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For analytic discrete-time systems, it is shown that uniform forward ac-
cessibility implies the generic existence of universal nonsingular control
sequences. A particular application is given by considering forward ac-
cessible systems on compact manifolds. For general systems, it is proved
that the complement of the set of universal sequences of infinite length is
of the first category. For classes of systems satisfying a descending chain
condition, and in particular for systems defined by polynomial dynamics,
forward accessibility implies uniform forward accessibility.

1 Introduction

In a number of recent papers the question of existence of controls with certain
universal properties has been addressed for continuous as well as discrete-time
systems. Both aspects of the theory, namely observation and control, have been
studied. Interest in this subject started with the analysis of universally dis-
tinguishing inputs, that is inputs that lead to different outputs for any pair
of initial conditions that is distinguishable, see [7], [11], [9]. Subsequently, the
problem of existence and genericity of universal nonsingular controls, that is,
controls that steer every point of the state space into the interior of its reach-
able set was studied in [8]; this notion is in a sense dual to distinguishability.
In this short note, a remaining gap is closed in that we study the existence
of universal nonsingular (or universally regular) control sequences for ana-
lytic discrete-time systems. This problem turned up in a study of exponential
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growth rates of perturbed time-varying linear systems, [14]. For this setup it
is also necessary to study discrete-time systems with a transition map that is
not defined for all pairs of states and control values (z,u), which is done by
introducing analytic “exceptional” sets.

This paper is organized as follows. After defining the precise class of discrete-
time systems and stating the problem in Section 2 we prove the main results
on universal nonsingular controls in Section 3 under the condition of uni-
form forward accessibility. In the ensuing Section 4 certain classes of systems
are discussed where the structure of the system guarantees uniform forward
accessibility from the entire state space if forward accessibility holds. This dis-
cussion depends on stationarity of descending chains of singularity loci, which
holds for algebraic systems (those defined by polynomial dynamics). Section 5
is used as an appendix to review some facts on analytically defined sets.

2 Preliminaries

We begin with a discussion of the problem and the main results for stan-
dard analytic, discrete-time invertible systems. Let M,U be real-analytic,
connected, paracompact manifolds of dimension n, resp. m. An analytic map
f:M xU — M gives rise to an analytic discrete-time system of the form

z(t+1) = f(z(@),u(t)) ,teN (1)

z(0) =z €M.
For now let us consider the standard assumption that for each v € U the
map f(-,u) : M — M is a diffeomorphism of M. The solution of system (1)

corresponding to an initial value 2 and an admissible control sequence u € UY
is denoted by z(+; zo, u).

The forward orbit at time t from zx is defined by:

Of (z) :={y € M;3u € U" with y = z(t;z,u)}

and the forward orbit from x is:

O*(z) := | Of (z).

teN

The system (3) is said to be forward accessible if int OF (z) # 0 for all z € M
and uniformly forward accessible from V' C M it there exists a t € N such
that int O () # 0 for all z € V. Forward accessibility may be characterized



by a rank condition on the iterates of f. We define fi(z,u) := f(z,u) and
recursively fiii(x, ug, ..., u) := f(fi(z,ug,. .., u—1), u). A pair (z,u) € M x
Ut is called regular if the rank of the Jacobian of f; with respect to the control
variables is full, i.e. if

ofi

t; =1tk ——————
T( ' U) g 8u0 R aut,l

(x,u)=n. (2)

For system (1) we are interested in the set of universal nonsingular control
sequences u for M or for a relatively compact subset V' C M, where we call a
finite control sequence u € U* universal nonsingular for M (or V) if (x,u) is a
regular pair for every € M (respectively every z € V). An infinite sequence
u € UM is called universal if for every x € M (or V) there exists a t, such
that for all t > ¢, it holds that r(¢;x,u) = n. We denote the sets of universal
nonsingular controls by S(¢, M), S(t,V), S(N, M) etc.

We now formulate the main results in terms of this standard discrete-time
setup. The proofs are omitted here, as they will follow from the more general
theorems proved in Section 3. For a discussion of semi-analytic sets and our
use of the term generic we refer to Section 5.

Proposition 1 Let V C M be semi-analytic. Assume that system (1) is uni-
formly forward accessible from V in t* steps. Then S(t,V) is generic in U*
for all t > t*(n + 1). If furthermore V is compact then the complement of
S(t, V) is contained in a closed, analytically thin, subanalytic subset of U* for
allt > t*(n+1).

