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A positive systems model of TCP-like congestion
control: Asymptotic results

Robert Shorten, Fabian Wirth, Douglas Leith

Abstract—We study communication networks that employ network behaviour is illustrated by a number of case studies
drop-tail queueing and Additive-Increase Multiplicative-Decrease  jn Section IV. Finally, in Section VI we present an outline
(AIMD) congestion control algorithms. It is shown that the f the nroofs of the mathematical results as well as a number

theory of nonnegative matrices may be employed to model such fint diate derivati = f let
networks. In particular, important network properties such as: of Iniermediate aervatons. Fof I€asons of Space, Compie

(i) faimess; (ii) rate of convergence; and (jii) throughput; can be Proofs have been transferred to [8].

characterised by certain non-negative matrices. We demonstta

that these results can be used to develop tools for analysing the  Il. NONNEGATIVE MATRICES AND COMMUNICATION
behaviour of AIMD communication networks. The accuracy of NETWORKS

the models is demonstrated by severdNS-studies. L .
A communication network consists of a number of sources

Index Terms—IEEEtran, journal, LATEX, paper, template. and sinks connected together via links and routers. In this
paper we assume that these links can be modelled as a constant
|. INTRODUCTION propagation delay together with a queue, that the queue is

ti ing t -tail discipli that cll
In this paper we describe a design oriented modelli ca)eralng according to a drop-tail discipline, and thatad

) e sources are operating Additive-Increase Multiplicative
approach that captures the essential features of nethrkSD%crease(AlMD) ike congestion control algorithm. AIMD

AIMD sources that employ drop-tail queues. The nove'%ngestion control operates a window based congestionatont

of our approach lies n the fac't that we are able to LI"Qs(;frategy. Each source maintains an internal variabbed; (the
the theory of non-negative matrices and hybrid systems ndow size) which tracks the number of sent unacknowl-

build mathematical models of communication networks th% ged packets that can be in transit at any time, i.e. the aumb
capture . d)_/namlc Interaction between.competmg ﬂO.W packets in flight. On safe receipt of data packets the -desti
This approach is based upon a number of simple observatig Stion sends acknowledgement (ACK) packets to inform the

(i) communication networks employing congestion contr ource. When the window size is exhausted, the source must

syst'e.ms are fgedback systems; (i) communication sy;teW it for an ACK before sending a new packet. Congestion
exhibit event driven phenomena and may therefore be viewed ol is achieved by dynamically adapting the window size

as classical hybrid systems; and (iif) network states (que ccording to an additive-increase multiplicative-deseskaw.

length, W"’Td."W SIz€, etc.) take o_nIy non-negative valu.ee. oughly speaking, the idea is for a source to probe the n&twor
show that it is possible to relate important network prapert for spare capacity by increasing the rate at which packets ar

to the characteristics of the non-negative matrices tria an inserted into the network, and to rapidly decrease the numbe

th_e study of such com_munlcatl_on network_s. In particular, M packets transmitted through the network when congestion
W.'" demonstrate that (i) bandwidth allq_<_:at|0n amongst 8ow is detected through the loss of data packets. In more d#tail,
(ii) rate of network convergence, and (iif) network 'Fhr(_)pgh source incrementswnd;(t) by a fixed amounty; upon receipt
can all be related to properties of sets of non-negativeicestr .. .. Ack On detecting packet loss, the variahled; ()

R reduced in multiplicative fashion t8;cwnd; (t). We shall

§Be that theAIMD paradigm with drop-tail queuing gives rise

tial fgatures of communica_tion networks employing drin'tato networks whose dynamics can be accurately modelled as a
queuing andAIMD congestion control algorithms. An exac ositive linear system. While we are ultimately interested i

thdel IS p_rfesented fgrt t_het_ caseR\_/rv_kI]ere 3" nelt<Wt0:jk SOUrtESheral communication networks, for reasons of exposition
share a uniform round-trip-time (RTT) and packet drops al§ pseful to begin our discussion with a description of nekso

synchronised. This model is then extended to the case Ot hich packet drops are synchronised (i.e. every soures se

sources with differing RTT's and where packet drops need ngtdrop at each congestion event). We show that many of the

tbhe synﬁzroliuzed. Th|s appro;ch g.'l;/ej rtl)se tof.a.rt’node: 'anh'ngperties of communication networks that are of interest t
c nt.e or t'ynan_wrlﬁs are escr||t € fthY a finite set of Nokayork designers can be characterised by properties of a
negative matrices. The main resufts ot this paper are plmer%quare matrix whose dimension is equal to the number of

in Section Ill. To ease exposition these results, which eamc sources in the network. The approach is then extended to a

the sl,hort ar(;q Ior?g term be_?ﬁwour OI ':]‘IMD net:/vorks, Afhodel of unsynchronised networks. Even though the math-
simply stated in this section. The use of these results tysaa ematical details are more involved, many of the qualitative

The authors are with the Hamilton Institute, NUI Maynooth, yraoth, CharaCter_|St'CS of Sy_n(?hromsed ne_tworks Carry_c’\/(':‘r tmm
Co. Kildare, Ireland. synchronised case if interpreted in a stochastic fashion.
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A. Synchronised communication networks Hence, it follows that

We begin our discussion by considering communication o n
networks for which the following assumptions are valid: (i) wi(k + 1) = Biw;(k) + W[Z(l - B)w;(k)], (4)
at congestion every source experiences a packet drop; and J=17 =1
(i) each source has the same round-trip-time (RTT) this  anq that the dynamics an entire network of such sources is
case an exact model of the network dynamics may be fougden py

as follows [1]. Letw;(k) denote the congestion window size
W(k+1)=AW(k), (5)
k'th congestion

event o where WT (k) = [wy(k), -+ ,w,(k)], and where withn” =
: i we) [ ... a,] we have

A = dlag (ﬁlaﬁ27 e aﬁn) (6)
1
- 1— o 1-8, 1.
Jrzj:lajoé[ b1 B ]

L B O, and the initial conditiori?’ (0) is subject to the constrairit).
“eth congestion epoch The matrixA is a positive matrix (all the entries are positive
real numbers) and it follows that the synchronised netwbjk (
Fig. 1. Evolution of window size is a positive linear system [2]. Many results are known for
positive matrices and we exploit some of these to charaeteri
of sourcei immediately before the’'th network congestion the properties of synchronised communication networks. In
event is detected by the source. Over tith congestion particular, from the viewpoint of designing communication
epoch three important events can be discerrgtk), t,(k) networks the following properties are important: (i) netwo
andt.(k); as depicted in Figure 1. The tintg(k) denotes the fajrness; (i) network convergence and responsivenesktian
instant at which the number of unacknowledged packets iatwork throughput. While there are many interpretations of
flight equalsj3;w;(k) where3; is the multiplicative decrease network fairness, in this paper we concentrate on window
factor associated with th&th flow (recall that after each fajrness. Roughly speaking, window or pipe fairness refers
congestion event the'th sources decreases its number of g steady state situation whetesources operatingl/ M D
packets in flight by a factor daf—23;); ¢, (k) is the time at which zjgorithms have an equal number of packétg: in flight
the bottleneck queue is full; and(k) is the time at which at each congestion event; convergence refers to the esésten
packet drop is detected by the sources, where time is mebsuie 3 unique fixed point to which the network dynamics con-
in units of RTT. It follows from the definition of theAIMD verge; responsiveness refers to the rate at which the nietwor
algorithm that the window evolution is completely define@ov converges to the fixed point; and throughput efficiency efer
all time instants by knowledge of the; (k) and the eventtimes to the objective that the network operates at close to the
ta(k), ts(k) andt.(k) of each congestion epoch. We thereforgottieneck-link capacity. It is shown in [3], [4] that these
only need to investigate the behaviour of these quantities. properties can be deduced from the network mattixWe

