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A positive systems model of TCP-like congestion
control: Asymptotic results

Robert Shorten, Fabian Wirth, Douglas Leith

Abstract— We study communication networks that employ
drop-tail queueing and Additive-Increase Multiplicative-Decrease
(AIMD) congestion control algorithms. It is shown that the
theory of nonnegative matrices may be employed to model such
networks. In particular, important network properties such as:
(i) fairness; (ii) rate of convergence; and (iii) throughput; can be
characterised by certain non-negative matrices. We demonstrate
that these results can be used to develop tools for analysing the
behaviour of AIMD communication networks. The accuracy of
the models is demonstrated by severalNS-studies.
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I. I NTRODUCTION

In this paper we describe a design oriented modelling
approach that captures the essential features of networks of
AIMD sources that employ drop-tail queues. The novelty
of our approach lies in the fact that we are able to use
the theory of non-negative matrices and hybrid systems to
build mathematical models of communication networks that
capture the dynamic interaction between competing flows.
This approach is based upon a number of simple observations:
(i) communication networks employing congestion control
systems are feedback systems; (ii) communication systems
exhibit event driven phenomena and may therefore be viewed
as classical hybrid systems; and (iii) network states (queue
length, window size, etc.) take only non-negative values. We
show that it is possible to relate important network properties
to the characteristics of the non-negative matrices that arise in
the study of such communication networks. In particular, we
will demonstrate that (i) bandwidth allocation amongst flows,
(ii) rate of network convergence, and (iii) network throughput
can all be related to properties of sets of non-negative matrices.

This paper is structured as follows. In Section II we develop
a positive systems network model that captures the essen-
tial features of communication networks employing drop-tail
queuing andAIMD congestion control algorithms. An exact
model is presented for the case where all network sources
share a uniform round-trip-time (RTT) and packet drops are
synchronised. This model is then extended to the case of
sources with differing RTT’s and where packet drops need not
be synchronised. This approach gives rise to a model in which
the network dynamics are described by a finite set of non-
negative matrices. The main results of this paper are presented
in Section III. To ease exposition these results, which concern
the short and long term behaviour of AIMD networks, are
simply stated in this section. The use of these results to analyse
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network behaviour is illustrated by a number of case studies
in Section IV. Finally, in Section VI we present an outline
of the proofs of the mathematical results as well as a number
of intermediate derivations. For reasons of space, complete
proofs have been transferred to [8].

II. N ONNEGATIVE MATRICES AND COMMUNICATION

NETWORKS

A communication network consists of a number of sources
and sinks connected together via links and routers. In this
paper we assume that these links can be modelled as a constant
propagation delay together with a queue, that the queue is
operating according to a drop-tail discipline, and that allof
the sources are operating aAdditive-Increase Multiplicative
Decrease(AIMD) -like congestion control algorithm. AIMD
congestion control operates a window based congestion control
strategy. Each source maintains an internal variablecwndi (the
window size) which tracks the number of sent unacknowl-
edged packets that can be in transit at any time, i.e. the number
of packets in flight. On safe receipt of data packets the desti-
nation sends acknowledgement (ACK) packets to inform the
source. When the window size is exhausted, the source must
wait for an ACK before sending a new packet. Congestion
control is achieved by dynamically adapting the window size
according to an additive-increase multiplicative-decrease law.
Roughly speaking, the idea is for a source to probe the network
for spare capacity by increasing the rate at which packets are
inserted into the network, and to rapidly decrease the number
of packets transmitted through the network when congestion
is detected through the loss of data packets. In more detail,the
source incrementscwndi(t) by a fixed amountαi upon receipt
of each ACK. On detecting packet loss, the variablecwndi(t)
is reduced in multiplicative fashion toβicwndi(t). We shall
see that theAIMD paradigm with drop-tail queuing gives rise
to networks whose dynamics can be accurately modelled as a
positive linear system. While we are ultimately interested in
general communication networks, for reasons of expositionit
is useful to begin our discussion with a description of networks
in which packet drops are synchronised (i.e. every source sees
a drop at each congestion event). We show that many of the
properties of communication networks that are of interest to
network designers can be characterised by properties of a
square matrix whose dimension is equal to the number of
sources in the network. The approach is then extended to a
model of unsynchronised networks. Even though the math-
ematical details are more involved, many of the qualitative
characteristics of synchronised networks carry over to thenon-
synchronised case if interpreted in a stochastic fashion.
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A. Synchronised communication networks

We begin our discussion by considering communication
networks for which the following assumptions are valid: (i)
at congestion every source experiences a packet drop; and
(ii) each source has the same round-trip-time (RTT)1. In this
case an exact model of the network dynamics may be found
as follows [1]. Letwi(k) denote the congestion window size
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Fig. 1. Evolution of window size

of sourcei immediately before thek’th network congestion
event is detected by the source. Over thek’th congestion
epoch three important events can be discerned:ta(k), tb(k)
andtc(k); as depicted in Figure 1. The timeta(k) denotes the
instant at which the number of unacknowledged packets in
flight equalsβiwi(k) whereβi is the multiplicative decrease
factor associated with thei′th flow (recall that after each
congestion event thei’th sources decreases its number of
packets in flight by a factor of1−βi); tb(k) is the time at which
the bottleneck queue is full; andtc(k) is the time at which
packet drop is detected by the sources, where time is measured
in units of RTT2. It follows from the definition of theAIMD
algorithm that the window evolution is completely defined over
all time instants by knowledge of thewi(k) and the event times
ta(k), tb(k) andtc(k) of each congestion epoch. We therefore
only need to investigate the behaviour of these quantities.

We assume that each source is informed of congestion one
RTT after the queue at the bottleneck link becomes full; that
is tc(k) − tb(k) = 1. Also,

wi(k) ≥ 0,
n
∑

i=1

wi(k) = P +
n
∑

i=1

αi, ∀k > 0, (1)

where P is the maximum number of packets which can be
in transit in the network at any time;P is usually equal to
qmax +BTd whereqmax is the maximum queue length of the
congested link,B is the service rate of the congested link in
packets per second andTd is the round-trip time when the
queue is empty. At the(k + 1)th congestion event

wi(k + 1) = βiwi(k) + αi[tc(k) − ta(k)]. (2)

It follows from (1) and (2) that

tc(k) − ta(k) =
1

∑n
i=1 αi

[P −
n
∑

i=1

βiwi(k)] + 1. (3)

1One RTT is the time between sending a packet and receiving the
corresponding acknowledgement when there are no packet drops.

2Note that measuring time in units of RTT results in a linear rateof increase
for each of the congestion window variables between congestion events.

Hence, it follows that

wi(k + 1) = βiwi(k) +
αi

∑n
j=1 αj

[

n
∑

j=1

(1 − βj)wj(k)], (4)

and that the dynamics an entire network of such sources is
given by

W (k + 1) = AW (k), (5)

whereWT (k) = [w1(k), · · · , wn(k)], and where withαT =
[α1 . . . αn] we have

A = diag (β1, β2, . . . , βn) (6)

+
1

∑n
j=1 αj

α
[

1 − β1 · · · 1 − βn

]

.

and the initial conditionW (0) is subject to the constraint(1).
The matrixA is a positive matrix (all the entries are positive

real numbers) and it follows that the synchronised network (5)
is a positive linear system [2]. Many results are known for
positive matrices and we exploit some of these to characterise
the properties of synchronised communication networks. In
particular, from the viewpoint of designing communication
networks the following properties are important: (i) network
fairness; (ii) network convergence and responsiveness; and (iii)
network throughput. While there are many interpretations of
network fairness, in this paper we concentrate on window
fairness. Roughly speaking, window or pipe fairness refers
to a steady state situation wheren sources operatingAIMD
algorithms have an equal number of packetsP/n in flight
at each congestion event; convergence refers to the existence
of a unique fixed point to which the network dynamics con-
verge; responsiveness refers to the rate at which the network
converges to the fixed point; and throughput efficiency refers
to the objective that the network operates at close to the
bottleneck-link capacity. It is shown in [3], [4] that these
properties can be deduced from the network matrixA. We
briefly summarise here the relevant results in these papers.

