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A control design method for a class of SISO
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Abstract

We consider the control design for a class of single-inpaglstoutput (SISO) switched linear systems of
arbitrary order. Our approach is motivated by applicationahich the major design objective is to achieve similar
behaviour of the closed-loop system in each system modeiegsstability for arbitrary switching. We study the
stability of the resulting closed-loop system and explb# tlgebraic properties of a class of matrices to derive
simple stability conditions for the switched system. Ferttve the implementation of the switched controller with
integrators is discussed and conditions are derived talavansient dynamics induced by the switching. We show
that closed-loop stability and transient-free switchimag de achieved simultaneously.

. INTRODUCTION

In this paper we consider the control design for classes dfcked linear systems. Such system are
characterised by dynamics that can be described by a cotidminaf continuous differential equations
and some discontinuous switching mechanism that orchestbetween them. Dynamical systems of this
class can be found in various fields of engineering appbaati such as aviation technology [1], [2],
power electronics [3], automotive engineering [4] or poweneration [5]. While the stability analysis of
this system class has been subject of a great number of ptibhis in the recent past (see [6], [7], [8]
and references therein) many problems in this area remaolwed. In particular, given the frequency
with which one finds switched linear control systems in pcactone of the most pressing needs is for
the development of analytic tools for the design of suchesyst

The system class considered in this article is charactehigea process that exhibits arbitrary switching
between its constituent linear system dynamics. Howevershadl assume that such mode switch is
immediately detected such that appropriate control actanbe applied. We choose a controller structure
as depicted in Figure 1 where the controller for each modeatised as a single LTI system. Such a
controller structure is referred to as local-state cotérd9]. At any switching instant of the process,
the appropriate controller is deployed in the closed loosWwitching the process input to the respective
controller output. To aid analysis we make the assumptianttrere is no time-delay between the switching
of the process and switching of the controller output. Ferrtive dispense with any controller state reset
as considered in [10], [11].

Our contribution in this paper is to develop tools for theigesf classes of such systems where the
design objectives are similar for each process mode. Thdigtanalysis of the resulting switched closed-
loop system stems from the ideas followed in [12], [13] and] [¥here the same controller structure is
considered. The stability analysis in these contributimnsestricted to processes that can be described
by a set of scalar linear ordinary differential equationsl aflows for controllers of only first order.
In this contribution we extend the stability results to heglorder controllers and propose an extended
controller structure for controllers with pure integratartion. This structure yields switched closed-loop
systems that can be analysed with the tools derived in tlpsrmp&urther we give conditions that guarantee
transient-free switching between the subsystems und&iceronditions.

In the next section we give a precise problem statementwelibby the introduction of the control
design method proposed and some preliminary results indddtt In Section IV we analyse the stability
of the resulting closed-loop system. Our main results shHwat the complexity of the stability analysis
can be significantly reduced. Since we choose a local-staératler structure and do not allow for
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any controller state resets, the controllers for each modereguired to be stable LTI systems. Thus
such controller structure does not allow for controllergshwintegrators. In Section V we consider the
implementation of such controllers and show that a simptetian of the controller structure allows the
application of our stability results even when the conén@lhave integrators. In Section VI we address the
problem of transient motion that occurs when switching leetvthe system modes. We obtain a simple
condition that guarantees transient-free switching, wiwiiching in steady state, without the need of
any controller state reset. We finish with an illustratingmple and a discussion of our results. Note that
parts of this paper have been presented at [15].
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Fig. 1. Structure of the considered switched linear control system

I[Il. PROBLEM STATEMENT
The process dynamics are given by the linear time-varyimdasdifferential equation of the form

np—1

y™ = aty" + po(t)u 1)

=0

wherey(™») denotes the,’'th derivative of y(t) andpy(t), ¢,(t) are piecewise constant functions taking
on values in the finite sets(t) € {po1,-..,pon}, andq(t) € {qu,....an} V1=0,...,n,— 1. Without
loss of generality, we assume that the discontinuities iosicnultaneously such that () = po, whenever
q(t)=qy foralll=0,...,n,— 1 wherek € Z ={1,..., N} denotes the process mode.

Thus at any time instant the process dynamics in Figure lespond to exactly one of th& linear
systems

o(t) = Apx(t) + byu(l) (2a)
y(t) = cla(t) (2b)



where

0 1 0 0
0 1
Ak_ : .. . . 0
0 B () 1
—qok —qik 0 —Qn-1k
T=(10 - 0), bp=(0 - 0 py )"

With each mode: € 7 we associate the proper transfer function
Pk<8) = CT(SI — Ak)_lbk.

