-
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Then (H5) is satisfied while straightforward computations show that (H3), (H4) and
(H6) carry over from g to g. O

In the proof of Theorem 4.4 we encounter two difficulties: the unbounded depen-
dence of the functions on the control variable and the vanishing of the cost g at the
origin.

To solve the first problem we use the rescaled functions from above. Associated
to these functions we introduce two rescaled equations which share with (4.1) and
(4.2) the same set of sub— and supersolutions.

LEMMA 4.6. Assume (H0) and (H3) and consider the equations

sup{—DV (2)f(x,u) - §(x,u)} =0 (4.5)
uelU
and
Sug{—Dﬁ(JJ)JF(J«“’ u) = (1 =0(z))g(z,u)} =0. (4.6)
ue
Then
(i) Any viscosity subsolution of (4.1) is a viscosity subsolution for (4.5) and vice

versa.

(i) Any viscosity supersolution of (4.1) is a viscosity supersolution for (4.5), and,

if in addition (H6) holds then any viscosity supersolution of (4.5) is also a
viscosity supersolution for (4.1).

The same assertions hold for (4.6) and (4.2).  The proof of Lemma 4.6 is
postponed to Appendix 6. The following corollary is a simple consequence of the
previous lemma.

COROLLARY 4.7. Assume (H0), (H3) and (H6). Then
(i) Any viscosity solution of (4.1) is a viscosity solution of (4.5) in Dy and vice versa.
(ii) Any viscosity solution of (4.2) is a viscosity solution of (4.6) and vice versa.

Even if the coefficients of the rescaled equations have a better dependence on the
variable u, there is still the problem of the vanishing of g at the origin. In order to
prove a uniqueness result for (4.5) and (4.6), we use a control theoretic argument and
some optimality principles introduced in [35, 36], as stated in the following lemma.

LEMMA 4.8. Assume (H0), (H3) and (H5) and let @(t,z,u) be the solution of
(4.4). Define

Glat,u) = exp (- /Otg(gb(r,x, u),u(T))dT) .

Then the following properties hold.
(i) Any upper semicontinuous viscosity subsolution w~ of (4.6) satisfies

w(r) < jnf inf {1 + Gla t, ) (w™ (3(t, z, ) — 1)} . (4.7)

for each T > 0.

(i1) Consider a continuous viscosity supersolution w™ of (4.6) and let @ C R™ be
an open and bounded set with sup,cqw™ (z) < 1. Consider the first exit time from
given by

Tew(z,u, Q) = min{t > 0] p(t, xg,u) € Q}.
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Then w™ satisfies

wt(z) > inf sup {1 + Gz, t,u)(wh (Gt z,u) — 1)} . (4.8)
UEU 40, T (2,u,92)]

Proof. Let 2 C R™ be an open and bounded set and let U be a compact subset of
U with the corresponding space of measurable control functions denoted by . If w™
is an upper semicontinuous viscosity subsolution of (4.6) in R™, then the restriction
of w™ to 2 is also a subsolution of (4.6) on Q with U instead of U. For the restric-
ted control value set U Equation (4.6) is continuous, furthermore f , g are uniformly
Lipschitz on . Hence we can apply [36, Theorem 3.2 (i)] which for each u € u yields

“(z) < inf 1+G (P —1
wie) < ok {1 Gt (B w) < 1))

where Te,(z, u, ) is the first exit time of @(¢, g, u) from the set Q defined in (ii).

Since f is globally bounded, for any = € R™ and any 7" > 0 we may find an open
and bounded set 2, r C R™ such that Tey(x, u, Q1) > T for each w € U. Since each
u € U is essentially locally bounded, it lies in U for an appropriate choice of U , which
shows (i).

The proof of (ii) follows from [36, Theorem 3.2 (ii)] observing that the equation
(4.6) is continuous on €2 since w™ (z) < 1, hence here we do not need to restrict the
control value set U. O

REMARK 4.9. Note that the asymmetry of the statements (i) and (it) is due to
the fact that we imposed different conditions in order to obtain continuity of (4.6),
which is needed for the application of [36, Theorem 3.2]. In (i) we restrict the set
of control values U obtaining a result for arbitrary Q (thus for arbitrary T) and for
upper semicontinuous functions. In (ii) this restriction is not possible because the
supersolution property will not persists passing from U to U. Thus here we ensure
continuity of (4.6) by considering suitable subsets Q of the state space.

Using these inequalities we can now prove the following uniqueness results.