Theorem 1 [1], [4] Let A be defined as in Equation (6).
ThenA is a column stochastic matrix with Perron eigenvector
xT

p = [ α1

1−β1

, ..., αn

1−βn
] and whose eigenvalues are real and

positive. Further, the network converges to a unique stationary
point Wss = Θxp, whereΘ is a positive constant such that
the constraint (1) is satisfied;limk→∞ W (k) = Wss; and the
rate of convergence of the network toWss is bounded by the
second largest eigenvalue ofA.

The following results may be deduced from the above.
(i) Fairness: Window fairness is achieved when the Perron

eigenvectorxp is a scalar multiple of the vector[1, ..., 1]; that
is, when the ratio αi

1−βi
does not depend oni. Further, since

it follows for conventional TCP-flows (α = 1, β = 1/2) that
α = 2(1 − β), any new protocol operating anAIMD variant
that satisfiesαi = 2(1 − βi) will be TCP-friendly - i.e. fair
with legacyTCP flows.

(ii) Network responsiveness:The magnitude of the sec-
ond largest eigenvalueλn−1 of the matrix A bounds the
convergence properties of the entire network. It is shown
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Fig. 2. Example of window fairness between two TCP sources with different
increase and decrease parameters (NS simulation, network parameters: 10Mb
bottleneck link, 100ms delay, queue 40 packets.)
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Fig. 3. NS packet-level simulation (αi = 1, βi = 0.5, dumb-bell with
10Mbs bottleneck bandwidth, 100ms propagation delay, 40 packet queue).

in [4] that all the eigenvalues ofA are real and positive
and lie in the interval[β1, 1], where theβi are ordered as
0 < β1 ≤ β2 ≤ .... ≤ βn−1 ≤ βn < 1. In particular, the
second largest eigenvalue is bounded byβn−1 ≤ λn−1 ≤ βn.
Consequently, fast convergence to the equilibrium state (the
Perron eigenvector) is guaranteed if the largest backoff factor
in the network is small. Further, we show in [4] that the
network rise-time when measured in number of congestion
epochs is bounded bynr = log(0.95)/ log(λn−1). In the
special case whenβi = 0.5 for all i, nr ≈ 4; see for example
Figure 3. Note thatnr gives the number of congestion epochs
until the network dynamics have converged to 95 % of the
final network state: the actual time to reach this state depends
on the duration of the congestion epochs which is ultimately
dependent on theαi.

(iii) Network throughput : At a congestion event the net-
work bottleneck is operating at link capacity and the total data
throughput through the bottleneck link is given by

R(k)− =

∑n
i wi(k)

Td + qmax

B

(7)

where B is the link capacity,qmax is the bottleneck buffer
size, Td is the round-trip-time when the bottleneck queue is
empty andTd+qmax/B is the round-trip time when the queue
is full. After backoff, the data throughput is given by

R(k)+ =

∑n
i βiwi(k)

Td

(8)

under the assumption that the bottleneck buffer empties. Itis
evident that if the sources backoff too much, data throughput
will suffer as the queue remains empty for a period of time and
the link operates below its maximum rate. A simple method
to ensure maximum throughput is to equate both rates, which
may be achieved by the following choice of theβi:

βi =
Td

Td + qmax

B

=
RTTmin

RTTmax

. (9)

(iv) Maintaining fairness : Note that settingβi = RTTmin

RTTmax

requires a corresponding adjustment ofαi if it is not to result
in unfairness. Both network fairness and TCP-friendlinessare
ensured by adjustingαi according toαi = 2(1 − βi).

B. Models of unsynchronised network

The preceding discussion illustrates the relationship be-
tween important network properties and the eigensystem of
a positive matrix. Unfortunately, the assumptions under which
these results are derived, namely of source synchronisation
and uniform RTT, are quite restrictive (although they may,
for example, be valid in many long-distance networks [5]). It
is therefore of great interest to extend our approach to more
general network conditions. To distinguish variables, we will
from now on denote the nominal parameters of the sources
used in the previous section byαs

i , β
s
i , i = 1, . . . , n.

Consider the general case of a number of sources competing
for shared bandwidth in a generic dumbbell topology (where
sources may have different round-trip times and drops need
not be synchronised). The evolution of thecwnd of a typical
source as a function of time, over thek′th congestion epoch, is
depicted in Figure 4. As before a number of important events
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Fig. 4. Evolution of window size over a congestion epoch.T (k) is the
length of the congestion epoch in seconds.

may be discerned, where we now measure time in seconds,
rather than units ofRTT . Denote bytai(k) the time at which
the number of packets in flight belonging to sourcei is equal
to βs

i wi(k); tq(k) is the time at which the bottleneck queue
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begins to fill3; tb(k) is the time at which the bottleneck queue
is full; and tci(k) is the time at which thei’th source is
informed of congestion. In this case the evolution of thei’th
congestion window variable does not evolve linearly with time
aftertq seconds due to the effect of the bottleneck queue filling
and the resulting variation in RTT; namely, theRTT of the
i’th source increases according toRTTi(t) = Tdi

+ q(t)/B
aftertq, whereTdi

is theRTT of sourcei when the bottleneck
queue is empty and0 ≤ q(t) ≤ qmax denotes the number of
packets in the queue. Note also that we do not assume that
every source experiences a drop when congestion occurs. For
example, a situation is depicted in Figure 4 where thei’th
source experiences congestion at the end of the epoch whereas
the j’th source does not.

Given these general features it is clear that the modelling
task is more involved than in the synchronised case. Nonethe-
less, it is possible to relatewi(k) andwi(k+1) using a similar
approach to the synchronised case by accounting for the effect
of non-uniform RTT’s and unsynchronised packet drops as
follows.

(i) Unsynchronised source drops :Consider again the situ-
ation depicted in Figure 4. Here, thei’th source experiences
congestion at the end of the epoch whereas thej’th source does
not. This corresponds to thei’th source reducing its congestion
window by the factorβs

i after thek + 1’th congestion event,
and thej’th source not adjusting its window size at congestion.
We therefore allow the back-off factor of thei’th source to take
one of two values at thek’th congestion event corresponding
to whether the source experiences a packet loss or not

βi(k) ∈ {βs
i , 1} . (10)

(ii) Non-uniform RTT :Due to the variation in round trip
time, the congestion window of a flow does not evolve linearly
with time over a congestion epoch. Nevertheless, we may
relate wi(k) and wi(k + 1) linearly by defining an average
rateαi(k) depending on thek’th congestion epoch:

αi(k) :=
wi(k + 1) − βi(k)w(k)

T (k)
, (11)

where T (k) is the duration of thek’th epoch measured in
seconds. Equivalently we have

wi(k + 1) = βi(k)wi(k) + αi(k)T (k) . (12)

In the case whenqmax << BTdi
, i = 1, . . . , n, the average

αi are (almost) independent ofk and given byαi(k) ≈ αs
i /Tdi

for all k ∈ N, i = 1, . . . , n. The situation when

αi ≈
αs

i

Tdi

, i = 1, . . . , n (13)

is of considerable practical importance and such networks are
the principal concern of this paper. This corresponds to the
case of a network whose bottleneck buffer is small compared
with the delay-bandwidth product for all sources utilising
the congested link. Such conditions prevail on a variety of
networks; for example networks with large delay-bandwidth
products, and networks where large jitter and/or latency cannot

3In the case when the queue does not empty following a congestion event
tq(k) = tai(k).

be tolerated. Note however that the model is not restricted
to such situations; see Comment 4.1 below. In view of (10)
and (12) a convenient representation of the network dynamics
is obtained as follows. At congestion the bottleneck link is
operating at its capacityB, i.e.,

n
∑

i=1

wi(k) − αi

RTTi,max

= B, (14)

where RTTi,max is the RTT experienced by thei’th flow
when the bottleneck queue is full. Note, thatRTTi,max is
independent ofk. Settingγi := (RTTi,max)−1 we have that

n
∑

i=1

γiwi(k) = B +

n
∑

i=1

γiαi . (15)

By interpreting (15) atk+1 and inserting (12) forwi(k+1)

n
∑

i=1

γiβi(k)wi(k) + γiαiT (k) = B +

n
∑

i=1

γiαi . (16)

Using (15) again it follows that

T (k) =
1

∑n
i=1 γiαi

(

n
∑

i=1

γi(1 − βi(k))wi(k)

)

. (17)

Inserting this expression into (12) we finally obtain

wi(k + 1) = βi(k)wi(k) (18)

+
αi

∑n
j=1 γjαj





n
∑

j=1

γj(1 − βj(k))wj(k)