Uniform forward accessibility can be inferred from accessibility if either M is
compact or the system (3) is algebraic. We will discuss the latter assumption
in more detail in Section 4. Thus we also obtain the following corollaries.

Corollary 2 Assume that M is compact and that system (1) is forward ac-
cessible, then the complement of S(t, M) is a closed, subanalytic, analytically
thin subset of Ut for all t € N large enough.

Corollary 3 Let M,U be real-algebraic manifolds and assume that the map
f is algebraic. If system (1) is forward accessible then there exists a t such
that it is uniformly accessible from M in time t. Hence S(t,V') is generic in
Ut for all t > t(n+1).

The above statements are proved in the following more general context. As-
sume we are given a proper analytic subset X C M x U and an analytic map
f:W — M, where W := (M x U) \ X. For fixed v € U the domain of defini-
tion of f(-,u) is denoted by W(u) C M, while the domain of definition of f;
is denoted by W; C M x U'. For z € M define the set of admissible control
values U(z) by {z} x U(z) = ({z} x U) \ X, and denote in a similar fashion



the admissible sequences for x of length ¢ or of infinite length by U*(z), UN(z).
We consider the discrete-time system

z(t+1) = f(z(t),u(t)) ,t€N (3)
z(0) =z €M,

u € UN(zy).

We assume that the set of admissible control values U and the map f satisfy

(i) For all x € M it holds that {z} x U ¢ X.

(i) Uswp :=={u € U; W(u) = M and f(-,u) : M — M is submersive} is the
complement of a proper analytic subset of U. (Recall that f(-,u) is called
submersive if df(-,u)/0z has full rank for every x € M.)

(iii) For all t € N, and all z € M, fi(x,-) is nontrivial with respect to u, i.e.
if 0fy(x,-)/0uq...0u; 1 has full rank in some point v € U'(z), then in
each connected component of U'(z) there exists a point where this rank
condition is satisfied.

Remark 4 (i) Note that the condition u € Uy, means in particular that
f(-,u) is defined on all of M. If we denote Ut := (Usw)® then an application
of the chain rule shows that fi(-,u) is submersive for u € Ut,,. Furthermore
the complement of Ut,, is a proper analytic subset of U.

(i) With respect to assumption (iii) note that in each connected component of
W, the set of points where Of;/0ug . ..0uy 1 does not have full rank is analytic.
Thus the assumption states that either the rank condition is generically satis-
fied in Ut(x) or not at all. In the case X = 0, this assumption is automatically
fulfilled by the connectedness of U.

Note that X; := (M x U') \ W; need not be analytic in M x U’ for ¢ > 1. The
reason for this is that

Xt+1:(Xt X U)U (4)
{(.CE,U(),...,’LLt) € Wt X U, (ft(x,uo,...,ut,l),ut) € X},

and the set on the right hand side is only an analytic set in W; x U and may
not be analytic in M x U'!. For details on this question see [6], Chapter IV,
Proposition 4’.

Let us note that from (4) it follows that X; is a closed, o-analytic subset of
M x Ut. This may be seen in an inductive manner, as follows. For ¢ = 1, the
statement is clear by assumption. Assume by induction that X; is a closed,
o-analytic subset of M x U'. Then X, x U is a o-analytic subset of M x U'*L.



Furthermore, the set

A= {(.’E,Uo,...,ut) € Wt X U, (ft(:r,uo,...,ut,l),ut) EX}

is an analytic subset of W; x U, and thus is in particular closed in W; x U.
An elementary topology argument implies that then also (X; x U) U A is a
closed subset of M x U'*!. This set is o-analytic, because each of the two sets
is o-analytic. The induction step is complete. We give an example to illustrate
the situation.

Example 5 Let M =R, U = R? and

X ={(z,u,v); u=0}U{(z,u,v) ; x =u and v =0} .

Consider the system

z(t+1) = f(z(t),u(t),v(t)) = v(t)z(t) + sin (ﬁ) :

For x(0) = 0 it follows that x(1) = sin(1/u(0)). We claim that the exceptional
set Xy is not analytic in M x U?. Indeed, consider the following set:

B := Xo N {(x,u1,v1, U2, V2); T = ug = v1 = vy = 0}.