We assume that each source is informed of congestion Q§ifefly summarise here the relevant results in these papers.
RTT after the queue at the bottleneck link becomes full; that

is (k) — ty(k) = 1. Also, Theorem 1 [1], [4] Let A be defined as in Equation (6).
n n Then A is a column stochastic matrix with Perron eigenvector
wi(k) >0, wi(k) =P+ oy, Vk >0, @ 27 = [1-, .., 1%5-] and whose eigenvalues are real and
i=1 i=1 positive. Further, the network converges to a unique Staiip

where P is the maximum number of packets which can bgoint W, = ©z,, where® is a positive constant such that
in transit in the network at any timef? is usually equal to the constraint (1) is satisfiedimy_... W (k) = W,,; and the
Umaz + BT whereg,,q, is the maximum queue length of therate of convergence of the network g, is bounded by the
congested link,B is the service rate of the congested link isecond largest eigenvalue df.

packets per second arf; is the round-trip time when the

queue is empty. At thék + 1)th congestion event The following results may be deduced from the above.
(i) Fairness: Window fairness is achieved when the Perron

wilk +1) = fawi(k) + aifte(k) —ta(k)l.  (2)  eigenvector, is a scalar multiple of the vectdt, ..., 1]; that

It follows from (1) and (2) that is, when the ratiolf—iﬂi does not depend on Further, since

n it follows for conventional TCP-flows & = 1,5 = 1/2) that

te(k) — ta(k) = %{p _ Zﬁiwi(k” +1. 8) «=2(1-p), any new protocol operating ahIMD variant

Dim1 i—1 that satisfiesy; = 2(1 — ;) will be TCP-friendly - i.e. fair

with legacyT'C'P flows.

10one RTT is the time between sending a packet and receiving the (ii) Network responsiveneSS'The magnitude of the sec-
corresponding acknowledgement when there are no packes.drop ’

2Note that measuring time in units of RTT results in a linear cdtecrease ond largest elgenval.ué\n,l of the .mat”XA bOU”qS the
for each of the congestion window variables between cotaeswvents. convergence properties of the entire network. It is shown
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120

where B is the link capacity,g..... is the bottleneck buffer
! size, Ty is the round-trip-time when the bottleneck queue is
1007 1 empty andl’; + ¢q./ B is the round-trip time when the queue
is full. After backoff, the data throughput is given by
80
: Biwi(k
Ty
AN AN under the assumption that the bottleneck buffer emptigs. It
" evident that if the sources backoff too much, data throughpu
g y will suffer as the queue remains empty for a period of time and
the link operates below its maximum rate. A simple method
to ensure maximum throughput is to equate both rates, which
i i i i may be achieved by the following choice of thg
0 10 20 i 30 40 50 T RTT
ime (s) d min
/gi = dmazx = : (9)
. . . . Td + B RTTmaz
Fig. 2. Example of window fairness between two TCP sourcels different

increase and decrease parameters (NS simulation, netwaknetars: 10Mb (iV) Maintaining fairness : Note that setting@i — RTTwmin

bottleneck link, 100ms delay, queue 40 packets. - - . e RTTmax
v 4 P ) requires a corresponding adjustmentgfif it is not to result

in unfairness. Both network fairness and TCP-friendlinass
ensured by adjusting; according toa; = 2(1 — 3;).

cwnd (packets)

250

200lf 1 B. Models of unsynchronised network

The preceding discussion illustrates the relationship be-
tween important network properties and the eigensystem of
a positive matrix. Unfortunately, the assumptions undeictvh
these results are derived, namely of source synchronisatio
and uniform RTT, are quite restrictive (although they may,
for example, be valid in many long-distance networks [5]). |
is therefore of great interest to extend our approach to more

cwnd [packets]
.
a
3

.
15}
S}

50 g . . - - .
V general network conditions. To distinguish variables, wik w
from now on denote the nominal parameters of the sources
T T I ST Y A used in the previous section ly, 37, i =1,...,n.
e &1 Consider the general case of a number of sources competing

Fig. 3. NS packet-level simulatiom¢ — 1, B; — 0.5, dumb-bell with for shared bandW|dth. in a generic dqmpbell topology (where

10Mbs bottleneck bandwidth, 100ms propagation delay, 4@qiayueue).  sources may have different round-trip times and drops need
not be synchronised). The evolution of thend of a typical
source as a function of time, over th&h congestion epoch, is

in [4] that all the eigenvalues off are real and positive depicted in Figure 4. As before a number of important events

and lie in the interval[3,, 1], where thes; are ordered as th congestion epoch T(0)

0< fy <P <. <0h1 < Bn < 1. In particular, the et et et
second largest eigenvalue is boundeddy; < A\,_1 < G,. P ! :
Consequently, fast convergence to the equilibrium stdte (t

Perron eigenvector) is guaranteed if the largest backotbfa (win amd uion)
in the network is small. Further, we show in [4] that the

network rise-time when measured in number of congestion

epochs is bounded by, = log(0.95)/log(A,—1). In the

special case whefi; = 0.5 for all ¢, n, ~ 4; see for example

Figure 3. Note that,. gives the number of congestion epochs

until the network dynamics have converged to 95 % of the

final network state: the actual time to reach this state di#gpen

on the duration of the congestion epochs which is ultlmate,Lyg. 4. Evolution of window size over a congestion epoEt(k) is the
dependent on the;. length of the congestion epoch in seconds.

(iii) Network throughput : At a congestion event the net-
work bottleneck is operating at link capacity and the totthd
throughput through the bottleneck link is given by

>.i wi(k)