 .

and the dynamics of the entire network of sources at thek-th
congestion event, subject to (15), are described by

W (k + 1) = A(k)W (k), A(k) ∈ {A1, ..., Am} , (19)

where settinggT =
[

γ1(1 − β1(k)) . . . γn(1 − βn(k))
]

we have

A(k) = diag (β1(k), β2(k), . . . , βn(k)) (20)

+
1

∑n
j=1 γjαj

αgT ,

and whereβi(k) is either1 or βs
i . The non-negative matrices

A2, .., Am are constructed by taking the matrixA1,

A1 =











βs
1 0 · · · 0
0 βs

2 0 0
... 0

. .. 0
0 0 · · · βs

n











+

1
∑n

j=1 γjαj









α1

α2

· · ·
αn









[

γ1(1 − βs
1), . . . , γn(1 − βs

n)
]

,

(21)

and setting some, but not all, of theβs
i to 1. This gives rise

to a setA of m = 2n − 1 matrices associated with the system
(19) that correspond to the different combinations of source
drops that are possible.
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Finally we note that another, sometimes very useful, rep-
resentation of the network dynamics can be obtained by con-
sidering the evolution of scaled window sizes at congestion;
namely, by considering the evolution ofWT

γ (k) = [γ1w1(k)
, γ2w2(k), ...., γnwn(k)]. Here one obtains the following de-
scription of the network dynamics:

Wγ(k + 1) = Ā(k)Wγ(k), Ā(k) ∈ Ā = {Ā1, ..., Ām}, (22)

wherem = 2n − 1 and theĀi are obtained by the similarity
transformation associated with the change of variables, in
particular

Ā1 =











βs
1 0 · · · 0
0 βs

2 0 0
... 0

. . . 0
0 0 · · · βs

n











+

1
∑n

j=1 γjαj









γ1α1

γ2α2

· · ·
γnαn









[

1 − βs
1 1 − βs

2 · · · 1 − βs
n

]

.

As before the non-negative matricesĀ2, .., Ām are constructed
by taking the matrixĀ1 and setting some, but not all, of the
βs

i to 1. All of the matrices in the set̄A are now column
stochastic; in our proofs we use this representation of the
network dynamics.

III. M AIN RESULTS

The ultimate objective of our work is to use the network
model developed in Section II to establish design principles
for the realisation ofAIMD networks. In this section we present
two results, both of which are derived from our network model
in Section 2, which in a sense characterise the asymptotic
behaviour of both long and short lived flows.

Preamble to main results

It follows from (19) that W (k) = Π(k)W (0), where
Π(k) = A(k)A(k − 1)....A(0). Consequently, the behaviour
of W (k), as well as the network fairness and convergence
properties, are governed by the properties of the matrix product
Π(k). The objective of this section is to analyse the average
behaviour ofΠ(k) with a view to making concrete state-
ments about these network properties. To facilitate analytical
tractability we will make two mild simplifying assumptions.

Assumption 1 The probability thatA(k) = Ai in (19) is
independent ofk and equalsρi.

Comment 1 In other words Assumption 1 says that the prob-
ability that the network dynamics are described byW (k+1) =
A(k)W (k), A(k) = Ai over thek’th congestion epoch isρi

and that the random variablesA(k), k ∈ N are independent
and identically distributed (i.i.d.).

Given the probabilitiesρi for i ∈ {1, ..., 2n − 1}, one may
then define the probabilityλj that sourcej experiences a loss
event at thek’th congestion event as follows:

λj =
∑

ρi ,

where the summation is taken over thosei which correspond
to a matrix in which thej’th source sees a drop. Or to put it
another way, the summation is over those indicesi for which
the matrixAi is defined with a value ofβj 6= 1. Note that
λj can be thought of as a synchronisation factor - it is unity
when a flow experiences a loss at every congestion event.

Assumption 2 Let λj > 0 for all j ∈ {1, ..., n}.

Simply stated, Assumption 2 states that almost surely all
flows must see a drop at some time (provided that they live
for a long enough time).

Comment 2 A consequence of the above assumptions is that
the probability that sourcej experiences a drop at thek’th
congestion event is not independent of the other sources. For
example, if the firstn− 1 sources do not see a drop then this
implies that sourcen must see a drop (in accordance with the
usual notion of a congestion event, we require at least one
flow to see a drop at each congestion event).

We now present two results that characterise the expected
behaviour ofAIMD-networks that satisfy Assumptions 1 and
2. The first characterises the ensemble average behaviour
of flows, while the second characterises the time average
behaviour.

Result 1. Ensemble average behaviour of TCP-flows

Theorem 2 Consider the stochastic system defined in the
preamble. LetΠ(k) be the random matrix product arising from
the evolution of the firstk steps of this system:

Π(k) = A(k)A(k − 1)....A(0).

Then, the expectation ofΠ(k) is given by

E(Π(k)) = (

m
∑

i=1

ρiAi)
k; (23)

and the asymptotic behaviour ofE(Π(k)) satisfies

lim
k→∞

E(Π(k)) = xpy
T
p , (24)

where xT
p = Θ( α1

λ1(1−β1)
, α2

λ2(1−β2)
, ..., αn

λn(1−βn) ), yT
p =

(γ1, ...., γn). HereΘ ∈ R is chosen such that equation (15) is
satisfied ifwi is replaced byxpi = Θαi/(λi(1 − βi)).

Comment 3 Theorem 2 characterises the ensemble average
behaviour of the congestion variable vectorW (k). The con-
gestion variable vector of a network of flows starting from
initial condition W (0) and evolving fork congestion epochs
is given byW (k) = Π(k)W (0). The average window vector
over many repetitions is given byE(Π(k))W (0). Theorem 2
provides an expression for calculating this average in terms
of the network parameters and the probabilitiesρi. Fur-
thermore, we have that ask becomes largeE(Π(k))W (0)
tends asymptotically toxpy

T
p W (0). The rate of convergence of

E(Π(k))W (0) to this limiting value is bounded by the second
largest eigenvalue of the matrix

∑m
n=1 ρiAi.
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Comment 4 Theorem 2 is concerned with the expected be-
haviour of the source congestion windows at thek’th conges-
tion epoch. Fork sufficiently large the expected throughput be-
fore backoff can be approximated as

∑n
i=1

αi

λi(1−βi)RTTi,max
.

The expected worst case throughput after backoff (which
occurs when the queue is on average empty after backoff)
is approximately

∑n
i=1

αi

λi(1−βi)RTTi,min
. An immediate con-

sequence of this observation is that the bottleneck link is
guaranteed to be operating at capacity (on average) fork
large enough ifβi =

RTTi,min

RTTi,max
.

Result 2. Time average behaviour of flows

We now present the following theorem which is concerned
with networks characterised by long-lived flows.

Theorem 3 Consider the stochastic system defined in the
preamble and let

W (k) :=
1

k + 1

k
∑

i=0

W (i) =

(

1

k + 1

k
∑

i=0

Π(i)

)

W (0),

and whereΠ(k) = A(k)A(k − 1)....A(0). Then, with proba-
bility one

lim
k→∞

W (k) = xpy
T
p W (0) =





n
∑

j=1

γjwj(0)



xp, (25)

where the vectorsxp and yp are as defined in Theorem 2.

Comment 5 (i) Theorem 3 states that the time-average vector
of window sizes almost surely converges asymptotically to a
scalar multiple ofxp. Hence,xp determines the time-averaged
relative number of unacknowledged packets in the network
from each source at each congestion event.

(ii) In view of Comment 4, it again follows that asymp-
totically, the time-averaged throughput through the bottleneck
link will approach the capacityB for k sufficiently large if
βi =

RTTi,min

RTTi,max
.

(iii) In the spirit of Theorem 2 one may also consider the ex-
pectation ofW (k): E(W (k)). DenotingE(A) =

∑m
i=1 ρiAi

it follows from our assumptions that

E(W (k)) =
1

k + 1
(E(A)k + ... + E(A))W (0) (26)

= M(k)W (0), (27)

where the matrixM(k) is column stochastic matrix, and whose
second largest eigenvalue is given by

λ2(k) =
1

k + 1

λk+1
2 − λ2

λ2 − 1
(28)

whereλ2 is the second largest eigenvalue ofE(A). Further,
E(W (k)) tends asymptotically toxp as λ2(k) tends to0.