Observe that B = {(0,u1,0,0,0),u; € By}, where

1
By={uy; uy =0, oru; #0 and sin(—) =0}.

U

If X5 were an analytic subset of M xU?, then By would be an analytic subset of
R. But this is false, as 0 is a limit point of isolated points of By, but analytic
subsets have finitely many connected components when intersected with any
compact subset of the ambient space.

For systems of the form (3) the definitions of forward accessibility, uniform for-
ward accessibility, regularity and universal non-singularity remain the same,
with the possible exception that the defining equations should only be consid-
ered where they make sense. Note in particular that if u € S(¢,V) for some
V C M then it follows that the transition map is defined i.e. (z,u) € W, for
all x € V. The relation between accessibility and regularity is clarified by the
following observation, which is a reformulation of results from [1]. The proof
is included for the sake of completeness.



Lemma 6 Let V' be a semi-analytic subset of M. System (3) is uniformly
forward accessible from V iff there exists a t € N such that all pairs (x,u)
from a generic subset Z C (V x U*)NW; are reqular and for all x € V it holds
that {z} x U' N Z is generic in {x} x U,

PROOF. If (3) is uniformly forward accessible from V' we may choose a
t € N such that int O (z) # 0 for all z € V. By Sard’s theorem for each
xz € V there exists a u, € U'(x) with 7(¢;z,u,) = n. The singular set of f;
restricted to V x Ut MW, is defined by the simultaneous vanishing of principal
minors of the Jacobian of f; with respect to the control variables and thus
analytic in V x U* N W,, i.e. given by the intersection of an analytic set with
the semi-analytic set V x U' N W,. By the existence of the pairs (z,u,) this set
contains no set of the form {z} x U'(z) and using Assumption (iii) it contains
no connected component of (V' x U*) N W,. This shows the existence of the
generic set with the desired properties. The converse implication follows using
local surjectivity (w.r.t. the control variables) of the map f; in (z, ) which is
guaranteed due to regularity. O

To conclude this section let us point out that by the assumptions we have
made so far sets of the form

. . 0
Yi(i1, ... 0) = {(x,ug,...,us_1) ; 1k e i (z,ug- -, us_1) < n})

.. .8uz~l

for some index set {i1,...,4} C {0,...,t— 1} are only analytic in W; as only
there the derivatives are defined. In some cases a stronger property holds (for
instance for the systems studied in [14].) We formulate this in the following
assumption

Assumption 7 For each t € N and any indez set {i1,...,4} C {0,...,t—1}
the set Yi(i1,...,14) U Xy is analytic in M x U,

In particular this holds if f is defined on M x U, i.e. in the situation of
Proposition 1.

3 Universal nonsingular controls

The main result of this paper shows that uniform forward accessibility from
V' implies that the set of universal nonsingular control sequences for V' are
generic if the length of the control sequence is large enough. The idea of the
proof is taken from [10] and differs from an approach taken in [13] which gives



less information on the length of control sequences sufficient for the existence
of universal nonsingular controls.

Proposition 8 Let V C M be semi-analytic. Assume that system (8) is uni-
formly forward accessible from V in t* steps. Then S(t,V) is generic in U* for
allt > t*(n+1). If furthermore V is compact and Assumption 7 holds then the
complement of S(t,V') is contained in a closed, analytically thin, subanalytic
subset of U' for allt > t*(n +1).

PROOF. Throughout this proof we will assume without loss of generality
that t* = 1, otherwise we may consider the map f;- and the control range U*".
Consider, for each element x € V' and each ¢ > 0 the following set

Bi(z) := {u € U'(z) ; rk %(ft_l(x,uo, cey Up—g) U 1) < M}

For each z Bj(x) is a analytic subset of U(z) since it is the set defined by
the simultaneous vanishing of the principal minors of the Jacobian of f with
respect to u. By uniform forward accessibility and the nontriviality of f it
follows that the dimension of B;(z) is at most m — 1. Observe that, for each ¢

(U,(), ceey Ut) € Bt+1(x) iff Uy € Bl(ft(:v, UQy - - -y U,tfl)) . (6)

Consider also, for each ¢ the analytic subset of W, := W, N (V x U") given by
Gy = {(z,ug, ..., us_1); (ug,-..,u;) € Bip1(z), Vi=0,...,t—1}.

The analyticity of G; follows as each of the definitions describing the set can

be expressed in terms of vanishing principal minors. We claim that G} has

dimension at most n + t(m — 1). This is obviously true for t = 0 so we may
by induction assume it to be true for ¢ and consider the analytic map

e Wiy = Wi

(x,uo,...,ut)l—> (.I,Uo,...,’u,t,l).

