
1

A control design method for a class of SISO
switched linear systems

Kai Wulff † Fabian Wirth‡ Robert Shorten†

Abstract

We consider the control design for a class of single-input single-output (SISO) switched linear systems of
arbitrary order. Our approach is motivated by applicationsin which the major design objective is to achieve similar
behaviour of the closed-loop system in each system mode ensuring stability for arbitrary switching. We study the
stability of the resulting closed-loop system and exploit the algebraic properties of a class of matrices to derive
simple stability conditions for the switched system. Further we the implementation of the switched controller with
integrators is discussed and conditions are derived to avoid transient dynamics induced by the switching. We show
that closed-loop stability and transient-free switching can be achieved simultaneously.

I. I NTRODUCTION

In this paper we consider the control design for classes of switched linear systems. Such system are
characterised by dynamics that can be described by a combination of continuous differential equations
and some discontinuous switching mechanism that orchestrates between them. Dynamical systems of this
class can be found in various fields of engineering applications, such as aviation technology [1], [2],
power electronics [3], automotive engineering [4] or powergeneration [5]. While the stability analysis of
this system class has been subject of a great number of publications in the recent past (see [6], [7], [8]
and references therein) many problems in this area remain unsolved. In particular, given the frequency
with which one finds switched linear control systems in practice, one of the most pressing needs is for
the development of analytic tools for the design of such systems.

The system class considered in this article is characterised by a process that exhibits arbitrary switching
between its constituent linear system dynamics. However weshall assume that such mode switch is
immediately detected such that appropriate control actioncan be applied. We choose a controller structure
as depicted in Figure 1 where the controller for each mode is realised as a single LTI system. Such a
controller structure is referred to as local-state controller [9]. At any switching instant of the process,
the appropriate controller is deployed in the closed loop byswitching the process input to the respective
controller output. To aid analysis we make the assumption that there is no time-delay between the switching
of the process and switching of the controller output. Further we dispense with any controller state reset
as considered in [10], [11].

Our contribution in this paper is to develop tools for the design of classes of such systems where the
design objectives are similar for each process mode. The stability analysis of the resulting switched closed-
loop system stems from the ideas followed in [12], [13] and [14] where the same controller structure is
considered. The stability analysis in these contributionsis restricted to processes that can be described
by a set of scalar linear ordinary differential equations and allows for controllers of only first order.
In this contribution we extend the stability results to higher-order controllers and propose an extended
controller structure for controllers with pure integratoraction. This structure yields switched closed-loop
systems that can be analysed with the tools derived in this paper. Further we give conditions that guarantee
transient-free switching between the subsystems under certain conditions.

In the next section we give a precise problem statement followed by the introduction of the control
design method proposed and some preliminary results in Section III. In Section IV we analyse the stability
of the resulting closed-loop system. Our main results show that the complexity of the stability analysis
can be significantly reduced. Since we choose a local-state controller structure and do not allow for
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any controller state resets, the controllers for each mode are required to be stable LTI systems. Thus
such controller structure does not allow for controllers with integrators. In Section V we consider the
implementation of such controllers and show that a simple variation of the controller structure allows the
application of our stability results even when the controllers have integrators. In Section VI we address the
problem of transient motion that occurs when switching between the system modes. We obtain a simple
condition that guarantees transient-free switching, whenswitching in steady state, without the need of
any controller state reset. We finish with an illustrating example and a discussion of our results. Note that
parts of this paper have been presented at [15].
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Fig. 1. Structure of the considered switched linear control system

II. PROBLEM STATEMENT

The process dynamics are given by the linear time-varying scalar differential equation of the form

y(np) =

np−1
∑

l=0

ql(t)y
(l) + p0(t)u (1)

wherey(np) denotes thenp’th derivative of y(t) and p0(t), ql(t) are piecewise constant functions taking
on values in the finite setsp0(t) ∈ {p01, . . . , p0N}, andql(t) ∈ {ql1, . . . , qlN} ∀ l = 0, . . . , np − 1. Without
loss of generality, we assume that the discontinuities occur simultaneously such thatp0(t) = p0k whenever
ql(t) = qlk for all l = 0, . . . , np − 1 wherek ∈ I = {1, . . . , N} denotes the process mode.

Thus at any time instant the process dynamics in Figure 1 correspond to exactly one of theN linear
systems

ẋ(t) = Akx(t) + bku(t) (2a)

y(t) = cT x(t) (2b)
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where

Ak =















0 1 0 · · · 0
... 0 1

. . .
...

...
. .. . . . . . . 0

0 · · · · · · 0 1
−q0k −q1k · · · · · · −qn−1k















cT =
(

1 0 · · · 0
)

, bk =
(

0 · · · 0 p0k

)T
.

With each modek ∈ I we associate the proper transfer function

Pk(s) = cT (sI − Ak)
−1bk.