We shall assume that the mode-switches of the process aredrataly detectable such that the switching
instances can be assumed to be known for the controller.nGlvese assumptions, our objective is to
design a controller such that the closed-loop system

« is asymptotically stable for arbitrary switching signals,
. has the poles\; C C_, specified independently of the process made Z,
. and has little or no transients induced by the switchingoacti

[11. PRELIMINARY DISCUSSION: BASIC IDEAS

In order to achieve the design objectives we associate avidndl controller for each process mode
k € Z. We choose a controller architecture where each contrslieralised as an LTI system as depicted
in Figure 1.

The dynamics of the individual controllers are given by

Zi?k(t) = kak(t)—i—lke(t) (33.)
ug(t) = myag(t) + je(t) (3b)

wherex(t) € R is the state-vector of the controller associated with mbdeZ; the inpute(t) € R is
shared by all controllers and each controller has an indalidontrol signak:(t) € R. For the realisation
of the controllers we choose the control canonical form asvalwith K;, € R"*", [, m} € R" and
Jjx € R. The respective transfer functions are given by

Ce(s) = mi (sl — Ki) .

As design-law for the controllers we choose a set of stabitpetgpolesA; and design the controllers
using standard pole-placement techniques such that teedzloop system in each mode has the specified
target-poles\;. Our results throughout this paper base on the followingimagsion.

Assumption 3.1 (Pole-placementjor each process modec 7 the controllerCy(s) is designed such
that the poles of the closed-loop transfer function

Ci(s)Pi(s)
1 + Ck(S)Pk(S)
are simple and lie in the open left half-plane and are cohdtamall £ € Z. We denote the set of
those target poles by, = {\i,..., A\, }. The resulting controllerg’,(s) have poles in the open left
half-plain.

The stater of the switched closed-loop system consists of the prodaessss, and the controller-states
Tp




wherex € R", n = n, + Nn,. For the switched closed-loop system we obtain
(t) = H(t)z(t), (4)

where H(-) is an arbitrary piecewise constant functiéh : R — H = {H,,...,Hy} C R™". The
constituent system matrices in each madde Z are given by

Ap = bpjrer bmiop -+ bemi iy
T
—lNCT 0 KN

whered;; denotes the Kronecker symbol.

Before we present the main results we note some preliminasgraations. Given the process (2) and
controllers (3) in control canonical form, all closed-lospstem matrices/,, are identical except for the
n,-th row, Furthermore as all but one of the sets of Kronecken®ys are equal t®, we have that
o(Hg) D o(K;) for | # k. By design (Assumption 3.1) the remaining eigenvalues arengby A, for all
k € Z. Thus the spectrum aoff; is given by

o(Hy) =AU o(K),
I#k

accounting for multiplicities. Therefore the matricEs have pairwiser,+ (N —1)n, common eigenvalues.
A useful consequence of this approach is that the subspacesponding to the target poles do not
depend onk given some mild conditions. This fact shall be useful in tb#ofving discussion and we
state it formally as the following lemma.
Lemma 3.1:Let A\ € A; be a simple eigenvalue of each,, then there exists a vector# 0 such that
forall ke Z
Hyv =M. (6)
Proof: As A\ € o(H,) we have that the rows,, of \I — H;, are linearly dependent for each
On the other hand, all the rows, but thg'th are independent of. By inspection the set of — 1 rows
obtained by omitting the:,’th row is linearly independent, since by assumptibims not an eigenvalue
of one of the controllerd<,, k € Z. Thus for eacht there are constantg;, such that

Bnpk: = Z 'ijiljk‘- (7)

J#np

Now by definition an eigenvectar of H, corresponding to the eigenvaldesatisfiesﬁjlv =0,7 =
1,...,n. This implies thathj;v = 0,j = 1,...,n,j # n, for eachk € Z. This, however, implies by (7)
that alsoh,, v = 0, so that we have\l — H;)v = 0. [ ]

Hence, if the eigenvalues € A, are simple, all closed-loop system matrices have n, + n.
eigenvectors in common. This fact can be exploited to desimgple conditions for stability as we shall
discuss in the following section.

IV. STABILITY

Assume that we are giveN matrices of the form (5) and that the poles of the individyeitems have
been placed so that Lemma 3.1 is applicable.