LEMMA 4.10. Assume (HO) - (H6) and consider the functions V and v defined
by (3.2) and (3.3). Then

(i) v is the unique bounded continuous viscosity solution of (4.6) with v(0) =0,

(i) (Do, V) is the unique couple of an open set containing the origin and a locally

bounded, nonnegative continuous viscosity solution of (4.5) in the open set
such that V(0) = 0 and V(z) — 400 for z — 9O.

Proof. We prove only (i), since the proof of assertion (ii) is similar. Note that
by Proposition 4.3 the functions v and V' can be taken to be defined through (4.4)
and the running cost §. In the following we work with this representation. Again by
P(t, z,u) we denote the solutions of (4.4).

Claim 1: If w™ is a bounded continuous subsolution of (4.6) on R™ with w~(0) <0,
then w™ < w.

By the upper semicontinuity of w™ and w™(0) < 0 we obtain that for every ¢ > 0
there exists a § > 0 with w™ (z) < ¢ for all x € R™ with ||z| < J. Now we distinguish
two cases:

(i) 2o € Dy: We choose u* € U such that v(zo) + € > J(zo,u*) = 1 — G(xg, 00, u*).
Then (H3) (cf. Proposition 4.3) implies that there exists a sequence t;, — oo such that
P(tg, xo,u*) — 0 as k — oo. Thus it follows from the lower optimality principle (4.7)
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and the definition of v that

w” (xp) < limsup 1+ G(xo,tk,u*)(w_(¢(tk7xo,u*)) -1)

k—o0

<14 G(zg,00,u*)(e — 1) < w(xo) + 2¢

which shows the claim as € > 0 was arbitrary.

(ii) 2o & Dp: In this case by Proposition 3.3 it is sufficient to show that w™(xg) < 1.
Let M be a bound on |w~|. In this case we have ¢(7,zg,u) ¢ B(0,r) for all & € U
and all 7 > 0 which implies

/OT 9(p(s,zo,u), u(s))ds > g7

for the constant g, > 0 from (H3), see Proposition 4.3. Therefore é(a:o,r, ) <
exp(—g,t(7)) for all 7 > 0,4 € U. Hence

14 Gz, 7, @) (w™ (P(1, 20, @) — 1) < 14 exp(—g,t(7))(M + 1)

for all @ € U and the result follows by (4.7) as the right hand side tends to 1 for
T — 00.

Therefore Claim 1 is proved. To conclude the proof we now consider

Claim 2: Let w™ be a bounded continuous supersolution of (4.2) on R™ with w™(0) >
0. Then wt > v.

Again we distinguish two cases.

(i) zo & Do: In this case we know v(zg) = 1 and it is sufficient to show w*(zg) > 1.
In order to prove this inequality by contradiction, we assume w™(z9) = 1 — ¢ for
some suitable 6 > 0. Since | f]| is bounded by 1 for any ball B(R,z,) we have
Ter(x0,u, B(R,x0)) > R for all w € U. Furthermore, xo ¢ Dy implies P(t, xo,u) &
B(r,0) for all ¢ > 0, u € U, hence by (H3) (cf. Proposition 4.3) we have the inequality
g(p(t, zo,u),u(t)) > g > 0 for all t > 0, v € Y. This implies the existence of R > 0
such that G(zo,t,u) < 6/(2(M + 1)) for all t > R and all u € U, where M > 0 is a
bound on |w*|. Now pick the set Q@ = {z € R" |w'(z) < 1—§/2} N B(R, ). For
this set Lemma 4.8 (ii) is applicable, thus by (4.8), for any € > 0 we can find u. with

w (x9) > sup {1+ G(zo, 7, uc)(wh (37, 20,u:)) — 1)} — &
TE€[0,Tes (0 ,uc,)]
> sup {[1 — exp(—7g,)] — exp(—Tg, )M} — €.

TG[O;Tew(IO;qu)]

If T, (20, ue, ) = oo then this expression equals 1—¢, hence we obtain a contradiction
to wt(zg) = 1 -6 < 1 for ¢ sufficiently small. If T,.(zo,uc, Q) is finite then we
either have ¢(Tey (o, ue, ) € B(R, xo), in which case we get Te, (o, ue, 2) > R and
thus G(zg, Tex (0, ue, ), ue) < §/(2(M + 1)) or we have @(Tey (o, ue, ) € B(R, x0)
which by construction of © implies w(4(Ter(z0, ue, Q), zo,us)) > 1 — §/2. Since

G(zo,t,u) <1 holds for all ¢ > 0, u € U, in both cases we get
w () > sup {1+ G(zo, 7, uc)(wh (3(r,m0,uc)) — 1)} — €
T7€[0,Tes (0 ue,)]
Z 1 + é(l}o, Tex(x(% Ug, Q)a UE)(w+(¢(T€x(x07 Ug, Q)? Zo, UE)) - 1) — €
>1—-0/2—¢.
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This again contradicts our assumption w™(zg) = 1 — § for € sufficiently small.