R(k)- = =—F-+= 7
0" = ™

t, (k) tq(k) t,(K) t(k) Time [secs]

may be discerned, where we now measure time in seconds,
rather than units oR7'T. Denote byt,;(k) the time at which

the number of packets in flight belonging to souids equal

to Bfw;(k); t4(k) is the time at which the bottleneck queue
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begins to fil?; #,(k) is the time at which the bottleneck queudoe tolerated. Note however that the model is not restricted
is full; and ¢.;(k) is the time at which the’th source is to such situations; see Comment 4.1 below. In view of (10)
informed of congestion. In this case the evolution of itk and (12) a convenient representation of the network dyramic
congestion window variable does not evolve linearly withdi is obtained as follows. At congestion the bottleneck link is
aftert, seconds due to the effect of the bottleneck queue filliraperating at its capacity, i.e.,
and the resulting variation in RTT; namely, ti&'T of the n

i'th source increases according RI'T;(t) = T,, + q(t)/B wi(k) —a; _ B,
aftert,, wherely, is the RT'T" of sourcei when the bottleneck =1 RTT; max
queue is-empty and < g(t) < gmax denotes the number Ofwhere RTT; mas 1s the RTT experienced by théth flow
packets in the queue. Note also that we do nc_>t assume \o_zﬁten the bottleneck queue is full. Note, thBT'T; ;.44 IS
every source experiences a.drop \(vherj congestion occurs. in(arependent ok. Settingy: := (RTT;.mas)~" We have that
example, a situation is depicted in Figure 4 where itie ’

source experiences congestion at the end of the epoch vgherea n n

the j'th source does not. Z%wi(k) =B+ Z%O‘i' (15)
Given these general features it is clear that the modelling =1 =1

task is more involved than in the synchronised case. NornetheBy interpreting (15) ak+1 and inserting (12) forw; (k+1)

less, it is possible to relate; (k) andw;(k+1) using a similar

(14)

approach to the synchronised case by accounting for theteffe - viBi(k)w; (k) + vieuT(k) = B + 9 yicy; . (16)
of non-uniform RTT's and unsynchronised packet drops as ; ()i (k) (k) ;
follows.

(i) Unsynchronised source dropsConsider again the situ- Using (15) again it follows that

ation depicted in Figure 4. Here, thigh source experiences 1 n

congestion at the end of the epoch whereag thesource does ~ 1'(k) = ST o (Z 7i(l - @(k))wi(k)) . @
not. This corresponds to thih source reducing its congestion =1 Ni=1

window by the factor; after thek + 1'th congestion event, Inserting this expression into (12) we finally obtain

and thej’'th source not adjusting its window size at congestion.

We therefore allow the back-off factor of thith source to take  @ilk +1) = Fi(k)wi(k) (18)
one of two values at thé'th congestion event corresponding o n
to whether the source experiences a packet loss or not +W V(1 = B (k))w; (k)
=1 12" j=1
Bi(k) € {B;,1}. (10)

- ) o ~and the dynamics of the entire network of sources atktiie
(i) Non-uniform RTT :Due to the variation in round trip congestion event, subject to (15), are described by
time, the congestion window of a flow does not evolve linearly
with time over a congestion epoch. Nevertheless, we may W (k +1) = A(k)W (k), A(k) € {A1,...., A},  (19)
relate w;(k) and w;(k + 1) linearly by defining an average

P T _ _ —
rate «; (k) depending on thé&’th congestion epoch: where settingg” = [1(1=fi(k)) ... 7a(l=Ba(k))]
we have
_ wi(k+1) = Bi(k)w(k)
ailk) = () : (1) A(R) = diag (Bi(k), B(k),-... Bu(k)  (20)
where T'(k) is the duration of thek'th epoch measured in +ﬁ ag”,
seconds. Equivalently we have j=173%
_ A _ 4 and wheres; (k) is eitherl or 37. The non-negative matrices
wi(k +1) = Bi(k)wi(k) + i (k)T (k) . (12) As, .., A, are constructed by taking the matrik;,
In the case whew,,,.. << BTy, ,i = 1,...,n, the average
o, are (almost) independent bfand given by, (k) ~ af /Ty, pi 0 - 0
for all k € N,i = 1,...,n. The situation when M 0 B3 0 0 N
1 pr—
a : 0
aiNTdi’ i=1,....n (13) 0 0 - B
is of considerable practical importance and such networks a o
the principal concern of this paper. This corresponds to the 1 Q2 [ (- B) (1 = B2) ]
case of a network whose bottleneck buffer is small compared)_7_, yja; | - P ne
with the delay-bandwidth product for all sources utilising O,
the congested link. Such conditions prevail on a variety of (21)

networks; for example networks with large delay-bandwid

. tgnd setting some, but not all, of th# to 1. This gives rise
products, and networks where large jitter and/or lateneyrot, g g g

to a set4 of m = 2™ — 1 matrices associated with the system
3n the case when the queue does not empty following a congestient (19) that correspond to the different combinations of seurc
tq(k) = tas (k). drops that are possible.
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Finally we note that another, sometimes very useful, repthere the summation is taken over thasehich correspond
resentation of the network dynamics can be obtained by cdn-a matrix in which thej’th source sees a drop. Or to put it
sidering the evolution of scaled window sizes at congestioanother way, the summation is over those indicésr which
namely, by considering the evolution & (k) = [y,w: (k) the matrix 4; is defined with a value off; # 1. Note that
,Yowa(k), ....,ymwn (k)]. Here one obtains the following de-); can be thought of as a synchronisation factor - it is unity
scription of the network dynamics: when a flow experiences a loss at every congestion event.

W, (k + 1) = A(k)W,(k), A(k) € A={A,, .., A}, (22)

wherem = 2" — 1 and theA; are obtained by the similarity ) .
transformation associated with the change of variables, jnSIMPly stated, Assumption 2 states that almost surely all
particular flows must see a drop at some time (provided that they live

for a long enough time).

Assumption 2 Let \; > 0 for all j € {1,...,n}.

B0 0
_ 0 B5 0 0 Comment 2 A consequence of the above assumptions is that
A= S0 0 + the probability that source/ experiences a drop at the'th
(') 0 3 congestion event is not independent of the other sources. Fo
" example, if the firsh — 1 sources do not see a drop then this
T implies that source: must see a drop (in accordance with the
1 Y2002 1—35 185 - 1-6° usual notion of a congestion event, we require at least one
n [ 1 2 n ] . .
Zj:l Vi flow to see a drop at each congestion event).
TYnQin

. - = We now present two results that char rise the ex
As before the non-negative matricas, .., A,,, are constructed e now present two results that characterise the expected

. . : behaviour ofAIMD-networks that satisfy Assumptions 1 and
by taking the matrixA, an d sgttmg some, but not all, of thez_ The first characterises the ensemble average behaviour
G: to 1. All of the matrices in the se#l are now column

S . . f flows, while the second characterises the time average
stochastic; in our proofs we use this representation of tﬁe

: €haviour.
network dynamics.

[1l. M AIN RESULTS Result 1. Ensemble average behaviour of TCP-flows

The ultimate objective of our work is to use the networRheorem 2 Consider the stochastic system defined in the
model developed in Section Il to establish design prinsiplgreamble. Lefl(k) be the random matrix product arising from
for the realisation dAIMD networks. In this section we presenthe evolution of the firsk steps of this system:
two results, both of which are derived from our network model _
in Section 2, which in a sense characterise the asymptotic 1i(k) = A(k)A(k —1)....A(0).

behaviour of both long and short lived flows. Then, the expectation &f(k) is given by
Preamble to main results E(I(k)) = (Z piA;)F: (23)
It follows from (19) that W (k) = II(k)W(0), where i=1

(k) = A(k)A(k — 1)....A(0). Consequently, the behaviourang the asymptotic behaviour &f(I1(k)) satisfies
of W(k), as well as the network fairness and convergence

properties, are governed by the properties of the matrisdyrd Jim E(IL(k)) = TpYp - (24)

II(k). The objective of this section is to analyse the average

b : : : ; where 21’ = O(—X L2y 22, Yyl =
ehaviour ofII(k) with a view to making concrete state- P MA=B1)" Aa(T=F2)" " N (1-Bn) " 7P

ments about these network properties. To facilitate aicalyt (71, - 7»). Here®© € R is chosen such that equation (15) is
tractability we will make two mild simplifying assumptions Satisfied ifw; is replaced byz,; = ©a;/(Ai(1 - 5i)).