We shall assume that the mode-switches of the process are immediately detectable such that the switching
instances can be assumed to be known for the controller. Given these assumptions, our objective is to
design a controller such that the closed-loop system

• is asymptotically stable for arbitrary switching signals,
• has the polesΛt ⊂ C−, specified independently of the process modek ∈ I,
• and has little or no transients induced by the switching action.

III. PRELIMINARY DISCUSSION: BASIC IDEAS

In order to achieve the design objectives we associate an individual controller for each process mode
k ∈ I. We choose a controller architecture where each controlleris realised as an LTI system as depicted
in Figure 1.

The dynamics of the individual controllers are given by

ẋk(t) = Kkxk(t) + lke(t) (3a)

uk(t) = mT
k xk(t) + jke(t) (3b)

wherexk(t) ∈ R
nc is the state-vector of the controller associated with modek ∈ I; the inpute(t) ∈ R is

shared by all controllers and each controller has an individual control signaluk(t) ∈ R. For the realisation
of the controllers we choose the control canonical form as above with Kk ∈ R

nc×nc, lk,m
T
k ∈ R

nc and
jk ∈ R. The respective transfer functions are given by

Ck(s) = mT
k (sI − Kk)

−1lk.

As design-law for the controllers we choose a set of stable target-polesΛt and design the controllers
using standard pole-placement techniques such that the closed-loop system in each mode has the specified
target-polesΛt. Our results throughout this paper base on the following assumption.

Assumption 3.1 (Pole-placement):For each process modek ∈ I the controllerCk(s) is designed such
that the poles of the closed-loop transfer function

Ck(s)Pk(s)

1 + Ck(s)Pk(s)

are simple and lie in the open left half-plane and are constant for all k ∈ I. We denote the set of
those target poles byΛt = {λ1, . . . , λnp+nc

}. The resulting controllersCk(s) have poles in the open left
half-plain.

The statex of the switched closed-loop system consists of the process statesxp and the controller-states
xk

x =
(

xT
p xT

1 . . . xT
N

)T
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wherex ∈ R
n, n = np + Nnc. For the switched closed-loop system we obtain

ẋ(t) = H(t)x(t) , (4)

where H(·) is an arbitrary piecewise constant functionH : R → H = {H1, . . . , HN} ⊂ R
n×n. The

constituent system matrices in each modek ∈ I are given by

Hk =















Ak − bkjkck bkm
T
1 δk1 · · · bkm

T
NδkN

−l1c
T K1 0

...
. . .

−lNcT 0 KN















(5)

whereδkj denotes the Kronecker symbol.
Before we present the main results we note some preliminary observations. Given the process (2) and

controllers (3) in control canonical form, all closed-loopsystem matricesHk are identical except for the
np-th row, Furthermore as all but one of the sets of Kronecker symbols are equal to0, we have that
σ(Hk) ⊃ σ(Kl) for l 6= k. By design (Assumption 3.1) the remaining eigenvalues are given byΛt for all
k ∈ I. Thus the spectrum ofHk is given by

σ(Hk) = Λt ∪
⋃

l 6=k

σ(Kl) ,

accounting for multiplicities. Therefore the matricesHk have pairwisenp+(N−1)nc common eigenvalues.
A useful consequence of this approach is that the subspace corresponding to the target poles do not

depend onk given some mild conditions. This fact shall be useful in the following discussion and we
state it formally as the following lemma.

Lemma 3.1:Let λ ∈ Λt be a simple eigenvalue of eachHk, then there exists a vectorv 6= 0 such that
for all k ∈ I

Hkv = λv . (6)
Proof: As λ ∈ σ(Hk) we have that the rows̃hjk of λI − Hk are linearly dependent for eachk.

On the other hand, all the rows, but thenp’th are independent ofk. By inspection the set ofn − 1 rows
obtained by omitting thenp’th row is linearly independent, since by assumptionλ is not an eigenvalue
of one of the controllersKk, k ∈ I. Thus for eachk there are constantsγjk such that

h̃npk =
∑

j 6=np

γjkh̃jk . (7)

Now by definition an eigenvectorv of H1 corresponding to the eigenvalueλ satisfiesh̃j1v = 0, j =
1, . . . , n. This implies that̃hjkv = 0, j = 1, . . . , n, j 6= np for eachk ∈ I. This, however, implies by (7)
that alsoh̃npkv = 0, so that we have(λI − Hk)v = 0.

Hence, if the eigenvaluesλ ∈ Λt are simple, all closed-loop system matricesHk have np + nc

eigenvectors in common. This fact can be exploited to derivesimple conditions for stability as we shall
discuss in the following section.

IV. STABILITY

Assume that we are givenN matrices of the form (5) and that the poles of the individual systems have
been placed so that Lemma 3.1 is applicable.