T
1


T
0


B, T


Fig. 5. Dumbbell topology.

IV. M ODEL VALIDATION

The mathematical results derived in Section III are surpris-
ingly simple when one considers the potential mathematical
complexity of the unsynchronised network model (19). The
simplicity of these results is a direct consequence of Assump-
tions 3.1 and 3.2. The objective of this section is therefore
twofold; (i) to validate the unsynchronised model (19) in a
general context; and (ii) to validate the analytical predictions
of the model and thereby confirm that the aforementioned
assumptions are appropriate in practical situations.

A. Two Unsynchronised Flows

We first consider the behaviour of two TCP flows in the
dumbbell topology shown in Figure 5. Our analytic results
are based upon two fundamental assumptions: (i) that the
dynamics of the evolution of the source congestion windows
can be accurately modelled by equation (19); and (ii) the
allocation of packet drops amongst the sources at congestion
can be described by random variables. We consider each of
these assumptions in turn.

(i) Accuracy of dynamics model :A comparison of the
predictions of the model (19) against the output of a packet-
level NS simulation is depicted in Figure 6. Here, the pattern
of packet drops observed in the simulation is used to select
the appropriate matrixA(k) from the setA at each congestion
event when evaluating (19). As can be seen, the model output
is very accurate. Also plotted in Figure 7 is the evolution of
the linear combination

∑n
i=1 γiwi where theγi are defined

in Equation (15). It can be seen that
∑n

i=1 γiwi has the same
value at each congestion event thereby validating the constraint
(15) used in the model.

(ii) Validity of random drop model :It is well known that
networks of TCP flows with drop-tail queues can exhibit a rich
variety of deterministic drop-behaviours [6]. However, most
real networks carry at least a small amount web traffic. In
Figure 8 we plotNS simulation results showing the mean
congestion window as the level of background web traffic is
varied (background information on the web traffic generator
in NS is described in [7]). To illustrate the impact of small
amounts of web traffic, these results are given for a network
condition where phase effects are particularly pronounced.
While the agreement between the simulation and our random
matrix model is poor with no web traffic, even a very small
volume of web traffic appears to be enough to disrupt the
coherent structure associated with phase effects and other
complex phenomena previously observed in simulations of
unsynchronised networks. From the packet-based simulation
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Fig. 6. Predictions of the network model compared with packet-level NS
simulation results. Key:◦ flow 1 (model),♦ flow 2 (model), - flow 1 (NS),
– flow 2 (NS). Network parameters: B=100Mb,qmax=80 packets,̄T=20ms,
T0=102ms;T1=42ms; no background web traffic.

0 50 100 150 200 250 300 350 400 450 500
0

20

40

60

80

100

120

140

160

180

200

time (s)

w
ei

gh
te

d 
su

m
 o

f c
w

nd
 (

pa
ck

et
s)

Fig. 7. Evolution of
Pn

i=1
γiwi. The peaks correspond to congestion events.

Network parameters: B=100Mb,qmax=80 packets,T̄=20ms, T0=102ms;
T1=42ms; no background web traffic.
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Fig. 8. Variation of meanwi(k) with level of background web traffic in
dumbbell topology of Figure 5. Key: +NS simulation result;· mathematical
model (19);◦ Theorem 3. Network parameters: B=100Mb,qmax=80 packets,
T̄=20ms,T0=102ms;T1=42ms.

results we can determine the proportion of congestion events
corresponding to both flows simultaneously seeing a packet
drop, flow 1 seeing a drop only, and flow 2 seeing a drop
only. Using these estimates of the probabilitiesρi, the mean
congestion window can be estimated using expression (24)
from Theorem 3. The resulting estimates are shown in Figure
9, and are also presented in tabular form in Table IV-A. In
these figuresT1 is the fixed delay associated with source1 that
is depicted in Figure 5. The first column for each flow gives the
actual average window size as predicted by theNS simulator;
the second column gives the predictions of the model (19);
and the third column gives the long-time average predictions
of Theorem 3. It can be seen that there is close agreement
between the packet-level simulation results and the predictions
obtained using (24). The actual convergence of the simulation
data to the mean values is depicted in Figure 10.

Also shown in Figure 9 are the analytic predictions for the
case where each source has an equal probability of backing
off when congestion occurs: namely, whenλi = 1

n
∀i. The

corresponding ratio of the elements of the average congestion
window vector is the same as that under the assumption of
source synchronisation (it is important to note that patterns
of packet drop other than synchronised drops can lead to
the same distribution as long as the proportion of backoff
events experienced by the two flows is the same). Observe
that the resulting predictions are an accurate estimate of the
mean congestion window size and that as the level of web
traffic increases the mean window size approaches that in the
synchronised case (see Figure 8).

Before proceeding we also present results from several other
two-flow networks in Figures 11 and 12. As can be seen
from the figures, the predictions of Theorem 3 and theNS-
simulations are consistently in close agreement.
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Fig. 9. Variation of meanwi(k) with propagation delayT1 in dumbbell
topology of Figure 5. Key: +NSsimulation result;· mathematical model (19);
◦ Theorem 3; solid lines correspond to synchronised case. Network parame-
ters: B=100Mb,qmax=80 packets,̄T=20ms,T0=102ms; approximately 0.5%
bidirectional background web traffic.

The foregoing results are for networks with two competing
TCP sources. We note briefly that we have also validated
our results against packet-level simulations for networksof
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Fig. 11. Variation of meanwi(k) with propagation delayT1 in dumbbell
topology of Figure 5. Key: +NS simulation result;· mathematical model
(19); ◦ Theorem 3; solid lines correspond to synchronised case. Network
parameters: B=100Mb,qmax=80 packets,̄T=20ms,T0=2ms; approximately
0.5% bidirectional background web traffic.

up to five flows. As in the two flow case and the simulation
and analytical predictions are in close agreement (to the same
degree of accuracy).

Comment 6 (i) Predictions based upon the model (19) rely
on knowledge of the rateαi at which each of the sources
increases its window size. In the case of networks with small
queue sizes, Equation (13) gives a good approximation of these
rates. However, this approximation neglects the curvaturein
the cwnd evolution induced by time-varying round-trip time
and can therefore be expected to become less accurate as the
queue provisioning increases. We emphasize that the loss of
predictive power is due to the validity of the approximation
(13) and not the fidelity of the network model (19); a more ac-
curate estimate ofαi would lead to better model performance.
Techniques for approximatingαi when the queue is not small
have already been explored in [9].

TABLE I

TABULAR DATA FOR FIGURE 9.

T1 (ms) Flow 1
NS Simulation Model Theorem 3

2.0 0.1924 0.1908 0.1895
12.0 0.2762 0.2757 0.2736
22.0 0.3253 0.3235 0.3237
42.0 0.3691 0.3654 0.3651
62.0 0.4226 0.4230 0.4239
82.0 0.4599 0.4605 0.4600
102.0 0.4866 0.4901 0.4943
122.0 0.5156 0.5071 0.5082
142.0 0.5461 0.5406 0.5378
162.0 0.5877 0.5813 0.5825
252.0 0.6652 0.6627 0.6609

Flow 2
NS Simulation Model Theorem 3

2.0 0.8076 0.8092 0.8105
12.0 0.7238 0.7243 0.7264
22.0 0.6747 0.6765 0.6763
42.0 0.6309 0.6346 0.6349
62.0 0.5774 0.5770 0.5761
82.0 0.5401 0.5395 0.5400
102.0 0.5134 0.5099 0.5057
122.0 0.4844 0.4929 0.4918
142.0 0.4539 0.4594 0.4622
162.0 0.4123 0.4187 0.4175
252.0 0.3348 0.3373 0.3391

(ii) The model (19) also neglects the fact that the number of
packets in flight for TCP flows is quantised: namely, restricted
to integer values, owing to the packet based nature of the
traffic. Hence, the accuracy of the model (19) can be expected
to degrade under network conditions where the peak window
sizewi of a flow is small.

B. Many Unsynchronised Flows

The foregoing results are for networks with two competing
TCP sources. We note briefly that we have also validated our
results against packet-level simulations for networks of up to
five flows. As in the two flow case, and the simulation and
analytical predictions are in close agreement; a sample of the
results that we have collected is depicted in Figures 13-14.