Assumption 1 The probability thatA(k) = A, in (19) is Comment 3 Theorem 2 characterises the ensemble average
independent of: and equalsp;. behaviour of the congestion variable vectdf(k). The con-

gestion variable vector of a network of flows starting from
Comment 1 In other words Assumption 1 says that the probnitial condition W (0) and evolving fork congestion epochs
ability that the network dynamics are describedibyk+1) = is given byW (k) = II(k)W (0). The average window vector
A(k)W (k), A(k) = A; over thek'th congestion epoch ip; over many repetitions is given by(II(k))W (0). Theorem 2
and that the random variabled(k),k € N are independent provides an expression for calculating this average in &rm
and identically distributed (i.i.d.). of the network parameters and the probabilities. Fur-
thermore, we have that aB becomes largeF (II1(k))W (0)
tends asymptotically tmpypT W (0). The rate of convergence of
E(TI(k))W(0) to this limiting value is bounded by the second
largest eigenvalue of the matriX."" | p; 4;.

Given the probabilitiep; for i € {1,...,2" — 1}, one may
then define the probability; that sourcej experiences a loss
event at thek’'th congestion event as follows:

A= pi,
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Comment 4 Theorem 2 is concerned with the expected be-
haviour of the source congestion windows at tth conges-

tion epoch. Fork sufficiently large the expected throughput be-

fore backoff can be approximated 33", N BT s

The expected worst case throughput after backoff (which
occurs when the queue is on average empty after backoff)
is approximately} ;" ; m An immediate con- Fig. 5. Dumbbell topology.
sequence of this observatlon is that the bottleneck link is

guaranteed to be operating at capacity (on average) for

large enough if3; = RT%

IV. M ODEL VALIDATION

The mathematical results derived in Section Ill are sufpris
Result 2. Time average behaviour of flows ingly simple when one considers the potential mathematical
complexity of the unsynchronised network model (19). The
mplicity of these results is a direct consequence of Agsum
tions 3.1 and 3.2. The objective of this section is therefore
twofold; (i) to validate the unsynchronised model (19) in a

Theorem 3 Consider the stochastic system defined in tHgeneral context; and (i) to validate the analytical prédits

We now present the following theorem which is concerne
with networks characterised by long-lived flows.

preamble and let of the model and thereby confirm that the aforementioned
assumptions are appropriate in practical situations.
k k
— 1 1
Wk) = ——» W@E)=|——=> 1@HE) | W( .
(k) k+1 ; (@) (kz +1 ;) (Z)> (0), A. Two Unsynchronised Flows

We first consider the behaviour of two TCP flows in the
and wherell(k) = A(k)A(k — 1)....A(0). Then, with proba- qumbbell topology shown in Figure 5. Our analytic results
bility one are based upon two fundamental assumptions: (i) that the

dynamics of the evolution of the source congestion windows
= can be accurately modelled by equation (19); and (ii) the
Jim W(k) = 2y, W(0) = ZW“}J’(O) 2p:(25)  allocation of packet drops amongst the sources at congestio
- can be described by random variables. We consider each of
these assumptions in turn.

(i) Accuracy of dynamics model A comparison of the
predictions of the model (19) against the output of a packet-
Comment 5 (i) Theorem 3 states that the time-average vectdevel N'S simulation is depicted in Figure 6. Here, the pattern
of window sizes almost surely converges asymptotically toof packet drops observed in the simulation is used to select
scalar multiple ofr,,. Hencez,, determines the time-averagedthe appropriate matrix (k) from the setA at each congestion
relative number of unacknowledged packets in the netwagkent when evaluating (19). As can be seen, the model output
from each source at each congestion event. is very accurate. Also plotted in Figure 7 is the evolution of

(i) In view of Comment 4, it again follows that asympthe linear combinatior " | v;w; where they; are defined
totically, the time-averaged throughput through the lestéick in Equation (15). It can be seen that;" | ~;w; has the same
link will approach the capacityB for k sufficiently large if value ateach congestion event thereby validating the @nst
B; = RTTimin (15) used in the model.

RTTL max '
(iii) In the spirit of Theorem 2 one may also consider the ex- (il) Validity of random drop model it is well known that

pectation ofW (k): E(W (k)). Denoting E(A) = X7, pi A; networks of TCP flows with drop-tail queues can exhibit a rich
it follows from our assumptions that - variety of deterministic drop-behaviours [6]. However, sho

real networks carry at least a small amount web traffic. In
1 k Figure 8 we plotNS simulation results showing the mean
k+ 1(E(A) +.+ E(A))W(0) (26) congestion window as the level of background web traffic is
M (k)W (0), (27) varied (background information on the web traffic generator
in NS is described in [7]). To illustrate the impact of small
where the matrix\/ (k) is column stochastic matrix, and whoseamounts of web traffic, these results are given for a network

where the vectors,, andy, are as defined in Theorem 2.

E(W (k)

second largest eigenvalue is given by condition where phase effects are particularly pronounced
While the agreement between the simulation and our random

No(k) = LASH — A2 28) matrix model is poor with no web traffic, even a very small

k+1 X—1 volume of web traffic appears to be enough to disrupt the

_ ) coherent structure associated with phase effects and other
where ), is the second largest eigenvalue BfA). Further, complex phenomena previously observed in simulations of
E(W(k)) tends asymptotically ta,, as A2(k) tends to0. unsynchronised networks. From the packet-based simnlatio
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Fig. 6. Predictions of the network model compared with patiest N.S
simulation results. Keyo flow 1 (model),$ flow 2 (model), - flow 1 (V5),
— flow 2 (IV.S). Network parameters: B=100MR,, =80 packets7'=20ms,
To=102ms;T1=42ms; no background web traffic.
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Fig. 7. Evolution of}_" | v;w;. The peaks correspond to congestion events.

Network parameters: B=100Mby,,..=80 packets,7'=20ms, Tp=102ms;
Ty1=42ms; no background web traffic.
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Fig. 8. Variation of meanw;(k) with level of background web traffic in
dumbbell topology of Figure 5. Key: NS simulation result; mathematical
model (19);0 Theorem 3. Network parameters: B=100Mh, . =80 packets,
T=20ms,Tp=102ms;T1=42ms.

results we can determine the proportion of congestion svent
corresponding to both flows simultaneously seeing a packet
drop, flow 1 seeing a drop only, and flow 2 seeing a drop
only. Using these estimates of the probabilitigs the mean
congestion window can be estimated using expression (24)
from Theorem 3. The resulting estimates are shown in Figure
9, and are also presented in tabular form in Table IV-A. In
these figureq? is the fixed delay associated with souidcthat

is depicted in Figure 5. The first column for each flow gives the
actual average window size as predicted by Ahg simulator;

the second column gives the predictions of the model (19);
and the third column gives the long-time average predistion
of Theorem 3. It can be seen that there is close agreement
between the packet-level simulation results and the plied
obtained using (24). The actual convergence of the sinmulati
data to the mean values is depicted in Figure 10.