Let the columns ofVt ∈ C
n×(np+nc) form a basis of the common subspace of all matricesHk ∈ H and

consider the matrix

T :=
(

Vt enp+nc+1 · · · en

)

. (8)
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Note thatT is invertible as the vectorse(np+nc+1), . . . , en form a basis of an invariant subspace ofH1,
which does not intersectspan Vt asΛt ∩ σ

(

Kk

)

= ∅ ∀ k ∈ I.
Applying the similarity transformationT we obtain

T−1H1T = diag (Dt, K2, . . . , KN) ,

T−1H2T = diag (Dt, K2, . . . , KN) + T−1enh̃
T
2 T ,

up to
T−1HNT = diag (Dt, K2, . . . , KN) + T−1enh̃

T
NT ,

whereσ(Dt) = Λt andh̃k := hknp
−h1np

denotes the differences between thenp’th rows of Hk andH1. As
implied by our construction the differences between the matrices are all multiples of the same columns.
Furthermore inspection of thenp’th rows of the matricesHk shows that̃hk can only have nonzero entries
in its first np + nc positions and in the positionsnp + (k − 1)nc + 1, . . . , np + knc. Hence, in the lower
block corresponding to the controllers only the controllerKk is perturbed. So that fork = 2, . . . , N the
matrices after similarity transformation are of the form

T−1HkT =

















Dt 0 . . . U1k 0
0 K2 0 U2k 0
...

. ..
...

...
Kk + Ukk

0
UNk KN

















(9)

whereUk =
(

UT
1k UT

2k . . . UT
Nk

)T
∈ R

n×nc denotes the perturbation term of thek’th system. Since
rank{Hj − Hk} = 1 for all j 6= k and j, k ∈ I the perturbation termUk has rank1. We denote

R1 := diag (K2, . . . , KN) ,

and fork = 2, . . . , N the lower right(N − 1)nc × (N − 1)nc-block of T−1HkT by

Rk :=















K2 0 U2k 0
. . .

...
...

Kk + Ukk

. . .
. . . 0

0 UNk KN















.

It follows that the closed-loop system is exponentially stable if and only if the switched system formed
by the matricesRk, k ∈ I is exponentially stable.

Theorem 4.1:Consider the switched process (2) and let Assumption 3.1 be satisfied. Then the following
statements are equivalent:

1) The switched linear system (4) withH(t) ∈ H is exponentially stable.
2) The switched linear systeṁx = R(t)x with R : R → {R1, . . . , RN} is exponentially stable.

Proof: The transformed system matricesT−1HkT in (9) are in block triangular form with homoge-
neous dimensions for allk ∈ I. It is well know that switched systems of this structure are exponentially
stable if and only if the switched systems formed from the diagonal blocks are stable. SinceDt is a Hurwitz
matrix by Assumption 3.1, the switched system with system matrices (9),k ∈ I is exponentially stable
if and only if the switched system{R1, . . . , RN} is exponentially stable. By congruence the switched
system{H1, . . . , HN} is exponentially stable.

In view of quadratic stability we can render our statement more precisely. LetV (x) = xT Px, P =
P T > 0, thenV is called a common quadratic Lyapunov function (CQLF) for theswitched system (4) if
P satisfied the Lyapunov inequality simultaneously for all constituent system matrices inH.
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Theorem 4.2:Consider the switched process (2) and let Assumption 3.1 be satisfied. Then the following
statements are equivalent:

1) The switched linear system (4) withH(t) ∈ H has a common quadratic Lyapunov function.
2) The switched linear systeṁx = R(t)x with R : R → {R1, . . . , RN} has a common quadratic

Lyapunov function.
Proof: Let V (x) = xT P1x be a quadratic Lyapunov function forDt and V (x) = xT P2x be a

common Lyapunov function for{R1, . . . , RN}. Then for suitableγ > 0 the symmetric matrixP =
diag (P1, γP2) defines a common quadratic Lyapunov function for{T−1H1T, . . . , T−1HNT}. Thus a
CQLF for {H1, . . . , HN} exists as well by congruence. Conversely, if a CQLF exists for{H1, . . . , HN}
and so also for{T−1H1T, . . . , T−1HNT}, then by applying a scaling argument it is easy to see that
{R1, . . . , RN} have a CQLF. This completes the proof.

The above theorems reduces the stability analysis of the switched system of dimensionnp +Nnc to the
stability of a system of dimension(N − 1)nc. In the following we consider two special cases and show
that Theorem 4.1 can be used to obtain very elegant stabilityconditions.