C. Limitations of modelling framework

The derived model (19) provides a framework for capturing
the dynamics of certain types of communication networks.
However, while the model encompasses features such as drop-
tail queueing, flows with different round-trip times, unsynchro-
nised loss events and the switched nature of AIMD flows, it
does not capture some features of communication networks.

(i) The model is only valid for a network of AIMD flows that
compete for bandwidth at a single common bottleneck router
with drop-tail queue, i.e. the so-called dumbbell topology.

(ii) The model does not include the effects of slow start and
TCP timeouts (although these can easily be introduced into the
model through the introduction of more matrices into the set
A).
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Fig. 12. Variation of meanwi(k) with propagation delayT1 in dumbbell
topology of Figure 5. Key: +NSsimulation result;· mathematical model (19);
◦ Theorem 3; solid lines correspond to synchronised case. Network param-
eters: B=100Mb,qmax=80 packets,T̄=100ms,T0=102ms; approximately
0.5% bidirectional background web traffic.
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Fig. 13. Variation of meanwi(k) with propagation delayT1 in dumbbell
topology with three TCP flows. Key: +NS simulation result;· mathematical
model (19);◦, ⋄, 2 Theorem 3 flows 1, 2 and 3 respectively; solid lines
correspond to synchronised case. Network parameters: B=100Mb, qmax=80
packets,T̄=20ms,T0=102ms,T2=62ms; approximately 0.5% bidirectional
background web traffic.

(iii) In the simulation results presented, consideration is
confined to situations where the queue size is small compared
to the bandwidth-delay product but this is to streamline the
presentation and is not an inherent constraint of the modelling
approach. There is also no assumption in the model that the
queue empties following a congestion event.

(iv) While not intrinsic to the matrix product model itself,
key assumptions for the asymptotic analysis presented are that
(i) thepatternof losses at each congestion event is random and
independent of the congestion epoch (we do not assume that
the losses seen by a flow are independent of the losses seen
by other competing flows), and (ii) each flow almost surely
experiences a loss event provided that it sufficiently long-lived.
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Fig. 14. Variation of meanwi(k) with propagation delayT1 in dumbbell
topology with five TCP flows. Network parameters: B=100Mb,qmax=80
packets,T̄=20ms,T0=102ms,T2=62ms; approximately 0.5% bidirectional
background web traffic.

(v) The time average results necessarily apply to long-lived
flows only but our ensemble average results apply to flows of
any duration.

Perhaps the most significant limitation of our model is that
the probabilities of the different patterns of losses are assumed
to be known beforehand (or can be measured) and are not
predicted by the model. This certainly reduces the predictive
power of the model. However, our objective in developing the
model was not only to understand the dynamics of AIMD
networks, but also to provide a basis for the design of such
networks. When viewed in this context, the probabilitiesρi

play an important role in controlling the network dynamics,
and as they can be controlled by the bottleneck router, are an
important design parameter available to the network designer.
Our model provides an analytic basis for understanding the
effect of various dropping strategies of the network dynamics,
and for incorporating this aspect of network dynamics into the
network design procedure.

V. RELATED WORK

An extensive literature exists relating to the modelling of
TCP traffic. The well-known square-root formula of Padhyeet.
al. [10] provides an approximate expression for the congestion
window achieved by a TCP flow. The statistical independence
assumptions in this model however neglect interactions be-
tween competing flows (e.g. the frequency of loss events is
generally not independent of the values of the AIMD increase
and decrease parameters of competing flows). Many of the
more recent results are based on so-called fluid approaches and
focus on active queueing disciplines, see for example [11]–
[20], [20], [21] . Fundamental difficulties exist in applying
fluid models to networks with drop-tail queues. Recently
several authors have developed new types of hybrid systems
model suited to drop-tail networks: most notably by Hespanha
[22] and Baccelli and Hong [23]. We note that the model
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derived in [23] is similar to the model presented here. In
particular, under mild assumptions, the sets of solutions of
the model in [23] and of our model coincide, so that the
results of that reference are immediately applicable to the
model presented here. However, the model derived by Baccelli
and Hong is both affine and the homogeneous (linear) part is
characterised by general matrices (namely, not by non-negative
matrices), whereas in this paper we develop a linear, non-
negative matrix model. The properties of linearity (no affine
term) and nonnegativity play a key role in the tractability
of our model, both in respect of the analysis of its dynamic
characteristics and of its equilibrium properties.

VI. M ATHEMATICAL DERIVATIONS

Theorem 2 and Theorem 3 follow from several interesting
properties of the set of matricesA = {A1, ..., Am}. Roughly
speaking, these results may be classified as being algebraicor
stochastic in nature. The purpose of this section is to elucidate
these properties and to use them to prove the results given in
Section III.

It was noted before that the matrices in the setA are
not column stochastic. However, the matrices in this set are
simultaneously similar to a set of column stochastic matrices
under the transformationΓ = diag[γ1, ..., γn]. Denoteα̂j :=
γjαj , j = 1, . . . , n. For A ∈ A, determined by a choice of
parametersβ1(A), . . . , βn(A) we have

ΓAΓ−1 =











β1(A) 0 · · · 0
0 β2(A) 0 0
... 0

. . . 0
0 0 · · · βn(A)











+

1
∑n

j=1 α̂j









α̂1

α̂2

· · ·
α̂n









[

(1 − β1(A)), · · · , (1 − βn(A))
]

.

It is easy to see that the transformed matrices are col-
umn stochastic. We shall exploit this observation in the
sequel as column stochastic matrices are easier to deal
with than nonstochastic ones. In view of this fact we note
that a Perron eigenvector ofΓA1Γ

−1 is given by x̄T
p =

( α̂1

(1−β1)
, α̂2

(1−β2)
, ..., α̂n

(1−βn) ), and that the corresponding Perron
eigenvector ofA1 is xT

p = ( α1

(1−β1)
, α2

(1−β2)
, ..., αn

(1−βn) ). In the
sequel we will derive results that are expressed in terms of
x̄p. These correspond to the dynamics of the system (22) and
refer to the stochastic properties of the vectorW γ(k). The
corresponding results for the system (19) are directly deduced
from these results by similarity.

A. Algebraic properties of the setA
We will from now on assume without loss of generality

that the matrices in the setA are column stochastic, which
corresponds to the caseγ1 = . . . = γn = 1. Should this
not be the case we can always apply the transformationΓ
to obtain this property, which just amounts to a rescaling of
the αi. In the derivation of the main results of this paper
we make frequent use of the fact that the matrices in the set

A, and products of matrices in this set, are nonnegative and
in particular column stochastic. This observation impliesthe
existence of ann − 1 dimensional subspace that is invariant
underA. We will also see that the matrices in this set can be
simultaneously transformed into block triangular form with an
n−1 dimensional symmetric block. Given these observations,
we will then show under mild assumptions that the distance
of a matrix product of lengthk, constructed from matrices in
A, from the set of rank-1 matrices converges asymptotically
to zero ask increases.

Lemma 1 There exists ann−1 dimensional subspace invari-
ant underA.

Proof: The row vectorv := [1, ..., 1] is a left eigenvector
of all of the matrices in the setA as they are column stochastic.
This implies that then − 1 dimensional subspace orthogonal
to v is invariant underA, [24].

Lemma 2 Consider the set of matricesA. There exists a real
non-singular transformationT such that for allA ∈ A we
have

T−1AT =

[

S B
0 1

]

, (29)

whereS ∈ R(n−1)×(n−1) is symmetric, so that in particular
the eigenvalues ofS are real and of absolute value≤ 1.

Proof: We denoteα =
[

α1 . . . αn

]T
and cα :=

(
∑n

j=1 αj)
−1. Let A = Λ + cααβT ∈ A, where Λ is the

diagonal matrix with entries equal to1 or βs
i and β is the

corresponding vector with entries0 or 1 − βs
i . Consider the

diagonal matrix

D = diag

(

1√
α1

, . . . ,
1√
αn

)

. (30)

ThenDAD−1 is a non-negative matrix with a left eigenvector
given by zp = vD−1, (with v defined in the proof of the
previous lemma). Further, it follows that,DAD−1 = Λ +
DcααβT D−1 and by inspectionDα = zp.

We now chose an orthogonal matrixM whose last column
is zp/‖zp‖. Then eT

n (the n-th unit row vector) is a left
eigenvector ofMT DAD−1M , and furthermore

MT DAD−1M = MT ΛM + cαMT zpβ
T D−1M .