Also shown in Figure 9 are the analytic predictions for the
case where each source has an equal probability of backing
off when congestion occurs: namely, whap = % Vi. The
corresponding ratio of the elements of the average cormgesti
window vector is the same as that under the assumption of
source synchronisation (it is important to note that pager
of packet drop other than synchronised drops can lead to
the same distribution as long as the proportion of backoff
events experienced by the two flows is the same). Observe
that the resulting predictions are an accurate estimatéeof t
mean congestion window size and that as the level of web
traffic increases the mean window size approaches that in the
synchronised case (see Figure 8).

Before proceeding we also present results from severat othe
two-flow networks in Figures 11 and 12. As can be seen
from the figures, the predictions of Theorem 3 and M8-
simulations are consistently in close agreement.

0.9

normalised cwnd size

01 I I I I
0 50 100 150 200 250 300
T1 (ms)

Fig. 9. Variation of meanw;(k) with propagation delay; in dumbbell
topology of Figure 5. Key: NSsimulation result; mathematical model (19);
o Theorem 3; solid lines correspond to synchronised casevdiktparame-
ters: B=100Mb g4 =80 packets]'=20ms,Tp=102ms; approximately 0.5%
bidirectional background web traffic.

The foregoing results are for networks with two competing
TCP sources. We note briefly that we have also validated
our results against packet-level simulations for netwarks
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2r TABLE |
el TABULAR DATA FOR FIGURE 9.
160 T1 (ms) Flow 1
NS Simulation  Model Theorem 3
2.0 0.1924 0.1908 0.1895
2R o 12.0 0.2762 0.2757 0.2736
N T - 22.0 0.3253 0.3235 0.3237
T,=102ms 42.0 0.3691 0.3654 0.3651
o,sf/W 62.0 0.4226 0.4230 0.4239
o /Mm\m\\\w_ﬂs B 82.0 0.4599 0.4605 0.4600
[ Tams 102.0 0.4866 0.4901 0.4943
oabTT e T 122.0 0.5156 0.5071  0.5082
o e T 142.0 0.5461 0.5406 0.5378
' Ty=2ms 162.0 0.5877 0.5813 0.5825
o = o = T P o 252.0 0.6652 0.6627 0.6609
Flow 2
Fig. 10. Convergence of the empirical mean of the window sizastaonp- NS Simulation  Model  Theorem 3
totic values shown in Figure NS simulation results; network parameters: 20 0.8076 0.8092 0.8105
B=100Mb, g1 aq2=80 packets'=20ms,7p=102ms. 12.0 0.7238 0.7243 0.7264
22.0 0.6747 0.6765 0.6763
dumbbell topology, B=100Mb, q“ax:SO, T=20ms, T0=2ms 420 06309 06346 06349
L ‘ ‘ ‘ 62.0 0.5774 0.5770 0.5761
J 82.0 0.5401 0.5395 0.5400
102.0 0.5134 0.5099 0.5057
] 122.0 0.4844 0.4929 0.4918
J 142.0 0.4539 0.4594 0.4622
162.0 0.4123 0.4187 0.4175
i 252.0 0.3348 0.3373 0.3391

normalised cwnd size

(i) The model (19) also neglects the fact that the number of
packets in flight for TCP flows is quantised: namely, restdct
1 to integer values, owing to the packet based nature of the
1 traffic. Hence, the accuracy of the model (19) can be expected
‘ ‘ to degrade under network conditions where the peak window
° * e T2 me o 0 0 sizew; of a flow is small.

Fig. 11. Variation of meanv; (k) with propagation delay; in dumbbell .
topology of Figure 5. Key: NS simulation result;- mathematical model B. Many UnsynChromsed Flows

(19); o Theorem 3; solid lines correspond to synchronised casewdilkt ; ; ;
parameters: B=100Mbymar=80 packetsT=20ms. Ty=2ms; approximately The foregoing results are for networks with two cc_)mpetmg
0.5% bidirectional background web traffic. TCP sources. We note briefly that we have also validated our
results against packet-level simulations for networks pfta
five flows. As in the two flow case, and the simulation and

. . ) . analytical predictions are in close agreement; a samplaeof t
up to five flows. As in the two flow case and the S|mulatlop y P g P

. . . esults that we have collected is depicted in Figures 13-14.
and analytical predictions are in close agreement (to theesa
degree of accuracy).

C. Limitations of modelling framework

Comment 6 (i) Predictions based upon the model (19) rely The derived model (19) provides a framework for capturing
on knowledge of the rate; at which each of the sourcesthe dynamics of certain types of communication networks.
increases its window size. In the case of networks with smelbwever, while the model encompasses features such as drop-
gueue sizes, Equation (13) gives a good approximation sktheail queueing, flows with different round-trip times, unsjno-
rates. However, this approximation neglects the curvaiare nised loss events and the switched nature of AIMD flows, it
the cwnd evolution induced by time-varying round-trip timedoes not capture some features of communication networks.
and can therefore be expected to become less accurate as th@ The model is only valid for a network of AIMD flows that
gueue provisioning increases. We emphasize that the lossampete for bandwidth at a single common bottleneck router
predictive power is due to the validity of the approximatiowith drop-tail queue, i.e. the so-called dumbbell topology
(13) and not the fidelity of the network model (19); a more ac- (ii) The model does not include the effects of slow start and
curate estimate afy; would lead to better model performanceTCP timeouts (although these can easily be introduced firgo t
Techniques for approximating; when the queue is not smallmodel through the introduction of more matrices into the set
have already been explored in [9]. A).
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Fig. 12. Variation of meanu; (k) with propagation delay; in dumbbell

topology of Figure 5. Key: NSsimulation result; mathematical model (19);
o Theorem 3; solid lines correspond to synchronised casavddetparam-

eters: B=100Mb,gmq,=80 packets,I'=100ms, T;=102ms; approximately
0.5% bidirectional background web traffic.

Fig. 14. Variation of meanv; (k) with propagation delay’; in dumbbell
topology with five TCP flows. Network parameters: B=100Mpyq.=80
packets,7'=20ms, T,=102ms, T>=62ms; approximately 0.5% bidirectional
background web traffic.

0.8

(v) The time average results necessarily apply to longilive

o7t . flows only but our ensemble average results apply to flows of

b any duration.

06f 8 Perhaps the most significant limitation of our model is that

o\ the probabilities of the different patterns of losses asased
— to be known beforehand (or can be measured) and are not

_— predicted by the model. This certainly reduces the predicti

o
@
T
\

\
|
I

normalised cwnd size
\
\
®

04 A power of the model. However, our objective in developing the
% I model was not only to understand the dynamics of AIMD
=i ] networks, but also to provide a basis for the design of such

s @ networks. When viewed in this context, the probabilitigs

play an important role in controlling the network dynamics,

and as they can be controlled by the bottleneck router, are an

100 150 200 250 w0  important design parameter available to the network design
e Our model provides an analytic basis for understanding the

Fig. 13. Variation of meanv; (k) with propagation delay’; in dumbbell €ffect of various dropping strategies of the network dyremi

topology with three TCP flows. Key:NS simulation result; mathematical and for incorporating this aspect of network dynamics ihi® t
model (19);0, ¢, O Theorem 3 flows 1, 2 and 3 respectively; solid line ;

correspond to synchronised case. Network parameters: BA1,00,,4.=80 hetwork design procedure.
packets,7=20ms, Tp=102ms, T>=62ms; approximately 0.5% bidirectional
background web traffic.