A. N first order controllers

We begin our analysis with the case where the controllersCk are of first order. Thus for Assumption
3.1 to hold, the process dynamics have to be of order strictlyless than three. We now employ Theorem
3.1 in [12]. Essentially, the theorem establishes asymptotic stability of the class of switched systems (4)
with the following properties:

• every matrix inH is Hurwitz and diagonalisable;
• the eigenvectors of any matrix inH are real;
• every pair of matrices inH share at leastn − 1 linearly independent common eigenvectors.
Let the target polesΛt be distinct and real. With the assumption that the pole-placement is feasible

for all modesk ∈ I, the resulting closed-loop system matricesHk have pairwisen − 1 real distinct
eigenvalues. By Lemma 3.1 the matricesHk, k ∈ I, havenp + 1 common eigenvectors. Moreover, since
each pair of closed-loop system matricesHk shareN − 2 of the remaining inactive controllers they have
pairwisen − 1 common eigenvectors.

Thus the requirements for Theorem 3.1 in [12] are met and the closed-loop system is exponentially
stable for arbitrary switching sequences. In other words, the switched system (4) is stable for arbitrary
switching if we choose arbitrary real negative target-poles Λt such that the design-law in Assumption 3.1
is satisfied by first-order controllers [13].

Theorem 4.1 can be used to extend this result for systems withnon-real target polesΛt. Choosing a
modal-basis forVt in (8) we obtain a transformation matrixT with real entries. It follows that the system
matricesRk of the reduced system are inRN−1×N−1. Further,σ(Rk) = ∪l 6=kσ(Kl). Since the controllers
are of first order, it follows that the matricesRk also satisfy the requirement of Theorem 3.1 in [12].

Corollary 4.1: The switched system (4) with system matrices (5) where Assumption 3.1 is satisfied
usingN stable first-order controllers is asymptotically stable.

B. Two subsystems of arbitrary order

Consider now the special case whereN = 2 and the controllers are of arbitrary ordernc. Due to the
pole-placement requirement (Assumption 3.1) we obtain forthe respective spectra

σ
(

H1

)

= Λt ∪ σ
(

K2

)

σ
(

H2

)

= Λt ∪ σ
(

K1

)

.
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Applying the similarity transformationT of (8) to our two system matrices we obtain

T−1H1T =

(

Dt 0
0 K2

)

(10a)

T−1H2T =

(

Dt 0
0 K2

)

+

(

0 U1

0 U2

)

(10b)

where
(

UT
1 UT

2

)T
∈ R

2nc×nc andσ
(

Dt

)

= Λt. Note thatrank{U2} = 1 as we haverank
{

H1−H2

}

= 1.
Further it follows from the spectrum ofH2 that σ

(

K2 + U2

)

= σ
(

K1

)

.
The following theorem reduces the stability problem of the switched system defined by{H1, H2} to a

stability problem only involving the controllers.
Theorem 4.3:Consider the matricesH1, H2 in (5) and let Assumption 3.1 be satisfied such that

σ
(

Hk

)

= Λt ∪ σ(Kl) for k, l = 1, 2, k 6= l. Assume furthermore thatΛt ∩ σ
(

Kk

)

= ∅, k = 1, 2.
Then the following statements are equivalent:

1) The switched system given by the set of matrices{H1, H2} is asymptotically stable for arbitrary
switching signals;

2) The switched system given by the set of matrices{K2, K2+U2} is asymptotically stable for arbitrary
switching signals;

3) The switched system given by the set of matrices{K1, K2} is asymptotically stable for arbitrary
switching signals.

Proof: The equivalence of (i) and (ii) can be seen as follows. Firstly, the matrices in (5) and (10) are
obtained from one another by simultaneous similarity. Thusthe set{H1, H2} defines an asymptotically
stable switched system if and only if{T−1

1 H1T1, T−1
1 H2T1} does. On the other handσ(Dt) = Λt ⊂ C−,

so that the exponential stability of{T−1
1 H1T1, T

−1
1 H2T1} is equivalent to that of the lower diagonal block

{K2, K2 + U2}.
The equivalence (ii)⇔ (iii) follows if we find a similarity transformation that transformsK2 andK2+U2

into K2 andK1 respectively. Note first, that sincerank{H2−H1} = 1, the perturbation(UT
1 , UT

2 )T is also
of rank one. Further, the blockK2 + U2 is similar toK1 since the eigenvalues inΛt in H2 are generated
by the closed loop system ofA2 andK2.

Consider now the matricesKT
2 andKT

2 + UT
2 and define

xm :=
(

KT
2

)m
x =

(

KT
2 + UT

2

)m
x , m = 0, . . . , nc − 1 (11)

for somex ∈ R
nc . If we can find a vectorx such that the sequencexm,m = 0, . . . , nc − 1 is well-defined

and linearly independent, then the similarity transformation

S =
(

x0 · · · xnc−1

)

yields
S−1KT

2 S = KT
2 , andS−1(KT

2 + UT
2 )S = KT

1 .

This assertion follows since the assumption (11) guarantees that both matrices are brought simultaneously
in transposed companion form (sometimes also known as second companion form) and because the
companion form ofK2 + U2 is K1 by similarity. By taking transposes of the previous equations we have
found the desired transformation that concludes the proof in case that (11) holds.