Now aszp is a multiple of the last column ofM it follows
that MT zp = ‖zp‖en and hence the entries ofMT zpβ

T D−1

are nonzero only in the last row. Thus using thateT
n is a left

eigenvector we have

MT DAD−1M =

[

S B
0 1

]

, (31)

whereS ∈ R(n−1)×(n−1) is equal to the upper left(n − 1)-
minor of MT ΛM and thus symmetric. The assertion follows
by settingT = D−1M . The eigenvalues ofS are bounded in
absolute value by1 as the matrixA is column stochastic and
thus has spectral radius equal to1.

We denote the the of matricesS that appear as the upper
left block in (29) byS.
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Corollary 1 Consider the system (19). Then for eachS ∈ S
the functionV (z((k)) = zT (k)z(k) is a quadratic Lyapunov
function for the dynamic system

Σ : z(k + 1) = Sz(k) , (32)

i.e., for all solutions ofΣ we haveV (z(k+1))−V (z(k)) ≤ 0
for all k.

Proof: The assertion follows immediately as the matrices
{S1, S2, .., Sm} are symmetric column stochastic matrices.

There are some interesting consequences of Corollary 1 for
products of matrices from the setS. As these matrices are
symmetric and of norm less or equal to1 they form what
is called aparacontractingset of matrices. This property is
defined by the requirement that

Sx 6= x ⇔ ‖Sx‖ < ‖x‖ , ∀x ∈ Rn−1, S ∈ S . (33)

This is true for our setS, as the matricesS ∈ S are symmetric
and of spectral radius at most1. It is know [25], that finite
sets of matrices that are paracontracting haveleft convergent
products, i.e., for any sequence{S(k)}k∈N in S the following
limit exists

lim
k→∞

S(k)S(k − 1) . . . S(0) . (34)

For related literature on paracontracting sets of matriceswe
refer to [25], [26] and references therein.

In the following we prove results on the convergence of
products of the matrices inA to the set of column-stochastic
matrices of rank1. To this end it will be convenient to
introduce a notation that identifies each matrixA ∈ A with
the sources that do not see a drop in that congestion event. Let
I ⊂ {1, 2, . . . , n} be the index set of sources not experiencing
congestion at a congestion event. (Clearly,I = {1, 2, . . . , n}
can be ignored, as this means that there is no congestion).

The matrix corresponding to an index setI is given by

AI = diag(β1(I), . . . , βn(I))+

cαα
[

1 − β1(I) . . . 1 − βn(I)
]

, (35)

where βi(I) = 1, if i ∈ I and βi(I) = βs
i otherwise and

cα := (
∑n

j=1 αj)
−1. We now recover our set of possible

matrices by

A := {AI | I ( {1, 2, . . . , n}} , (36)

which results in a set of2n − 1 matrices, as it should. Note
that all A ∈ A are column stochastic, so that they have an
eigenvalue equal to1 equal to the spectral radius.

If I 6= ∅, i.e., if at least one source does not experience con-
gestion, then the dimension of the eigenspace corresponding to
1 is equal to the number of sources not seeing the congestion
event. To see this consider first the case that the firstk sources
k ∈ {1, . . . , n − 1} do not see a drop and the others do. In
this case

A{1,...,k} =

[

Ik×k B
0 C

]

, (37)

whereB > 0 by definition. As the matrix is column stochastic
this means that all columns ofC sum to a value strictly less
than one, and hencer(C) ≤ ‖C‖1 < 1 and the claim follows

for A{1,...,k}. Now an arbitrary matrixAI , I 6= ∅ may be
brought into the form (37) by permutation of the index set
and we have shown the desired property.

Note also that the eigenspace ofAI associated to the
eigenvalue1 is given by

VI = span{ei | i ∈ I} , (38)

whereei denotes thei-th unit vector.
Let us briefly discuss the eigenspaces ofSI corresponding

to the eigenvalue1, which we denote byV (SI). If I =
∅, {1}, . . . {n}, then as we have seen in (38), the multiplicity
of 1 as an eigenvalue ofAI is 1, so from (29) we have that
r(SI) < 1. In this case we will (with slight abuse of notation)
set V (SI) = {0}. We denote the subspace orthogonal to
[1, . . . , 1] by [1, . . . , 1]⊥. Recall from Lemma 1, that this is
an invariant subspace ofA ∈ A. In general, we see from (38)
and Lemma 1 that ifI = {k1, k2, . . . , kl} ( {1, . . . , n} then
a basis for

[

1 1 . . . 1
]⊥ ∩ VI (39)

is given, e.g. by

ek1
− ek2

, ek1
− ek3

, . . . , ek1
− ekl

.

Hence the eigenspace ofV (SI) is spanned by

MT D−1(ek1
− ek2

), . . . ,MT D−1(ek1
− ekl

) . (40)

From this it follows that

V (SI1
) ∩ V (SI2

) = V (SI1∩I2
) , (41)

justifying our abuse of notation above. In particular,V (SI1
)∩

V (SI2
) 6= {0} if and only if I1 ∩ I2 contains at least2

elements.

Proposition 1 Let{S(k)}k∈N ⊂ S be a sequence with associ-
ated index setsI(k). The following statements are equivalent:

(i) For all z0 ∈ Rn−1 it holds that

lim
k→∞

S(k)S(k − 1) . . . S(0)z0 = 0 .

(ii) for all but one l ∈ {1, . . . , n} it holds that for each
k ∈ N, there is ank1 > k with l /∈ I(k1).

(iii) If {A1, . . . , As} ⊂ A are the matrices that appear
infinitely often in the sequenceAI(k), then

Â :=
1

s

s
∑

l=1

Al

is a matrix that with the exception of at most one column
has strictly positive entries.

If in (iii) the k-th column ofÂ has zero entries then this column
is equal toek.

Proof: (ii)⇔(iii): Note first that thek-th column of Â
is not equal toek, if and only if for one of the matricesAl,
l = 1, . . . ,m the corresponding column is not a unit vector.
The assumption on the matrixAl implies that thek-th source
experiences a drop infinitely many times. Under assumption
(iii) this is true for all but at most one column, which implies
(ii). Conversely, under the assumption (ii) thek-th source
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experiences a drop infinitely many times. As there are only
finitely many matrices in which thek-th column is not equal
to ek one of these appears infinitely often in the sequence of
matrices and therefore in the definition ofÂ. This implies (iii).

(i)⇒(ii): If (ii) does not hold, then (without loss of gen-
erality) there is as ≥ 0 such that for allt ≥ s we have
{1, 2} ⊂ I(k). This implies that for allt ≥ s the matrix
S(k) has the eigenspaceMT D−1(e1 − e2) as an eigenspace
corresponding to the eigenvalue one. Hence anyz0 such that
S(s) . . . S(0)z0 is a multiple ofMT D−1(e1 − e2) does not
satisfy (i). Such az0 exists as all the matrices inA are
invertible. This shows the assertion.

(ii)⇒(i): Denotez(k) := S(k − 1) . . . S(0)z0. Using para-
contractivity ofS and (34) it follows thatz∞ := limk→∞ z(k)
exists. Ifz∞ = 0 there is nothing to show. Otherwise, we claim
that for somek0 sufficiently large, it follows thatSkz∞ = z∞
for all k ≥ k0. To this end note that becauseS is finite, there
exists a constant0 < r < 1 such that for allS ∈ S we have

Sz∞ 6= z∞ ⇒ ‖Sz∞‖ < r‖z∞‖ .

By convergence this implies for allS ∈ S and allk sufficiently
large that

Sz∞ 6= z∞ ⇒ ‖Sz(k)‖ <
1 + r

2
‖z∞‖ < ‖z∞‖ .

On the other hand the sequence‖z(k)‖ is decreasing, so it
follows that ‖z(k)‖ ≥ ‖z∞‖ for all k ∈ N. This implies that
for k sufficiently large it must hold thatS(k)z∞ = z∞. This,
however, means thatz∞ lies in the eigenspaceV (S(k)) for all
k large enough. From (41) it follows that at least two sources
do not see a drop for allk large enough.

For the statement of the next result we denote the set of
column stochastic matrices of rank1 by R. Note that the
matrices inR are of the form

η
[

1 1 . . . 1
]

,

whereη is a nonnegative vector, the entries of which sum to
1. In particular, the matrices inR are idempotent, because
[

1 1 . . . 1
]

η = 1. In the following statement, we denote
the distance of a matrixB to the setR by

dist(B,R) := min{‖B − R‖ | R ∈ R} .