V. RELATED WORK

An extensive literature exists relating to the modelling of
TCP traffic. The well-known square-root formula of Padleye
(iiiy In the simulation results presented, consideratisn &l. [10] provides an approximate expression for the congestion
confined to situations where the queue size is small compaiggdow achieved by a TCP flow. The statistical independence
to the bandwidth-delay product but this is to streamline th&sumptions in this model however neglect interactions be-
presentation and is not an inherent constraint of the miodell tween competing flows (e.g. the frequency of loss events is
approach. There is also no assumption in the model that generally not independent of the values of the AIMD increase
queue empties following a congestion event. and decrease parameters of competing flows). Many of the
(iv) While not intrinsic to the matrix product model itself,more recent results are based on so-called fluid approaokes a
key assumptions for the asymptotic analysis presentedhate focus on active queueing disciplines, see for example [11]-
(i) the patternof losses at each congestion event is random affD], [20], [21] . Fundamental difficulties exist in applgn
independent of the congestion epoch (we do not assume thaitli models to networks with drop-tail queues. Recently
the losses seen by a flow are independent of the losses ssmreral authors have developed new types of hybrid systems
by other competing flows), and (ii) each flow almost surelgnodel suited to drop-tail networks: most notably by Hesganh
experiences a loss event provided that it sufficiently lbwed. [22] and Baccelli and Hong [23]. We note that the model
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derived in [23] is similar to the model presented here. I, and products of matrices in this set, are nonnegative and

particular, under mild assumptions, the sets of solutiohs im particular column stochastic. This observation implies

the model in [23] and of our model coincide, so that thexistence of am — 1 dimensional subspace that is invariant

results of that reference are immediately applicable to theder.4. We will also see that the matrices in this set can be

model presented here. However, the model derived by Baccslimultaneously transformed into block triangular formhwaétn

and Hong is both affine and the homogeneous (linear) partris- 1 dimensional symmetric block. Given these observations,

characterised by general matrices (namely, not by nontiwegawe will then show under mild assumptions that the distance

matrices), whereas in this paper we develop a linear, nasf-a matrix product of lengtlt, constructed from matrices in

negative matrix model. The properties of linearity (no afin.4, from the set of rank-1 matrices converges asymptotically

term) and nonnegativity play a key role in the tractabilityo zero ask increases.

of our model, both in respect of the analysis of its dynamic

characteristics and of its equilibrium properties. Lemma 1 There exists am — 1 dimensional subspace invari-
ant underA.

VI. M ATHEMATICAL DERIVATIONS . .
Proof: The row vector := [1,...,1] is a left eigenvector

Theorem 2 and Theorem 3 follow from several interestings 5| of the matrices in the set as they are column stochastic.
properties of the set of matrice$ = {A,, ..., A, }. Roughly  This implies that ther — 1 dimensional subspace orthogonal
speaking, these results may be classified as being algediraigy , is invariant undet4, [24]. [
stochastic in nature. The purpose of this section is to éaiei
these properties and to use them to prove the results given 8imma 2 Consider the set of matriced. There exists a real

Section 11l non-singular transformatiorf” such that for allA € A we
It was noted before that the matrices in the sktare have
not column stochastic. However, the matrices in this set are S B
simultaneously similar to a set of column stochastic masric T'AT = {0 1] 5 (29)
under the transformatioll = diag[vyi, ..., v,]. Denoted; :=
vja .5 = 1,...,n. For A € A, determined by a choice of where S € R(»~1x(=1) js symmetric, so that in particular
parameters’; (A), ..., G,(A) we have the eigenvalues of are real and of absolute valug 1.
Br(A) 0 0 Proof: We denotea = [a; ... an]T and ¢, =
0  [a(A) 0 0 (X o) Let A = A+ coaf” € A, where A is the
AT = : + diagonal matrix with entries equal tb or 3; and 3 is the
: 0 0 corresponding vector with entrigsor 1 — 7. Consider the
- 0 0 Bn(4) diagonal matrix
o 1 1
1 A L
s | 2[00, 0 m) ] D= di (\/07 W) - C9
! [ ThenDAD~! is a non-negative matrix with a left eigenvector

_ _ ) aleiariiies A
It is easy to see that the transformed matrices are c8lVen by z, = vD™", (with v defined in the EEOOf of the
umn stochastic. We shall exploit this observation in thRrévious lemma). Further, it follows thaly)AD™" = A +

. . . T -1 i i _
sequel as column stochastic matrices are easier to d&4pf” D™ and by inspectioDa = z,.
with than nonstochastic ones. In view of this fact we note We now chose an orthogonal matr{ whose last column

that a Perron eigenvector dfA,T~! is given by 27 — is zp/|Zpll- Ther%erff (th? n-th unit row vector) is a left
((1‘_&%1), (1%2) s (1(_3‘%")), and that the corresponding Perroffigenvector ot/ DAD™ M, and furthermore

eigenvector ofd; is z! = (@25 %y - aogy)- In the MTDAD™*M = MT"AM + coM* 2,87 D' M .
sequel we will derive results that are expressed in terms gf . itivle of the | | ol it foll
7,. These correspond to the dynamics of the system (22) %‘Q’J;ﬁzi’ S |T‘ mu tlpﬁdoh the ?ﬁt co ;JF“” a” It OTBVE
refer to the stochastic properties of the vect®r, (k). The zp = ||#pllen and hence the entries dff 2,0
corresponding results for the system (19) are directly dedu are nonzero only i the last row. Thus using thtis a left
from these results by similarity. eigenvector we have

(1)

MTDAD M = {g ﬂ ;