Note that

A= Wt(Gt—H) C Gt

by definition of these sets. For each fixed (Z, dg, ..., 4 1) € A,

ng(ja Ugy -+ -5 ﬂtfl) mGt—i—l =



{z} x {to} x ... x {Gr_1} X By(fo(Z, Tg, ..., 0 1)) C Wy x U,

by Equation (6). Thus this fiber has dimension at most m — 1. Applying
Proposition 16 Part 2 it follows that

dimGiy <[n+t(m—1)]+m—-1]=n+(t+1)(m—-1)

as claimed. We conclude, for the special case t = n + 1 that the set G\, 41 has
dimension at most

n+n+1)(m—-1)=mn+1)—1.

Finally consider the projection 7 of Gy, 41 onto U™"!. As analytic maps cannot
increase dimensions by Proposition 16 7(Gp11) can have dimension at most
m(n + 1) — 1. By assumption (i) the set U™L' \ 7(Gpy1) is generic in U™,
This set consists of universal nonsingular controls by definition of Ugy.

In case that the map 7 is proper it follows by definition that 7(Gp41) is
subanalytic. In particular under the assumptions of the second part of the
proposition (X; U Gy) N (V x U') is a semi-analytic subset of M x U’. Due
to the compactness of V' we obtain that 7((Gpi1 U Xpy1) N(V x U™L)) is
subanalytic in U™*! and closed.

For the case of t > t*(n+ 1) note that the concatenation of a universal nonsin-
gular control sequence with u € Uy, is universal nonsingular, which follows
from an application of the chain rule. This shows genericity of the universal
nonsingular controls for all ¢ > t*(n + 1) and completes the proof. O

Corollary 9 Assume that M is compact and that system (3) is forward ac-
cessible, then the complement of S(t, M) is closed and analytically thin in
Ut for all t € N large enough. If furthermore Assumption 7 holds, then the
complement of S(t, M) is subanalytic in U* for all t € N large enough.

PROOF. Using a standard compactness argument it is easy to see that sys-
tem (3) is uniformly forward accessible from M for some time ¢*. With a similar
argument it follows that the set of universal nonsingular control sequences is
open. Now the previous Proposition 8 shows the assertion. O

It is worth noting that for systems defined on compact, complex manifolds
satisfying Assumption 7 a stronger statement holds because of the holomor-
phic structure. Note that in this case condition (iii) is superfluous as analytic
subsets of complex manifolds are nowhere separating so that in this case W;
and U'(z) have only one connected component, see [5], Proposition 7.4.



Corollary 10 Let M,U be complex manifolds and let M be compact. Assume
that the map f : (M x U)\ X — M is holomorphic, where again X is an
analytic subset of M x U. We assume the complex analogues of assumptions
(i) and (ii) and Assumption 7. If (3) is forward accessible, then there exists a
t* € N such that for all t > t* the complement of S(t, M) is a proper analytic
subset of U'.

PROOF. As system (3) is forward accessible we have regular pairs (z, u) for
every z € M. We may interpret M, U as real analytic manifolds of dimensions
2n resp. 2m. Writing (in local coordinates) = + iy = z, v + 4w = u and
f(z,u) = g(x + iy,v + w) + ih(x + iy,v + iw) we may consider the real-
analytic system given by the maps g, h which is also forward accessible. We
follow the steps of the proof of Proposition 8 with a few modifications. First
of all the sets By(z,y) are defined using the complex derivative:

By(z,y) == {(v,w) € U'(z,y);

0 . . . .
rk a_i(ftl(m + iy, Vo + W, - - -, Vpg + 1Wy_2), Ve +iw1) < M.

Note that for each (z,y) the dimension of By(x,y) is at most 2m —2 because of
the underlying complex structure. Considering again the map 7 and the sets
Gy, X, of the proof of Proposition 8 it follows by Remmert’s proper mapping
theorem ([5] Theorem 45.17) that the complement of the universal nonsingular
control sequences is an analytic subset of U?. As it not equal to U* for all ¢
large enough the assertion follows. O

Corollary 11 Let system (3) be forward accessible. The complement of S(N, M)
is of first category in UN endowed with the topology of pointwise convergence.