Theorem 4 Let {A(k)}k∈N ⊂ A be a sequence with as-
sociated index setsI(k). Then each of the statements of
Proposition 1 is equivalent to

lim
k→∞

dist (A(k)A(k − 1) . . . A(0),R) = 0 . (42)

Proof: Consider Proposition 1(ii). It follows from Corol-
lary 1 that the system (22) can be transformed to an equiv-
alent system (29). This implies that for eachk the product
A(k)A(k − 1) . . . A(0) is similar to

T (k) :=

[

S(k)S(k − 1) . . . S(0) ∗
0 1

]

, (43)

where we do not give the expression for the entry∗ of the
matrix as it is of no relevance for our further discussion. By
Proposition 1 it follows thatS(k)S(k − 1) . . . S(0) → 0. As

the distance ofT (k) to a matrix of rank1 is upper bounded
by ‖S(k)S(k − 1) . . . S(0)‖ this implies that the distance of
A(k)A(k − 1) . . . A(0) to the set of matrices of rank1 con-
verges to zero. As each of these matrices is column stochastic
any limit point of the sequence{A(k)A(k − 1) . . . A(0)} is
column stochastic.

Conversely, it is clear that the (42) implies Proposition 1 (i).
This shows the assertion.

The minor drawback of Proposition 1 is that no rate of
convergence is supplied. Indeed, the reader may convince
himself that the rate of convergence may be made arbitrarily
slow by considering sequences that have repetitions of the
same matrices for longer and longer intervals ask → ∞.
It is therefore useful to provide conditions that guarantee
an exponential decay. One such condition is provided in the
following proposition.

Proposition 2 For every a ∈ {n, n + 1, n + 2, . . .} there
exists a constantra < 1 with the following property. For any
sequence of index setsI(k) such that for alll ∈ N and all
i ∈ {1, . . . , n} there is ab ∈ {la, la + 1, . . . , (l + 1)a − 1}
with i /∈ I(s) it holds for all k ≥ k′ ≥ 0 that

‖S(k − 1) . . . S(k′)‖ ≤ r−2k+1
k r

(k−k′)
k ,

dist(A(k − 1) . . . A(k′),R) ≤ ‖T‖‖T−1‖r−2k+1
k r

(k−k′)
k ,

with T defined by(29).

Note that any actual flow on a real network has to satisfy
the assumption on the drops seen described in the previous
proposition. The reason for this is that if a flow does not see
a drop it will continue to increase the amount of packages
sent by a constant rate. Eventually this leads to the case the
the amount of packages sent exceeds the capacity of the pipe
if no drops are seen. But at this point the source necessarily
sees a drop. This very coarse argument shows that all realistic
flows will satisfy the assumptions of the previous proposition
for somek.

B. Stochastic properties of the setA
We now proceed to give a number of results that relate to

random products of matrices from the setA. In this section
we assume that Assumptions 1 and 2 hold.

We first note that under our assumptions that the expectation
of A is a positive matrix that is column stochastic with Perron
eigenvector̄xT

p = ( α1

λ1(1−β1)
, α2

λ2(1−β2)
, ..., αn

λn(1−βn) ). We then
proceed to show that the expectation of

Π(k) = A(k)A(k − 1) . . . A(0),

is also a column stochastic matrix with the same Perron
eigenvector. The second result in this section concerns the
asymptotic behaviour of the expectation ofΠ(k). These results
immediately yield Theorem 2 and Theorem 3, using the
transformationΓ, if necessary.

The final results in this section revisit the convergence of
Π(k) to the set of rank-1 idempotent matrices. We show that
for all δ > 0 the probability ofΠ(k) being at least a distanceδ
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from the rank-1 idempotent matrices goes to zero ask becomes
large.

In the following we will use the notationAI = ΛI +
cααβ(I)T , where ΛI denotes the diagonal matrix in (35),
cα := (

∑n
j=1 αj)

−1 and β(I) is the vector with entries
1 − βi(I).

Lemma 3 Assume thatλi > 0 for i = 1, . . . , n then the
expectation

E(A) =
∑

I

ρIAI

is positive, column stochastic, and a Perron eigenvector for it
is given by

x̄T
p =

(

α1

λ1(1 − β1)
,

α2

λ2(1 − β2)
, ...,

αn

λn(1 − βn)

)

. (44)

Proof: By definition of the expectation and using (35)
we have

E(A) =
∑

I

ρIAI =
∑

I

ρIΛI + cαα
∑

I

ρIβ(I)T
(45)

The i’th diagonal entry of the diagonal matrix
∑

I ρIΛI is

λiβi + (1 − λi) (46)

and thei’th entry of
∑

I ρIβ(I) is
∑

I

ρI(β(I))i = λi(1 − βi). (47)

Hence, the matrixE(A) is of the form of A1 defined in
Equation (21) with the same vectorα and βi replaced by
β̃i := 1 − λi(1 − βi) ∈ (0, 1). It follows by Theorem 1
that a Perron eigenvector ofE(A) is given by x̄T

p =
( α1

λ1(1−β1)
, α2

λ2(1−β2)
, ..., αn

λn(1−βn) ).

Lemma 4 Consider the random system (19) subject to As-
sumptions 1 and 2. The expectation ofΠ(k) is:

E(Π(k)) = E(A)k = (
∑

I

ρIAI)k. (48)

Proof: By independence we have that the expectation of
the product is the product of the expectations. This implies
the equality.

Proof: (of Theorem 2).
It is sufficient to show the assertion for the caseγi = 1, i =

1, . . . , n. The assertion of (23) is shown in Lemma 4. AsE(A)
is positive and column stochastic it follows that

lim E(A)k = lim E(Π(k)) = zyT ,

where y, z are left, respectively right, Perron eigenvectors
of E(A). As E(A) is column stochastic we may normalize
y = yT

P =
[

1 . . . 1
]

. Finally, the assertion concerningxP

follows from Lemma 3.

Proposition 3 Consider the random system (19) subject to
Assumptions 1 and 2. Then, with probability one,

lim
k→∞

dist (A(k)A(k − 1) . . . A(0),R) = 0 .

Proof: Under the assumptions that theλj are positive
and the independence assumptions, with probability one each
source will see infinitely many drops. Now the result follows
from Theorem 4.

C. Proof of Theorem 3

We now proceed to present an outline of the proof of main
result of this paper, Theorem 3. In [27] it is shown that the
result can be derived from general results on Markov e-chains.
The technical preparations that this line of argumentation
requires, however, are beyond the scope of the present article.
In the report [8] we give a proof that relies on fairly elementary
arguments in order to keep the main ideas accessible.

Outline of proof: We are interested in the asymptotic
behaviour of the average window variableW (k),

W (k) =
1

k

k−1
∑

i=0

W (i)

=
1

k
(Π(k − 1) + ... + Π(0)) W (0)

ask tends to infinity. Our proof consists of the following main
steps.

Step 1 : For a fixedk0 we partition each sufficiently long
productΠ(k) = Φ(k)Ψ(k), whereΦ(k) is the leading product
of lengthk0. We know that ask0 → ∞, the leading product
approaches almost surely the set of rank one matrices, which
implies thatΦ(k)Ψ(k) ≈ Φ(k) as all matrices involved are
column stochastic.

Step 2 : We thus may approximateW (k) as

W (k) =
1

k + 1
(Π(k) + ... + Π(0))W (0)

=
1

k + 1
(R(k) + ∆(k) + . . . + R(l) + ∆(l)(49)

+Π(l − 1) + ... + Π(0))W (0)

≈ 1

k + 1
(R(k) + . . . + R(l) + (50)

Π(l − 1) + ... + Π(0))W (0),

where R(k), ..., R(l) are column stochastic rank-1 matrices
and∆(k), ..,∆(l) are error terms that approach0 ask0 → ∞.

Step 3 :Using the law of large numbers it is then seen that
1/k(R(k)+ ...+R(l)) can be approximated as(

∑m
i=1 ρiAi)

l.
Step 4 : And it follows that

lim
k→∞

W (k) = xpȳ
T
p W (0),

whereȳT
p = (1, ..., 1).