(i) o € Dy: In this case we know that v(zo) < 1, hence for wt(zg) > 1 there is
nothing to show. Thus we can assume w™ (xg) = 1 — § for some suitable § > 0 and
again consider the set Q = {z € R" |w™ (x) < 1—46/2}NB(R, z¢) from part (i), above.
Now fix € > 0 with € < §/2 implying

wh(zo) +e<1—4/2. (4.9)
Then (4.8) yields the existence of a control function u. € U with

wt (o) +& > sup {1+ G(xo, t,ue)(wh (B(t, zo, ue)) — 1)} (4.10)
te[0,Ter (o, ue,2)]

If Ty (o, ue, ) < 0o then as in part (i), above, we obtain from (4.9) and (4.10)

1-6/2>wh(zg) +¢
> 1+ G(wo, T (20, @, Q), @) (W ((Tew (20, @y Q), 20, @) — 1)
>1-4/2,

which is contradiction. Thus we obtain Te, (20, ue, Q) = oco.

Now for each > 0 we find ¢ such that ||@(¢, xo, ue)|| <1, because otherwise — as in
the first inequality of case (i), above — the right hand side in (4.10) would be equal
to 1 contradicting (4.9) . The continuity of w™ and the assumption w™(0) > 0 imply
that there exists a n; > 0 such that

wt(z) > —¢ for all ||z|| < n. (4.11)
On the other hand, since v(0) = 0 and v is continuous we find 7, > 0 such that
v(z) < ¢ for all ||z] < ns. (4.12)

Combining these results, we can conclude that for all sufficiently large times ¢ > 0 we
have

W ((t, w0, ue)) > v(@(t, v, ue)) — 2€.

Thus using (4.10), (3.5) and the inequality G(xo, t,, u,) < 1 for sufficiently large t > 0
we can conclude

wt (z0) > 14 Glxo, t,u) (wH (G(L, 20, us)) — 1)} —¢
> 1+ G(xo, t,ue) (0(P(t, 2o, us)) — 1)} — 3¢
> ’U("Eo) - 367

which shows Claim 2, as € > 0 is arbitrary.
Finally, since every viscosity solution w is both sub— and supersolution, the combi-
nation of Claim 1 and 2 proves the lemma. O

Proof. of Theorem 4.4 All properties follow from the fact that by Lemma 4.10
the functions V' and v defined by (3.2) and (3.3) are the unique continuous viscosity
solutions for (4.6) and (4.5), respectively.

(i) and (ii): By Corollary 4.7 all viscosity solutions to (4.6) and (4.5) equations
are also viscosity solutions of (4.2) and (4.1), respectively, and vice versa. Hence, v
and V are also the unique viscosity solutions of (4.2) and (4.1), respecively.

(iii): Follows from Proposition 3.3.

(iv): Follows from Proposition 3.6. O
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5. Approximation with bounded control values. In this section we consider
the bounded approximations Uy = U Ncl B(0, k) of the (possibly) unbounded set U
of control values and the corresponding set Uy, := L>°([0, 00), Uy,) of control functions.
Throughout this section we assume that (HO)—(H2) holds which implies that we can
find g meeting (H3)—(H6).

ProprosITION 5.1. Consider the functions

Vi(z) = inf J(z,u) and wvp(z)=1—e"*@,
uEU

Then the relations

V(z) = ]ifellf\l Vi(z) and v(z) = irelg vk (z)

hold.
Proof. Since U, C U we obviously have the inequality Vi(x) > V(z). Now let
z € Dy and u € U be such that

J(z,u) <V(z)+e

for some € > 0. Since u € U there exists ko € N such that ||ul|e < ko, hence u € Uy, .
This implies

inf < < .

inf Vi(x) < Vi () < V(z) + ¢
Since € was arbitrary this shows the claim on Dy, both for V and v. For z &€ Dy we
have Vi (z) = V() = oo and vg(x) = v(z) = 1 which shows the claim also in this
case. O

REMARK 5.2. If the assumptions of Proposition 3.6 hold, then, since vy is decre-

asing in k, Dini’s Theorem yields that v, converges to v locally uniformly on R™.