Let the columns o/, € C**("»*7<) form a basis of the common subspace of all matrifgs=  and
consider the matrix

T = (‘/;/ enp+nc+1 cee en) . (8)



Note that7" is invertible as the vectors, i, +1),---,e, form a basis of an invariant subspace /#f,
which does not interseegpan V; asA; N a(Kk) =0Vkel.
Applying the similarity transformatiod” we obtain

T'H\T = diag(Dy;, Ks,...,Ky),
T H, T = diag(Dy, Ky,...,Ky)+ T e bl T,

up to 3
T 'HNT = diag (Dy, Ks, ..., Ky) +T e, hLT,

whereo(D,) = Ay andhy, := hin, —h1n, denotes the differences between théh rows of i, and H;. As
implied by our construction the differences between therices are all multiples of the same columns.
Furthermore inspection of the,th rows of the matriced?;, shows thath;, can only have nonzero entries
in its first n, + n. positions and in the positions, + (k — 1)n. + 1,...,n, + kn.. Hence, in the lower
block corresponding to the controllers only the controllgr is perturbed. So that fot = 2,..., N the
matrices after similarity transformation are of the form

D, 0 ... Uik 0
0 K2 O U2k 0
THT = | ' : : 9
’ Ky + Ugy, ©)
0
UNk KN
whereU, = (U, U3, ... Uﬁk)T € R™*"= denotes the perturbation term of ti#h system. Since

rank{H; — Hy} =1 for all j # k and j, k € Z the perturbation ternd/,, has rankl. We denote
R1 = diag(Kg, e 7KN>7
and fork = 2,..., N the lower right(N — 1)n, x (N — 1)n.-block of T~ H, T by

Ky, 0 Usp, 0
Rk = Kk‘f‘Ukk
0
0 Unk Ky

It follows that the closed-loop system is exponentiallybitaf and only if the switched system formed
by the matricesk,, k£ € Z is exponentially stable.

Theorem 4.1:Consider the switched process (2) and let Assumption 3.1tisfied. Then the following
statements are equivalent:

1) The switched linear system (4) with (¢) € H is exponentially stable.

2) The switched linear systefi= R(t)x with R : R — {R;,..., Ry} is exponentially stable.

Proof: The transformed system matricés!' H, T in (9) are in block triangular form with homoge-
neous dimensions for all € Z. It is well know that switched systems of this structure atpomentially
stable if and only if the switched systems formed from thgdrel blocks are stable. Sinég is a Hurwitz
matrix by Assumption 3.1, the switched system with systentrioes (9),k € 7 is exponentially stable
if and only if the switched systeniR;,..., Ry} is exponentially stable. By congruence the switched
system{H,,..., Hy} is exponentially stable. [ |

In view of quadratic stability we can render our statementemarecisely. LetV (z) = 27 Px, P =
PT > 0, thenV is called a common quadratic Lyapunov function (CQLF) for ¢itched system (4) if
P satisfied the Lyapunov inequality simultaneously for alhstituent system matrices iH.



Theorem 4.2:Consider the switched process (2) and let Assumption 3.1tisfied. Then the following
statements are equivalent:

1) The switched linear system (4) witt(¢) € H has a common quadratic Lyapunov function.

2) The switched linear systemh = R(t)z with R : R — {Ry,..., Ry} has a common quadratic

Lyapunov function.

Proof: Let V(z) = 27 Pz be a quadratic Lyapunov function fdp; and V(z) = 27 Pz be a
common Lyapunov function fo{Ry,..., Ry}. Then for suitabley > 0 the symmetric matrixP =
diag (P, vP,) defines a common quadratic Lyapunov function {&f'H,T,... , T-'HyT}. Thus a
CQLF for {Hy,..., Hy} exists as well by congruence. Conversely, if a CQLF exists{fdr,..., Hy}
and so also fo{T'H\T,...,T"*HxT}, then by applying a scaling argument it is easy to see that
{Ry,..., Ry} have a CQLF. This completes the proof. [ |

The above theorems reduces the stability analysis of thielsed system of dimension, + Nn, to the
stability of a system of dimensiofV — 1)n.. In the following we consider two special cases and show
that Theorem 4.1 can be used to obtain very elegant stabdmglitions.