A. Algebraic properties of the set
We will from now on assume without loss of generalityvhere S € R(»~Dx(»=1) js equal to the upper leftn — 1)-
that the matrices in the sed are column stochastic, whichminor of M7 AM and thus symmetric. The assertion follows
corresponds to the casg = ... = v, = 1. Should this by settingl’ = D~'M. The eigenvalues of are bounded in
not be the case we can always apply the transformationabsolute value byt as the matrixA is column stochastic and

to obtain this property, which just amounts to a rescaling ¢iius has spectral radius equalito ]
the «;. In the derivation of the main results of this paper We denote the the of matrices that appear as the upper
we make frequent use of the fact that the matrices in the $eft block in (29) byS.
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Corollary 1 Consider the system (19). Then for eagke S for Ay . 3. Now an arbitrary matrixAz, Z # () may be
the functionV (z((k)) = 27 (k)z(k) is a quadratic Lyapunov brought into the form (37) by permutation of the index set

function for the dynamic system and we have shown the desired property.
Note also that the eigenspace df; associated to the
2 z(k+1) = S2(k), (32) eigenvaluel is given by
i.e., for all solutions o®> we haveV (z(k+1)) -V (z(k)) <0 Vs = span{e; | i € T} (38)
for all k. ’ ! ’

wheree; denotes thé-th unit vector.
Proof: The assertion follows immediately as the matrices | gt ys briefly discuss the eigenspacesSefcorresponding
{51,952, .., S} are symmetric column stochastic matrica. 1, the eigenvaluel, which we denote by (S7). If T =
There are some interesting consequences of Corollary 1 &9[{1}7 ...{n}, then as we have seen in (38), the multiplicity
products of matrices from the sét As these matrices areqf 1 as an eigenvalue ofl; is 1, so from (29) we have that
symmetric and of norm less or equal tothey form what ;.(g.) < 1. In this case we will (with slight abuse of notation)
is called aparacontractingset of matrices. This property isgegt V(Sz) = {0}. We denote the subspace orthogonal to
defined by the requirement that [1,...,1] by [1,...,1]*. Recall from Lemma 1, that this is
Sz#z e ||Szl| < ||zl|, YreR",SeS. (33) an invariant subspaf:e of € A. In general, we see from (38)
and Lemma 1 that i = {k1,k2,...,k} € {1,...,n} then
This is true for our sef, as the matrice$S' € S are symmetric a basis for
and of spectral radius at most It is know [25], that finite 11 .. 1]L NV (39)
sets of matrices that are paracontracting hiafeconvergent

products i.e., for any sequencgS(k) e in S the following 'S 9Ven. €.9. by

limit exists Chy — €hys €k — Chyy -+ -5 €y — Ehy -
lim S(k)S(k—1)...5(0). (34) ) .
k—oo Hence the eigenspace f(S7) is spanned by

For related literature on paracontracting sets of matnges T T o1

refer to [25], [26] and references therein. MED™ (exy = eky) -, MED™ Hew, —ex) . (40)
In the following we prove results on the convergence @&rom this it follows that

products of the matrices il to the set of column-stochastic

matrices of rankl. To this end it will be convenient to V(82,) NV (Sz,) = V(Sninz.) s (41)

the sources that do not see a drop in that congestion event. {225, ) £ {0} if and only if Z; N Z, contains at leas®
7 c {1,2,...,n} be the index set of sources not experiencinglements.

congestion at a congestion event. (Cleafly= {1,2,...,n}

can be igno_red, as this means thaF there is no_congestion)|:>r0po\,¢,itiorl 1 Let{S(k)}ren C S be a sequence with associ-
The matrix corresponding to an index eis given by ated index set& (k). The following statements are equivalent:

. el
Az = diag(B1(D), .., Bu(D))+ (i) For all zp e R it holds that

a0 [L=Bi(T) ... 1-B.(T)], (35) lim S(k)S(k —1)...5(0)z = 0.
where 3;(Z) = 1, if i € Z and 3;(Z) = ;] otherwise and (i) for all but onel € {1,...,n} it holds that for each
ca = (3_j_y ;)" We now recover our set of possible k€ N, there is ank, > k with [ ¢ Z(k).
matrices by (i) If {Ay,...,As} C A are the matrices that appear

A= {A7 |TC{1,2,... n}}, (36) infinitely often in the sequencéz ), then
which results in a set 02" — 1 matrices, as it should. Note A= EZAl
that all A € A are column stochastic, so that they have an Sl

eigenvalue equal t@ equal to the spectral radius.

If T +# 0, i.e., if at least one source does not experience con- has strictly positive entries

ion, then the dimension of the eigen rr in,. . R ' . .

ggsto , then the dimension of the eige space co espytul If in (iii) the k-th column ofA has zero entries then this column
1 is equal to the number of sources not seeing the congestllgne ual to
event. To see this consider first the case that theffissiurces q Ch-
k€ {l,...,n—1} do not see a drop and the others do. In  proof: (ii)<(iii): Note first that thek-th column of A
this case } is not equal toey, if and only if for one of the matrices;,

is a matrix that with the exception of at most one column

Ap ok = [I’“OX"”' g (37) [ =1,...,m the corresponding column is not a unit vector.
The assumption on the matrig; implies that thek-th source
whereB > 0 by definition. As the matrix is column stochasticexperiences a drop infinitely many times. Under assumption
this means that all columns @f sum to a value strictly less (iii) this is true for all but at most one column, which imgie
than one, and henedC') < ||C||; < 1 and the claim follows (ii). Conversely, under the assumption (i) theth source
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experiences a drop infinitely many times. As there are onflye distance of/'(k) to a matrix of rankl is upper bounded

finitely many matrices in which thé-th column is not equal by ||S(k)S(k — 1)....5(0)| this implies that the distance of

to e;, one of these appears infinitely often in the sequence dfk)A(k — 1)... A(0) to the set of matrices of rank con-

matrices and therefore in the definition.&f This implies (iii). verges to zero. As each of these matrices is column stochasti
(i)=-(ii): If (ii) does not hold, then (without loss of gen-any limit point of the sequencéA(k)A(k —1)...A(0)} is

erality) there is as > 0 such that for allt > s we have column stochastic.

{1,2} < Z(k). This implies that for allt > s the matrix Conversely, it is clear that the (42) implies Propositiorn)1 (

S(k) has the eigenspacl " D~!(e; — e5) as an eigenspaceThis shows the assertion. [ |

corresponding to the eigenvalue one. Hence anguch that  The minor drawback of Proposition 1 is that no rate of

S(s)...5(0)z is a multiple of MTD~1(e; — e5) does not convergence is supplied. Indeed, the reader may convince

satisfy (i). Such az, exists as all the matrices il are himself that the rate of convergence may be made arbitrarily

invertible. This shows the assertion. slow by considering sequences that have repetitions of the
(i)=(): Denotez(k) := S(k —1)...5(0)z. Using para- same matrices for longer and longer intervalskas— oc.

contractivity ofS and (34) it follows that ., := limy . 2(k) It is therefore useful to provide conditions that guarantee

exists. Ifzo, = 0 there is nothing to show. Otherwise, we clainan exponential decay. One such condition is provided in the

that for somek, sufficiently large, it follows thalSyz., = zo,  following proposition.

for all £ > kq. To this end note that becauseis finite, there

exists a constarft < r < 1 such that for allS € S we have  proposition 2 For everya € {n,n + 1,n + 2,...} there

exists a constant, < 1 with the following property. For any
sequence of index sef§k) such that for alll € N and all
By convergence this implies for afl € S and allk sufficiently ¢ € {1,...,n} there is ab € {la,la +1,...,(l 4+ 1)a — 1}
large that with i ¢ Z(s) it holds for all k > k' > 0 that

1+7r B N
5 llzooll < ll200]l - IS(k = 1) ... S| < r2Hip=r)
i 1), —2k+1 (k ')
On the other hand the sequenge(k)|| is decreasing, so it dist(A(k —1)... A(K"), R) < |TIIT~"|rs ’
follows that [|2(k)|| = ||ze0| for all k € N. This implies that \yith 7 defined by(29).
for k sufficiently large it must hold tha$ (£k)zo = 2. This,