For the following proposition recall the definition of set limits, which for a sequence
of sets X, are given by

limsup Xj := ﬂ U X,, and liminf X, := U ﬂ X
k—oo keNm>k koo keENm>k

and, if these two sets coincide,

lim Xj := limsup X; = liminf X.
k—o0 k—o0 k—o0

PROPOSITION 5.3. Consider the sets
Dy, := {x € R"| there exists u € Uy, with ||o(t,z,u)|| — 0 fort — oo}.
Then the set limit limy_.o, Dy exists and satisfies

Do = lim 'Dk

k—o0

Proof. Since we have that V' < ... < Vi1 < Vi we obtain the inclusion

Dy € Diy1 € ... CDy.



Control Lyapunov Functions and Zubov’s Method 21

It follows that Umz & Dm C€ Dy for each k and hence

limsup Dy, = ﬂ U D, C Dy.
k—oo keNm>k

On the other hand, if x € Dy then for any £ > 0 there exists kg € N with Vi (x) <
V(x) + ¢ for all k > kg. This implies that @ € Dy for all k > ko and consequently
% € >k, Pm- This implies

zelJ () Pm = lim inf Dy,
kEENm>k

and since z € Dy was arbitrary we obtain

Dy C likm inf Dy,

which shows the claim. O
REMARK 5.4. This Proposition implies that for any compact set K C R™ the
convergence

dH(KﬂDk,KODO) — 0

in the Hausdorff metric holds (see e.g. [2, Proposition 1.1.5]). In particular, if Dy is
bounded then we obtain uniform convergence of Dy to Dy in the Hausdorff metric.

In particular, this implies that for any compact set K C Dy we obtain K C Dy,
for all sufficiently large k. Thus, in order to steer the system to 0 from a compact
subset K C Dy it is sufficient to consider bounded control functions.

6. Examples. In this section we discuss the necessity of some of our assumpti-
ons. Also it is explained how the classical case of linear quadratic control fits within
the present framework.

ExXaMPLE 6.1. Consider the one dimensional dynamics

#(t) = (2(t) — D(ult) + 1) + 1 = () (u(t) + 1) —u(t), t>0, (6.1)

where U = R. The origin is an equilibrium point so that (H1) is satisfied, while z = 1
is repulsive, in the sense that any trajectory starting from zy > 1 cannot reach the
origin. With this it is easy to see that Dy = (—o0,1). Furthermore, (HO) is satisfied
with v(u) = |ul.

Now consider the cost function g1 (x,u) = |z|, which satisfies (H3) and (H4) but
neither (H5) nor (H6). For 2y € (0,1) and an arbitrary constant o > 0 choose

—a—1

u(t) = WX[O,IQ/O&] (t),

where X[0,5, /o] denotes the indicator function of the interval [0, 29/a]. The correspon-
ding solution of (6.1) is given by

o(t) = (w0 — at)X[0,20/a) () ,

Observe that for x( close to 1 we need a very large control to start to move towards
the origin. This is because the control u is multiplied by x — 1.
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Calculating the corresponding cost we obtain

Vi(wo) < / " g1 (6(8), u(t))dt = 22 /20

and therefore sending ov — 400, it follows that Vi(xg) = 0 for any z € (0,1). Of
course, Vi(z) = oo for > 1. Summarizing this shows that v; is discontinuous on R
and not a control Lyapunov function on Dy.

On the other hand setting go(z,u) = max{|z| + |ul, (|z| + |u|)?} a cost function
satisfying (H6) is obtained. To analyze the associated value functions fix z¢ € (0, 1)
and choose a control w such that ¢(t) := ¢(t,x,u) — 0. We will assume that ¢ is
strictly decreasing as otherwise it is clearly not optimal. Now let 7" > 0 be a time
such that ¢(T") > 0, then we have

T T T _
Bae) = [ aoto.uyie= [ o0 +utar= [ o0+ Sy

> /T —00) 4 (1—¢(T)) — log(1 )
“Jo Toem ™ T e

As ¢(T) approaches 0 (in finite or infinite time) this calculation shows that V5 (z¢) >
—log(1 — ) for zg € (0,1) so that in particular vy is continuous on R and a control
Lyapunov function on Dy (where we leave the assertion for (—oo,0) to the reader).

Finally note that a combination of the previous examples leads to an intermediate
situation. To this end let h : R — [0, 1] be a continuous function such that h(x) =1
if z € (—00,1/2], h(z) = 0 for x € [3/4,00) and let g3(z,u) = |x| + h(z)|u|. Then it
follows for = € [0,1/2] that V3(z) = Va(x) > —log(1l — ) by the considerations on go,
whereas for x € (3/4,1) we have V3(z) = V(3/4) using that V; is constant on that
interval. In this example (H5) and (H6) are not satisfied, vs is not continuous and V3
is a control Lyapunov function only on a subset of Dj.