Consider the sequence of conditions in (11):

KT
2 x =

(

KT
2 + UT

2

)

x , (m = 1)
(

KT
2

)2
x =

(

(

KT
2

)2
+ KT

2 UT
2 + UT

2 KT
2 +

(

UT
2

)2
)

x , (m = 2)

... =
...
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By induction these conditions require that

UT
2

(

KT
2

)m
x = 0 , for m = 0, . . . , nc − 2 .

Consider now the intersection of the kernels ofUT
2

(

KT
2

)m
for m = 0, . . . , nc − 2

V :=
nc−2
⋂

m=0

ker UT
2

(

KT
2

)m
.

As rank
{

UT
2

}

= 1, the kernel ofUT
2

(

KT
2

)m
has dimensionnc − 1 for m = 0, . . . , nc − 2 and so

by dimensionality reasons we find thatdim V ≥ 1. Choose anx ∈ V , x 6= 0. If the set of vectors
{xm,m = 0, . . . , nc − 1} is linearly independent, then (11) holds and we are done. If this is not the case
this means that the lower-dimensional subspace

W := span
{

xm | m = 0, . . . , nc − 1
}

is KT
2 -invariant and by definition is contained in the kernel ofUT

2 . Hence on this lower dimensional
subspaceKT

2 is not perturbed byUT
2 . We may then repeat the argument on the restriction ofKT

2 to an
invariant subspace complementary toW . This procedure can be iterated until (11) holds on one any ofthese
lower dimensional complementary subspaces. For reasons ofdimensionality this procedure terminates and
the assertion follows.

Comment: Theorem 4.3 reduces the complexity of the stability analysis of the switched system
considerably. To guarantee asymptotic stability of the switched system (4) withN = 2 we only need
to consider the asymptotic stability of the switched systemgiven by

ẋ = K(t)x, K(t) ∈ {K1, . . . , KN} ⊂ R
nc×nc (12)

for arbitrary switching signals. Thus, the stability problem of the switched system (4) of ordernp + 2nc

is reduced to the stability problem of a switched system of order nc.
Comment: It should be emphasised that the proof of Theorem 4.3 relies on the fact that the controller-

matrices are in companion form. At this point it is not clear what role the specific realisation chosen for
the controllers plays for the result. However, it is obviousthat the equivalence(ii) ⇔ (iii) can only be
true whenrank{K1 − K2} = rank{U2} = 1.

Comment: The equivalence of the asymptotic stability of the system (4) and (12) is less obvious than
intuition might suggest. As we shall see in the next section,the result does not generalise for systems
with more than two subsystems. In this context it is worth noting that the switched system (12) is not
explicitly part of the closed-loop system (4). For the switched system (12) the controller dynamicsKk act
on the same state-space; however the controllers in the closed-loop system (4) are realised as individual
LTI systems and therefore do not share the states.

Note, that the transformed system matrices (10) are in blockdiagonal form. Applying Theorem 4.2 we
also find an extension of Theorem 4.3 on common quadratic Lyapunov functions.

Corollary 4.2: Consider the matricesH1, H2 in (5) and let Assumption 3.1 be satisfied such that
σ
(

Hk

)

= Λt ∪ σ(Kl) for k, l = 1, 2, k 6= l. Assume furthermore thatΛt ∩ σ
(

Kk

)

= ∅, k = 1, 2.
Then there exists a common quadratic Lyapunov function for the switched system given by the set of
matrices{H1, H2} if and only if the switched system given by the set of matrices{K1, K2} has a common
quadratic Lyapunov function.

C. The case ofN = 3

The above findings suggest that the switched closed-loop system (4) is stable if and only if the switched
system (12) consisting of the controllers form a stable system. Unfortunately that is not true as the
following example shows.
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Example 4.1:Consider the switched process (2) withN = 3, where

A1 =

(

0 1
−11.84 −2.4

)

, A2 =

(

0 1
−34.28 −11.6

)

, A3 =

(

0 1
−29.7 −11

)

,

and bk =
(

0 1
)T

, cT
k =

(

1 0
)

for k = 1, 2, 3, and let the requested target-poles be given byΛt =
{−1 ± 3i,−1.8,−8}.

It can be verified that the pole-placement requirement is satisfied by the following set of controllers
(3) with

K1 =

(

0 1
−9.6 −9.4

)

, K2 =

(

0 1
−7.4 −0.2

)

, K3 =

(

0 1
−5.5 −0.8

)

,

andmT
1 =

(

30.34 − 7.536
)

, mT
2 =

(

− 109.7 34.1
)

, mT
3 =

(

− 19.35 42.54
)

, and lk =
(

0 1
)T

, jk = 0
for k = 1, 2, 3.