PROOF. Let V,, be an exhaustion of M (i.e. Vi C V5 C ... and UpenVy, = M
) consisting of compact, semi-analytic sets V,,. Denote by ¢, the time at which
(3) is uniformly forward accessible from V,,. For each n € N consider the set

S(tn, V) X Ugup X Ugyp X ... C S(N,Vy,).

Note that the closure of UN \ S(N, V) has empty interior. It holds that

N S(NV,) C S(N, M)

neN



and thus

UM\ SN, M) C |J UM\ S(N, V).

neN

Thus UM\ S(N, M) is a countable union of nowhere dense sets. This completes
the proof. O

4 Uniform accessibility

As we have seen in Proposition 8 uniform accessibility implies the generic exis-
tence of universal controls. It is therefore useful to ask under which conditions
a system of the form (3) is uniformly accessible from the whole state space
M. In [2] some conditions guaranteeing forward accessibility of discrete time
systems have been investigated. These depend on the topology of M or on
the dynamical behavior of the system. In this section we investigate certain
system classes which guarantee (forward) uniform accessibility on M from
forward accessibility.

Definition 12 We say that the map f : W — M satisfies a descending chain
condition if any descending chain Zy O Z1 O ... of sets of the form

Zy={x € M ; (x,u) is not a reqular pair, Vu € U/}

is stationary, where for each t € N the set U] is a set of control sequences.

Note that in general a descending chain of analytic sets is only stationary on
compact subsets of M, see [6] Corollary 1 to Theorem V.2.1.

Theorem 13 Let system (8) be forward accessible and assume that f satisfies
a descending chain condition. Then, there erists a t € N such that system (3)
is uniformly accessible from M in time t.

PROOF. Consider the family of sets given by

Zy:={z € M ; int Of (z) = 0}.

Applying Lemma 6 to V = {z} and using Assumption (ii) we obtain
Zy={x e M; r(t;z,u) <n,Vu e U},

10



We wish to show that Z;, = 0 for some t;. To this end we show that the
family (Z;)en is descending. If z ¢ Z; then there exists a u € Ul, such
that 7(t;z,u) = n and if u' € Uy it follows from the chain rule that also
r(t+1;z, (u,u’)) = nand thus z ¢ Z; 1. Hence the family (Z;);ey is descending

and it is stationary at some ty, that is, Z;, = Z;,+1 = .... We claim that
Zy, = 0. Otherwise let z € Z;, and choose u € U,. As (3) is forward accessible
we have int O/ (z(to;x,u0)) # 0 for some ¢ € N and using Lemma 6 again
it follows that there exists a u € U, such that n = r(t; z(to; z,uo), u) =
r(to + t;z, (ug, u)). This shows that = ¢ Z;,,, and thus the family (Z;);en is
not stationary at %y, a contradiction. O

A first application lies in the consideration of real-algebraic systems. For an
introduction to real-algebraic manifolds, i.e. real-algebraic varieties that do
not have singular points we refer to [4] Chapter 3. To keep technicalities to a
minimum we will restrict ourselves to embedded real-algebraic manifolds here.
We briefly recall the basic notions of real-algebraic sets. A set X C R? is called
algebraic if it is the zero locus of a set of polynomials in d indeterminates.
To an algebraic set X we may associate the ideal Z(X) of polynomials that
vanish on X. By the Hilbert Basis theorem any increasing chain of ideals
in RIXy,..., X, is stationary, i.e. the ring is Noetherian, see [3] Chapter 7.
As a consequence a descending chain of algebraic sets in R? is stationary as
X1 2 XQ 1mp11es I(Xl) g I(XQ)

There are two equivalent ways to view algebraic subsets of an algebraic set X C
R?: They are either given as the intersection of an algebraic subset of R? with X
or as the zero locus of a family of functions contained in R[X;, ..., X,]/Z(X).
Hence a descending family of algebraic subsets of X is stationary.

An embedded real-algebraic manifold M C R¢ is a smooth embedded manifold
that is an algebraic subset of R? at the same time. We note that if M is a real-
algebraic manifold and X is an algebraic subset of M then also M \ X may be
interpreted as an embedded real-algebraic manifold, see [4] Proposition 3.2.10.
Given two real-algebraic embedded manifolds Y, Z a map f:Y — Z is called
algebraic (or regular in [4]) if each coordinate function is an element of the
ring of algebraic functions on Y given by

{g s D q ERXy, .., XB)/Z(Y), q(z) #0Vz € Y},

We are now in a position to formulate the following corollary.