VII. C ONCLUSIONS

In this paper we have presented and validated using packet
level simulations, a random matrix model that describes the
dynamic behaviour of a network ofn AIMD flows that com-
pete for shared bandwidth via a bottleneck router employing
drop-tail queuing. We have used this model to relate several
important network properties to properties of sets of nonneg-
ative matrices that arise in the study of such networks. We
have also derived under simplifying assumptions a number of
analytic results that characterise the asymptotic time-average
and ensemble-average throughput of such networks.



14 IEEE/ACM TRANSACTIONS ON NETWORKING

ACKNOWLEDGEMENTS

This work was supported by Science Foundation Ireland
grants 00/PI.1/C067 and 04/IN1/I478 and by the Collaborative
Research Center 637 “Autonomous Logistic Processes - A
Paradigm Shift and its Limitations” funded by the German
Research Foundation.

REFERENCES

[1] R. N. Shorten, D. J. Leith, J. Foy, and R. Kilduff, “Analysis and design
of AIMD congestion control algorithms in communication networks,”
Automatica, vol. 41, pp. 725–730, 2005.

[2] A. Berman and R. Plemmons,Nonnegative matrices in the mathematical
sciences. Philadelphia, PA: SIAM, 1979.

[3] R. Shorten, D. Leith, J. Foy, and R. Kilduff, “Analysis and design of
synchronised communication networks,” inProc. of 12th Yale Workshop
on Adaptive and Learning Systems, 2003.

[4] A. Berman, R. Shorten, and D. Leith, “Positive matrices associated with
synchronised communication networks,”Linear Algebra Appl., vol. 393,
pp. 47–54, 2004.

[5] L. Xu, K. Harfoush, and I. Rhee, “Binary increase congestion control
(BIC) for fast long-distance networks,” inProc. of IEEE INFOCOM
2004, Hong Kong, 2004, pp. 2514–2524.

[6] S. Floyd and V. Jacobson, “Traffic phase effects in packet-switched
gateways,” Journal of Internetworking: Practice and Experience,
vol. 3, no. 3, pp. 115–156, September, 1992. [Online]. Available:
citeseer.ist.psu.edu/floyd92traffic.html

[7] W. Willinger, M. S. Taqqu, R. Sherman, and D. V. Wilson, “Self-
similarity through high-variability: statistical analysis of Ethernet LAN
traffic at the source level,”IEEE/ACM Trans. Networking, vol. 5, no. 1,
pp. 71–86, 1997.

[8] R. Shorten, F. Wirth, and D. Leith, “Positive matrices andthe
internet,” technical report, Hamilton Institute. [Online]. Available:
www.hamilton.ie

[9] D. Leith and R. Shorten, “Modelling TCP throughput and fairness,” in
Proc. of Networking 2004, ser. Lecture Notes in Computer Science, vol.
3042. Berlin, Germany: Springer-Verlag, 2004, pp. 938–948.

[10] J. Padhye, V. Firoiu, D. F. Towsley, and J. F. Kurose, “Modeling
TCP Reno performance: A simple model and its empirical validation,”
IEEE/ACM Trans. Networking, vol. 8, no. 2, pp. 133–145, 2000.

[11] F. P. Kelly, “Mathematical modelling of the internet,” inProc. ICIAM
99 (Edinburgh), 4th International Congress of Industrial Applied Math-
ematics. Oxford University Press, Oxford, UK, 2000, pp. 105–116.

[12] S. Low, F. Paganini, and J. Doyle, “Internet congestioncontrol,” IEEE
Control Systems Magazine, vol. 32, no. 1, pp. 28–43, 2002.

[13] S. Mascolo, “Congestion control in high speed communication networks
using the Smith principle,”Automatica, vol. 35, pp. 1921–1935, 1999.

[14] S. S. Kunniyur and R. Srikant, “Stable, Scalable, Fair Congestion
Control and AQM schemes that achieve high utilisation in the internet,”
IEEE Trans. Automat. Contr., vol. 48, no. 11, pp. 2024–2029, 2003.

[15] L. Massoulie, “Stability of distributed congestion control with hetero-
geneous feedback delays,”IEEE Trans. Automat. Contr., vol. 47, no. 6,
pp. 895–902, 2002.

[16] C. V. Hollot, V. Misra, D. Towsley, and W. Gong, “Analysis and design
of controllers for AQM routers supporting TCP flows,”IEEE Trans.
Automat. Contr., vol. 47, no. 6, pp. 945–959, 2002.

[17] G. Vinnicombe, “On the stability of networks operating TCP-like
congestion control,” inProc. 15th IFAC World Congress on Automatic
Control, Barcelona, Spain, July 2002.

[18] R. Johari and D. Tan, “End-to end congestion control forthe internet:
delays and stability,”IEEE/ACM Trans. Networking, vol. 9, no. 6, pp.
818–832, 2001.

[19] Y. Chait, C. V. Hollot, V. Misra, H. Han, and Y. Halevi, “Dynamic
analysis of congested TCP networks,” inProc. of American Control
Conference, San Diego, CA, USA, June 1999, pp. 2430–2435.

[20] C. V. Hollot and Y. Chait, “Nonlinear stability analysis of a class of
TCP/AQM networks,” inProc. 40th IEEE Conference on Decision and
Control, Orlando, FL, USA, December 2001, pp. 2309–2314.

[21] C. V. Hollot, V. Misra, D. Towsley, and W. Gong, “A control theoretic
analysis of RED,” inProc. of IEEE INFOCOM, Anchorage, AL, USA,
April 2001, pp. 1510–1519.

[22] J. Hespanha, “Stochastic hybrid systems: Application to communication
networks,” inHybrid Systems, Computation & Control, Proc. of HSCC
2004, ser. Lect. Notes in Computer Science, R. Alur and G. J. Pappas,
Eds. Heidelberg: Springer, March 2004, vol. 2993, pp. 387–401.

[23] F. Baccelli and D. Hong, “AIMD, Fairness and Fractal Scaling of TCP
traffic,” in Proc. of IEEE INFOCOM 2002, New York, NY, USA, June
2002, pp. 229–238.

[24] R. A. Horn and C. R. Johnson,Matrix Analysis. Cambridge: Cambridge
University Press, 1985.

[25] A. Vladimirov, L. Elsner, and W.-J. Beyn, “Stability andparacontrac-
tivity of discrete linear inclusions,”Linear Algebra Appl., vol. 312, no.
1-3, pp. 125–134, 2000.

[26] W.-J. Beyn and L. Elsner, “Infinite products and paracontracting matri-
ces,” Electron. J. Linear Algebra, vol. 2, pp. 1–8, 1997.

[27] F. Wirth, R. Stanojevíc, R. Shorten, and D. Leith, “Stochastic equilibria
of AIMD communication networks,” 2006, SIAM J. Matrix Analysis
Appl., to appear.

PLACE
PHOTO
HERE

Robert Shorten graduated from the University Col-
lege Dublin (UCD) in 1990 with a First Class
Honours B.E. degree in Electronic Engineering.
From 1993 to 1996 Dr. Shorten was the holder of
a Marie Curie Fellowship to conduct research at
the Daimler-Benz Research Institute for Information
Technology in Berlin. In 1997 Dr. Shorten was
awarded a European Presidential fellowship to return
to Ireland. Prof. Shorten is a co-founder and a Senior
Researcher of the Hamilton Institute, NUI Maynooth
and is an Editor of the IEE Proceesings on Control

Theory. His research interests include stability theory, linear algebra, and
network congestion control.

PLACE
PHOTO
HERE

Fabian Wirth received his Diploma, Dr. rer. nat.
and venia legendi in mathematics from the Univer-
sity of Bremen, Germany, where he was with the
Institute for Dynamical Systems and the Centre for
Technomathematics. He is senior researcher at the
Hamilton Institute, where he works on the dynamics
of communication networks. His interests include
stability theory of dynamical systems and robust
stability.

PLACE
PHOTO
HERE

Douglas Leith graduated from the University of
Glasgow in 1986 with a first class BSc (Eng)
degree in Electronics and Electrical Engineering
and Computer Science and was awarded his PhD,
also from the University of Glasgow, in 1989.
Following the award of a Royal Society personal
research fellowship to study nonlinear control, in
2001 Prof Leith joined the National University of
Ireland Maynooth as Director of the Hamilton In-
stitute (www.hamilton.ie). Prof. Leith’s current re-
search interests include internet congestion control

and dynamics, resource allocation in wireless networks and nonlinear time
series analysis.