It can be numerically verified thatV (x) = xT Px with

P =

(

3.0745 0.0671
0.0671 0.4356

)

is a common quadratic Lyapunov function for the switched system (12) withK(t) ∈ {K1, K2, K3}. Hence,
the switched system (12) consisting of the controllers is asymptotically stable for arbitrary switching.

However we can find a switching sequence for which the closed-loop switched system (4) is un-
stable. Consider the periodic switching signal associated with the monodromy matrixΦ(t + T, t) =
eH3T3eH2T2eH1T1 where T = T1 + T2 + T3 and T1 = 0.72, T2 = 0.32, T3 = 0.22. The spectral radius
̺ (Φ(T, 0)) = 1.024 > 1. Hence, there exists a periodic switching sequence for which the closed-loop sy-
stem is unstable [16].

The above example shows that Theorem 4.3 and Corollary 4.2 cannot be generalised for systems with
an arbitrary number of subsystems since we have found a CQLF for the controllers and cannot conclude
stability, let alone the existence of a CQLF. Thus we have to resort to Theorem 4.1 for the analysis of
switched systems (5) withN ≥ 3.

V. CONTROLLERS WITH INTEGRATORS

Many control problems require the use of controllers with integrators to meet the design specifications.
A straight forward implementation of controllers with integrators using the controller architecture proposed
in this paper will lead to closed-loop system matrices (5) with eigenvalues at zero. These eigenvalues are
inherited by the zero-poles of the controllers that are not active in the loop. However, the stability results
derived in the previous sections require that the constituent closed-loop systemṡx = Hkx, k ∈ I are
stable LTI systems and thus we cannot apply the stability results when the controllers have integrators. In
this section we show that this problem can be resolved by choosing a variation of the local-state controller
architecture such that the stability results derived earlier in this paper can be applied.

In the following we shall assume that the controllers have the same number of integrators for each
modek ∈ I. Then we can choose a controller-architecture such that these integrators are shared by the
controllers and therefore are always active in the closed loop. For this purpose we choose a controller
architecture with a joint integrator in front of the controller bank as shown in Figure 2 such that the local
controllersCk(s) have no pure integrator.

Choosing the state-vector of the closed-loop system asx =
(

xT
p vT xT

1 · · · xT
N

)T
yields the system

matrices

Hk =













Ak bkjk b1m
T
1 δk1 · · · bNmT

NδkN

−cT 0 0 · · · 0
0 l1 K1 0 0
...

... 0
.. .

0 lN 0 KN












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Fig. 2. Controller architecture with joint integrator.

for all k ∈ I.
Positioning the joint integrator in front of the controllerbank preserves the property of the system

matricesrank{Hk − Hl} = 1 for k 6= l ∀ k, l ∈ I, since the matricesHk again only differ in thenp’th
row. Since the integrator is constantly active in the closedloop the eigenvalues ofHk ∀ k ∈ I lie in the
open left half-plane if Assumption 3.1 is satisfied. Hence, the results of the previous section are applicable
to controllers with integrators when choosing a controllerarchitecture with a joint integrator in front of
the controller bank.

VI. T RANSIENT-FREE SWITCHING

The switched control scheme can induce undesirable transient dynamics. In this section we show that
these transients can be avoided using the local-state controller architecture described above. In particular
we shall consider transient dynamics that occur due to switching when the subsystems have reached
steady-state. To analyse the transient dynamics of the switched system we introduce the input-output
description of the switched closed-loop system. For each mode k ∈ I the dynamics are given by:

ẋ(t) = Hkx(t) + Fkr(t) (13)

y(t) = Gx(t) (14)

whereFk ∈ R
n×1 is some pre-filter gain andG ∈ R

1×n is the constant output matrix for all modes.
The following example motivates the closer investigation of the transient dynamics of switched systems.
Example 6.1:Consider the process (1) with switched linear dynamics and two modes. The dynamics

of the constituent modes are described by the transfer functions

P1(s) =
1

s + 14
, P2(s) =

1

s + 3
.

We choose first-order controllers for the control of this process. The closed-loop poles are given by
Λt =

{

− 2,−20
}

. The controllers with transfer functions

C1(s) =
−72

s + 8
, C2(s) =

s − 14

s + 18



11

satisfy this pole assignment and Assumption 3.1. For compensation of the static steady-state error we use
the pre-filter gainsF1 = −0.5556 andF2 = −2.3529.

The resulting closed-loop system dynamics are identical for each mode and given by the transfer function

Tk(s) =
Ck(s)Pk(s)

1 + Ck(s)Pk(s)
=

40

s2 + 22s + 40
, k ∈ {1, 2}.

Since we apply first-order controllers the autonomous switched closed-loop system is asymptotically
stable for arbitrary switching signals (Corollary 4.1) and thus the switched input-output system (13)-(14)
is bounded-input bounded-output stable [16].