11



Corollary 14 Let M, U be real- algebraic, embedded manifolds. Assume that
X ¢ M x U is algebraic and that f : W — M is algebraic.

Let U be an open, connected subset of U. Define the exceptional set X := (M x
U)NX and consider system (3) given by the restriction of f to (M xU)\X. If
system (3) is forward accessible then there exists a t such that it is uniformly
forward accessible from M in time t.

PROOF. The assumptions of Theorem 13 are satisfied as any descending
family of algebraic sets is stationary, and under the assumptions of this corol-
lary the sets considered in Definition 12 are algebraic as they can be expressed
in terms of vanishing principal minors of algebraic functions. O

It is worth noting that we cannot expect that ¢ depends on the dimension of
M or U. This is shown in the following example.

Example 15 Let M = R, U = (a,b) C R for some constants 0 < a < b
and X = 0. Let g(x) = z+ 1 and h(z) = cx(zx — 1)...(x — 2k) for some
k € N,c > 0. For the system

z(t+1) = g(x) + uh(z)

we see that O3, 1(0) = {0,1,...,2k+1}. It is easy to see that in this ezample
the system is uniformly accessible from M in 2k + 2 steps. Note furthermore
that we can choose the constant ¢ in such a way that h'(x) > —1/b, Vo € R
which ensures that condition (i) on the genericity of submersive control values

holds.

5 Appendix: Some remarks on analytically defined sets

A subset of an analytic manifold M is called analytic if it is closed in M and
can be locally described as the zero locus of a family of analytic functions. One
of the celebrated results of the theory of holomorphic mappings in several
variables is Remmert’s proper mapping theorem ([5] Theorem 45.17) which
states that in the complex case the image of an analytic set under a proper
map is itself analytic. In the real case this property fails to hold. In order to
remedy the situation the class of subanalytic sets has been introduced, see [12]
for an overview of the theory. Let us briefly indicate the main notions: A subset
Z C M is called semi-analytic if for each z € Z there exists a neighborhood W
such that W N Z can be represented as a finite union of solution sets of a finite
number of analytic equalities g;(x) = 0 and inequalities h;(z) > 0. A subset S

12



in M is called subanalytic if there are an analytic manifold /V, a semi-analytic
subset T of N and an analytic map ¢ : N — M that is proper on the closure of
T such that ¢(T) = S. A further generalization of this is given by the notion of
o-analytic sets: Recall that an embedded manifold NV of an analytic manifold
is a set with the property that around each point in NV there exists a coordinate
chart (¢, W) such that (W N N) = {(2i)ic1,.n €R" ; Typ1 = ... =2, =0}
for some 1 < ¢ < n. A c-analytic set is defined as an at most countable
union of embedded manifolds. (This extends the class of subanalytic sets as a
subanalytic set can always be decomposed into a locally finite countable union
of embedded submanifolds, see [12] Sections 8/9.) To summarize we have now
defined analytic, semi-analytic, subanalytic and o-analytic sets, where each
class is an extension of the previous one.

The dimension of a o-analytic set is defined as the maximal dimension of
one of its components. This definition is compatible with the definitions of
dimension of the other classes of analytic sets. Note in particular that it does
not depend on the particular countable decomposition of a o-analytic set. If
the dimension of a o-analytic set X is strictly less than the dimension of the
manifold M then a set Y with M \Y C X is called generic. The reason for
this terminology is that X has measure zero and is of first category, i.e. a
countable union of nowhere dense sets. The complement of a generic set will
be called analytically thin.

In the proofs we have used the following results on o-analytic sets and analytic
maps. For a proof we refer to [10] Proposition A.2.

Proposition 16 Assume that M, N and M;, i =1,...,k are analytic mani-
folds. Let f : M — N be an analytic mapping. Then:

(i) If Z is a o-analytic subset of M, then f(Z) is a o-analytic subset of N,
and dim f(Z) < dim Z.
(1) For all Z C M,
. . . 1
dim Z < d1mN—|—I;1€%< [dlmf (y)ﬂZ] :

(#i) If Z; is analytically thin in M;, fori=1,...,k then Z = Z; X ... X Z
15 analytically thin in My X ... X My and

=71 X...X 4, CM; xX...xX M,

satisfies dim Z = Y, dim Z;.
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