5200 # 200 = ||S200|| < 7|20l -

SZoo # 200 = [|92(K)|| <

however, means that,, lies in the eigenspack (S (k)) for all Note that any actual flow on a real network has to satisfy
k large enough. From (41) it follows that at least two sourcéke assumption on the drops seen described in the previous
do not see a drop for alt large enough. B proposition. The reason for this is that if a flow does not see

For the statement of the next result we denote the setafdrop it will continue to increase the amount of packages
column stochastic matrices of rark by R. Note that the sent by a constant rate. Eventually this leads to the case the

matrices inR are of the form the amount of packages sent exceeds the capacity of the pipe
i . if no drops are seen. But at this point the source necessarily
n [ T } ’ sees a drop. This very coarse argument shows that all fealist

wheren is a nonnegative vector, the entries of which sum fdows will satisfy the assumptions of the previous propositi
1. In particular, the matrices ifR are idempotent, becausefor somek.
[1 1 ... 1]n=1.In the following statement, we denote

the distance of a matri®B to the setR by B. Stochastic properties of the sdt

dist(B,R) :=min{||B—R|| | RE R} . We now proceed to give a number of results that relate to
random products of matrices from the sét In this section
Theorem 4 Let {A(k)}ren C A be a sequence with as-we assume that Assumptions 1 and 2 hold.
sociated index setd (k). Then each of the statements of We first note that under our assumptions that the expectation
Proposition 1 is equivalent to of Aisa positive matrix that is column stochastic with Perron

. . _ _ eigenvectori" I 1 5 IR (1 ) We then
kh—{go dist (A(k)A(k = 1)... A(0),R) = 0. (42) proceed to show that tﬁe exzpectation of

Proof: Consider Proposition 1(ii). It follows from Corol- (k) = A(k)A(k — 1) ... A(0),

lary 1 that the system (22) can be transformed to an equiv-

alent system (29). This implies that for eaghthe product is also a column stochastic matrix with the same Perron

A(k)A(k —1)...A(0) is similar to eigenvector. The second result in this section concerns the
asymptotic behaviour of the expectationldfk). These results

S(k)S(k *01)---5(0) 1‘ ’ (43) immediately yield Theorem 2 and Theorem 3, using the
transformationl’, if necessary.

where we do not give the expression for the entrpf the The final results in this section revisit the convergence of

matrix as it is of no relevance for our further discussion. B¥i(k) to the set of rank-1 idempotent matrices. We show that

Proposition 1 it follows thatS(k)S(k —1)...5(0) — 0. As forall § > 0 the probability oflI(k) being at least a distande

T(k) :=
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from the rank-1 idempotent matrices goes to zerb bscomes Proof: Under the assumptions that the are positive
large. and the independence assumptions, with probability onk eac
In the following we will use the notatiod; = Az + source will see infinitely many drops. Now the result follows
caa3(Z)T, where Az denotes the diagonal matrix in (35),from Theorem 4. ]
co = (X1 a;)7" and B(Z) is the vector with entries
1 - 3i(T). C. Proof of Theorem 3
We now proceed to present an outline of the proof of main
Lemma 3 Assume that\; > 0 for i = 1,...,n then the result of this paper, Theorem 3. In [27] it is shown that the
expectation result can be derived from general results on Markov e-chain
E(A) = ZpIAI The technical preparations that this line of argumentation
T requires, however, are beyond the scope of the preserieartic
is positive, column stochastic, and a Perron eigenvectoitfo N the report [8] we give a proof that relies on fairly element
is given by argum_ents in order to keep th(_e main |dea_15 accessible. _
Outline of proof: We are interested in the asymptotic
7T — ( X1 2 n ) . (44) behaviour of the average window variatilé(k),
P M1 =61)" Xa(1 = B2)” 7 An(1 = Bn) =
Proof: By definition of the expectation and using (35) W(k) = - > W)
we have ) i=0
E(A) = Z pIAI = Z pIAI + cox Z pIﬁ(I)T (45) - E (H(k - 1) + Tt H(O)) W(O)
A A A

ask tends to infinity. Our proof consists of the following main
The ¢'th diagonal entry of the diagonal matrix_, pzAz is steps.

Step 1 : For a fixedk, we partition each sufficiently long

Aiffi + (1= i) (46) productll(k) = ®(k)¥(k), where®(k) is the leading product
and thei'th entry of 3" p7B(Z) is of length ky. We know that asi, — oo, the leading product
approaches almost surely the set of rank one matrices, which
sz(ﬂ(f))i = Xi(1 = Bi). (47) implies that®(k)¥ (k) ~ ®(k) as all matrices involved are
z column stochastic.

Hence, the matrixE(A) is of the form of A, defined in  Step 2 :We thus may approximaté’(k) as
Equation (21) with the same vectar and 3; replaced by — B 1
Bi = 1—-XN(0—-0;) € (0,1). It follows by Theorem 1 Wik) = k+ 1(H(k) + o+ 11(0)W(0)
. e T 1
that a Perron eigenvector of/(A) is given by z, _ (ROK) + A(K) + .+ R(I) + A(IY49)

(M?i"l)’ A2((113&)’“" An(?ﬁﬂn))- u k+1
HII(1 = 1) + ... + I1(0)) W(0)
Lemma 4 Consider the random system (19) subject to As- ~ 1
sumptions 1 and 2. The expectationltfk) is: ~ m(R(k) ..+ RO+ (50)

I — 1) + ... + I1(0)) W (0),
where R(k), ..., R(l) are column stochastic rank-1 matrices

) . .apdA(k),.., A(l) are error terms that approa6task, — oc.
Proof. By independence we have that Fhe expe_cte_mon. OPStep 3 :Using the law of large numbers it is then seen that
the product is the product of the expectations. This |mpI|tn1

S/k(R(k;) +...+R(l)) can be approximated &3 ", p;4;)".

E(II(k)) = E(A)* = (O prAz)*. (48)
A

the equality. ! .
Step 4 : And it follows that
Proof: (of Theorem 2). P - .
It is sufficient to show the assertion for the case= 1,i = Jim W(k) = z,g, W(0),
1,...,n. The assertion of (23) is shown in Lemma 4. B§A) herei” — (1.1
is positive and column stochastic it follows that whereg, = (1,...,1).
lim B(A)* = lim E(I1(k)) = 2y7 VII. CONCLUSIONS

. . ) In this paper we have presented and validated using packet
where y, z are left, respectively right, Perron eigenvectorgye| simulations, a random matrix model that describes the
of E(A). As E(A) is column stochastic we may normalizejynamic behaviour of a network of AIMD flows that com-
y=yp=[1 ... 1]. Finally, the assertion concerning pete for shared bandwidth via a bottleneck router employing
follows from Lemma 3. ®  drop-tail queuing. We have used this model to relate several

important network properties to properties of sets of ngane
Proposition 3 Consider the random system (19) subject tgtive matrices that arise in the study of such networks. We

Assumptions 1 and 2. Then, with probability one, have also derived under simplifying assumptions a number of
lim dist (A(K)A(k —1)... A(0),R) =0. analytic results that characterise the asymptotic tineragye
k—o00 and ensemble-average throughput of such networks.
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