Figure 3a shows a step response of the closed-loop system. Here a switching signalσ(t) is cho-
sen that changes the mode every 10 time-units. At every switching instant we can observe a signi-
ficant transient response before the output reaches its reference value again. Note that the switching

0 5 10 15 20 25 30 35 40 45 50
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time

y

(a)

0 5 10 15 20 25 30 35 40 45 50
−0.45

−0.4

−0.35

−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

time

x i

(b)

Fig. 3. Step-response of the closed-loop system in Example 6.1 with the switching instances10, 20, 30, . . .. Part (a) shows the evolution
of the outputy(t), Part (b) shows the two controller-statesx1(t) andx2(t).

is slow enough to allow the system to reach practically steady-state between two consecutive swit-
ching instances, i.e. the observed transient-peaks are notdue to unsettled control signals or states.

�

Loosely speaking, these transients occur due to state-transitions after the switch until the system reaches
steady-state again. However, if we design the switched system such that the steady-state is equal for all
modes, these transients are avoided.

Theorem 6.1:The switched input-output system (13)-(14) has no transient responses when switching
at steady-state, if and only if

H−1
i Fi = H−1

j Fj, ∀ i, j ∈ I .
Proof: Let tik be the switching instant in which the system switches from mode i to modej and

let limt→tik
x(t) = x̂(i) = −H−1

i Fir where x̂(i) denotes the steady-state of the LTI system in modei for
the constant inputr. During the intervaltik ≤ t < tik+1

the dynamics of the switched system are given
by

(

Hj, Fj, C̄j

)

. Hence,

ẋ(tik) = Hjx̂
(i) + Fjr

= −HjH
−1
i Fir + Fjr .

The switched system shows no transient response if and only if ẋ(tik) = 0. Thus

0 = −HjH
−1
i Fir + Fjr

H−1
i Fir = H−1

j Fjr
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Sincer is a constant scalar, the proof is complete.
The above theorem is a necessary and sufficient condition forthe transient-free switching at steady state.

This condition can be easily translated into a transfer function condition for the control design. Loosely
speaking, these transients occur due to the controller state-transition after the switch. While controller
Ck(s) is active in the loop the control-outputul of Cl(s) evolves according to

Ul(s) =
Cl(s)

1 + Ck(s)Pk(s)
R(s).

Assume now that switching only occurs when the closed-loop system reached (practically) steady-state, i.e.
ẋ ≈ 0. Since we consider systems in control-canonical form, the condition of Theorem 6.1 is equivalent
to demanding that the controller-outputsul at steady-state is constant for each modek ∈ I. Thus we
require that for each model ∈ I there exists aγl ∈ R such that

lim
s→0

Cl(s)

1 + Ck(s)Pk(s)
= γl ∀ k ∈ I. (15)

Comment: In case the process dynamics have integral action for each mode condition (15) is always
satisfied. When the open-loop system does not contain an integrator and also for the case where all
integrators belong to the controllers, the transient-freecondition reduces to:

KCk
KPk

= γ ∀ k ∈ I ,

whereKCk
, KPk

are the steady-state gains of the controller and process in modek, respectively. A more
detailed discussion of these cases can be found in [17].

Comment: Condition (15) is formulated in the frequency-domain such that it can be easily incorporated
into the control-design procedure (Assumption 3.1). In fact, by adding one extra degree of freedom we
can achieve both, stability of the switched system and transient-free switching when the system is in
steady-state.

VII. SUMMARISING EXAMPLE

The following example illustrates the results in this paper. We consider a switched process with two mo-
des and demonstrate that the proposed design procedure yields a closed-loop switched system that is stable
for arbitrary switching. Moreover, we choose controllers with integrators using the controller architecture
described in Section V and demonstrate that transient-freeswitching can be achieved simultaneously.

Example 7.1:Given the process (2) with transfer functions

P1(s) =
2

s + 9
, P2(s) =

1

s + 8

and let the target poles beΛt = {−0.5± i,−10}. We shall require a controller with integrator. Using the
standard pole-placing method yields the two controllers

C1(s) =
−12.75s + 12.5

s(s + 8)
, C2(s) =

−3.38s + 6.25

s(s + 2)
.

If we implement the controller using a joint integrator in front of the controller bank, we obtain for the
controller matricesK1 = −8 andK2 = −2. SinceK1, K2 are scalar Corollary 4.1 guarantees exponential
stability of the closed-loop system for arbitrary switching.

Consider now the transient performance of the switched system. For a unit step the closed-loop system
reaches the steady-statex̂1 =

(

1 1.4 0.7 0.18
)T

in mode 1 and̂x2 =
(

1 1.92 0.96 0.24
)T

in mode 2.
Thus the condition in Theorem 6.1 is not satisfied and we expect to see transient dynamics at the switching
instances. Figure 4a shows the step-response of the switched closed-loop system when the process mode
switches every 20 time-units. Even though the system reaches steady-state in every switching interval, we
can observe considerable transients at the switching instances.
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Fig. 4. (a) stable switched system with transients, (b) stable switched systemwithout transients using condition (15); the lower line indicates
the scaled switching signal, respectively.