EXAMPLE 6.2. Finally we show that the classical linear quadratic control problem
fits into our setup. This problem is obtained if we set

f(x,u) = Az 4+ Bu and g(z,u) = 27 Qz + u” Ru,

where A, B, Q, R are matrices of appropriate dimensions with Q and R being symme-
tric and positive definite.

By direct computations one sees that these functions satisfy (HO) for any v € Koo,
(H1), (H3) and (H5). The linear system also satisfies (H2’), because it is known that
local asymptotic controllability implies the existence of a feedback matriz F' such that
A+ BF is exponentially stable, i.e., this matriz has all its eigenvalues in the open left
half plane, which yields (H2’) with B(r,t) = Ke *r for suitable constants K, \ > 0.
Hence we obtain B(r,t) = as(ay(r)e™t) with as(r) = r* which implies (H}’) for our g
with 6 = 2/X\ and C = ||Q+R||. Finally, (H6) is satisfied because g grows quadratically
in u while f only grows linearly in w. Thus, the classical linear quadratic problem is
a special case of our setup and the resulting equation (4.1) is given by

sup{—DV (z)(Az + Bu) — 27 Qz — uT Ru} = 0. (6.2)
uelU

For the quadratic ansatz V(z) = 2T Px with symmetric matriz P we obtain

DV (z)(Ax + Bu) = 27 P(Az + Bu) + (Az + Bu)' Px.
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Assuming U = R™ we can explicitly solve the mazimization problem over u by setting
the first derivative of the resulting expression to 0 and obtain

u(z) = —R™'BT Px.
Plugging this into (6.2) and multiplying by —1 yields
' PBR™'BTPx — 2" PAx — 2T ATPx — 2TQx =0
which is equivalent to
PBR'BTP—-PA—-ATP-Q =0,

i.e., (4.1) reduces to the well known algebraic Riccati equation from linear optimal
control, see [33, Section 8.4].

Appendix A. In this appendix we give the proof of Lemma 4.6.

Proof. We prove the lemma for (4.1) and (4.5), the assertions for (4.2) and (4.6)
follow by the same arguments.

(i) If V'~ is a viscosity subsolution of (4.1), then for any supergradient p of V'~
in z we have that

Sup{—f(:c,u)p - g(x,u)} <0.
uelU

This implies
—f(z,u)p — g(z,u) <0 for allu e U
and since 1+ || f(z,u)|| is positive, this implies
—f@,w)p = glw,u) = 1+ || f(z,w)) " (= f(z,u)p — g(z,u)) <0 for all u € U,
which in turn implies

sup{—f(z, u)p — §(z,u)} <0,
uelU

hence V'~ is a viscosity supersolution of (4.5).

The converse direction follows by the same argument, since again we multiply by
a positive factor, now 1+ || f(z,u)].

(ii) Let VT be a viscosity supersolution of (4.1). Then for any subgradient p of
VT in z we have

sup{—f(z,u)p — g(x,u)} > 0.
uelU

Now we distinguish two cases:
(a) We can find u* € U such that

—f(x,u)p —g(x,u*) >0

Since 1 + || f(z, u*)|| is positive we obtain

—f(@,u")p — gl u”) = (L+ || f (@, w)]) 7 (= f (@, u")p — gz, u")) 2 0.
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This implies

sup{—f(x,u)p —g(z,u)} >0
uelU

hence V7 is a viscosity supersolution of (4.5).
(b) For all w € U the inequality

—f(z,u)p — g(z,u) <0

holds. In this case, since 1+ || f(x,u)|| > 1, for all u € U we obtain

—f(@,w)p = gla.u) = L+ || f (@, w)l) " (~f(z,w)p - g(z,u))

<0

—

(v
#wp -

I \/

This implies

21615{ fl@,wp — g(z,u)} > Sup{ fx,u)p —g(z,u)} > 0.

Thus also in this case VT is a viscosity supersolution of (4.5).
Conversely, let VT be a viscosity supersolution of (4.5). Then for any subgradient
p of V1 in x we have

Sup{*f(xvu)p - g(as,u)} 2 0.
uelU

Since f is bounded and g grows unbounded in u due to (H6), the supremum over w is
contained in a compact set. Hence by continuity we can find a control value uv* € U
for which the maximum is attained, i.e.

—f(a,u)p = g(a,u*) > 0.
Since 1+ ||f(z,u*)| is positive we obtain

—fla,u)p = gla,u*) = (L+ || f (2, u") ) (= f (2, u")p = §lz,u")) = 0.

This implies

sup{—f(a:,u)p - g(a:,u)} >0
uelU

hence V' is a viscosity supersolution of (4.1). O
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