In order to meet the additional condition (15) for transient-free switching we need a controller with an
extra degree of freedom. As additional target-pole we choose λt = −20. Using pole-placement we obtain
the controller transfer functions

C1(s) =
2.7s2 − 6.25s + 125

s3 + 22s2 + 27.78s
, C2(s) =

63.9s2 − 12.5s + 250

s3 + 28s2 + 83.33s
.

Choosing again a controller structure with joint integrator, we can realise the controllers using

K1 =

(

0 1
−27.78 −22

)

,m1 =

(

49.00
−66.44

)

, K2 =

(

0 1
−83.33 −28

)

,m1 =

(

−5076.39
−1802.17

)

(16)

and l1 = l2 = (1 0)T .
Since the switched system has two modes and the Assumption 3.1 is satisfied we can analyse the stability

of the close-loop switched system by only considering the matricesK1 andK2, Theorem 4.3. Both matrices
K1, K2 are in companion form and the productK1K2 has the positive eigenvaluesλ1 = 4.6, λ2 = 500.3.
Thus by Theorem 3.1 in [18] a CQLF exists for (12). It follows byTheorem 4.3 that the closed-loop system
(5) is exponentially stable for arbitrary switching and there exists a CQLF for{H1, H2} by Corollary 4.2.
Explicit numerical expressions for the closed-loop systemmatrices and the respective Lyapunov functions
are given in the Appendix.

The steady-state of the close-loop system is constantx̂k =
(

1 1 0.036 0 0.012 0
)T

for all k ∈ I.
Thus the condition of Theorem 6.1 is satisfied and we expect tosee no transient dynamics when switching
in steady-state. Indeed the simulation of the step-response of the closed-loop system shows no transients
at the switching instances (Figure 4b).
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VIII. C ONCLUSIONS AND DISCUSSION

In this paper we considered a typical control problem for switched linear systems. It is shown that
the stability analysis can be considerably simplified by using the proposed design-law and the local-state
controller architecture. Further, for systems with first-order controllers we have shown that stability for
arbitrary switching is always guaranteed. In the case that the switched system has only two modes, the
stability of the switched closed-loop system is equivalentto the stability of the switched system defined by
the controller-matrices. Thus the stability analysis degenerates from a switched system of ordernp + 2nc

to that of a switched system of ordernc.
Furthermore, we have shown that transients at the switchinginstances can be avoided when satisfying

condition (15). By adding an extra degree of freedom both stability of the closed-loop system and transient-
free switching at steady-state can be achieved.

The stability analysis in this paper depends fundamentallyon the assumption that the poles of the
closed-loop transfer function are invariant while switching. This requires that the respective controller
outputs are instantaneously activated whenever the process mode changes. From a practical point of view
this is an unrealistic assumption. In most applications there will be a certain time-delay between the
mode-switch of the process and the switching of the control signal. The impact of such delays on the
stability of the closed-loop system are an important problem and are subject of future research.

An open question is also how the realisations of the transferfunctions effect the results in this
paper (c.f. [10]). Throughout this paper we assume that the individual controllers are realised in control
canonical form. While this is a realistic approach a different choice of the realisation might provide better
performance or stability properties. Since we can choose the controller realisations independently of each
other, it might be possible to find conditions on the realisations that simplify the stability analysis.
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APPENDIX

The closed-loop system matrices of the switched system in Example 7.1 with the controller realisations
(16) are given by

H1 =















−9 5.5 98.0 −132.9 0 0

−1 0 0 0 0 0

0 0 0 1 0 0

0 1 −27.8 −22 0 0

0 0 0 0 0 1

0 1 0 0 −83.3 −28















, H2 =















−3 63.9 0 0 −5076.4 −1802.2

−1 0 0 0 0 0

0 0 0 1 0 0

0 1 −27.8 −22 0 0

0 0 0 0 0 1

0 1 0 0 −83.3 −28















.

Indeed it can be verified thatV (x) = xT PKx with

Pk =

(

0.9492 0.0113
0.0113 0.0163

)

is a CQLF for the switched system (12) andV (x) = xT PHx with

PH =















0.0006 0.0007 −0.0279 −0.0027 −0.0067 −0.0129

0.0007 0.0132 −0.0228 −0.0688 −0.9193 −0.0543

−0.0279 −0.0228 13.3803 1.9447 −29.3872 0.9925

−0.0027 −0.0688 1.9447 1.5944 −0.1306 −0.2960

−0.0067 −0.9193 −29.3872 −0.1306 149.6891 3.0613

−0.0129 −0.0543 0.9925 −0.2960 3.0613 3.0188















is a CQLF for the closed-loop switched system (5).