A. N first order controllers

We begin our analysis with the case where the controligrare of first order. Thus for Assumption
3.1 to hold, the process dynamics have to be of order striefly than three. We now employ Theorem
3.1 in [12]. Essentially, the theorem establishes asyngostability of the class of switched systems (4)
with the following properties:

« every matrix in’H is Hurwitz and diagonalisable;

. the eigenvectors of any matrix iH are real;

. every pair of matrices it{ share at least — 1 linearly independent common eigenvectors.

Let the target poles\; be distinct and real. With the assumption that the polegutaant is feasible
for all modesk € Z, the resulting closed-loop system matricHs have pairwisen — 1 real distinct
eigenvalues. By Lemma 3.1 the matrickg, k£ € Z, haven, + 1 common eigenvectors. Moreover, since
each pair of closed-loop system matridds share/N — 2 of the remaining inactive controllers they have
pairwisen — 1 common eigenvectors.

Thus the requirements for Theorem 3.1 in [12] are met and kbged-loop system is exponentially
stable for arbitrary switching sequences. In other worldg, dwitched system (4) is stable for arbitrary
switching if we choose arbitrary real negative target-pdle such that the design-law in Assumption 3.1
is satisfied by first-order controllers [13].

Theorem 4.1 can be used to extend this result for systemsnaithreal target poled,;. Choosing a
modal-basis fol; in (8) we obtain a transformation matriX with real entries. It follows that the system
matricesR; of the reduced system are ¥ ~1*N=1_ Further,o(R;) = U0 (K;). Since the controllers
are of first order, it follows that the matricd®, also satisfy the requirement of Theorem 3.1 in [12].

Corollary 4.1: The switched system (4) with system matrices (5) where Apsiom 3.1 is satisfied
using N stable first-order controllers is asymptotically stable.

B. Two subsystems of arbitrary order
Consider now the special case wheYe= 2 and the controllers are of arbitrary order. Due to the
pole-placement requirement (Assumption 3.1) we obtairtHerrespective spectra
O'(Hl) = At U O’(KQ)
O'(HQ) == At U O'(Kl).



Applying the similarity transformatiofi’ of (8) to our two system matrices we obtain

. (D, 0

T'H\T = ( 0 K2) (10a)
. (D, 0 0 U

THQT—(O K2)+(0U2) (10b)

where (U{ UQT)T € R ando (D;) = A;. Note thatrank{ U} = 1 as we haveank{H; — H,} = 1.
Further it follows from the spectrum off, thato (K» + Us) = o (K7).

The following theorem reduces the stability problem of thétched system defined byH,, H,} to a
stability problem only involving the controllers.

Theorem 4.3:Consider the matricesi;, H, in (5) and let Assumption 3.1 be satisfied such that
o(Hy) = A Uo(K) for k,l = 1,2, k # I. Assume furthermore that, N o(K;) = 0, k = 1,2.
Then the following statements are equivalent:

1) The switched system given by the set of matri¢ég, H,} is asymptotically stable for arbitrary

switching signals;

2) The switched system given by the set of matritgs, K>, +U,} is asymptotically stable for arbitrary

switching signals;

3) The switched system given by the set of matri¢és, K>} is asymptotically stable for arbitrary

switching signals.

Proof: The equivalence of (i) and (ii) can be seen as follows. Kirstle matrices in (5) and (10) are
obtained from one another by simultaneous similarity. Tthesset{H,, H,} defines an asymptotically
stable switched system if and only §ff; ' 4,7}, T, ' H,T\} does. On the other hand D) = A, Cc C_,
so that the exponential stability ¢, ' [,71, T; ' H.Ty } is equivalent to that of the lower diagonal block
{KQ, KQ + UQ}

The equivalence (ii= (iii) follows if we find a similarity transformation that tresformsk, and Ky + U,
into K, and K, respectively. Note first, that sineenk{ H, — H,} = 1, the perturbatiodU{, U1)? is also
of rank one. Further, the block’; + U, is similar to K; since the eigenvalues iy, in H, are generated
by the closed loop system of; and K.

Consider now the matrice&] and K7 + U] and define

Ty = (KQT)mx:(K2T+U2T)m:c, m=0,...,n.—1 (11)

for somez € R . If we can find a vector such that the sequenag,,m =0, ...,n.— 1 is well-defined
and linearly independent, then the similarity transfoiorat

S = (Q?o tee .Tnc,l)

yields
STK]S =K andS YK +U])S=K].

This assertion follows since the assumption (11) guararitest both matrices are brought simultaneously
in transposed companion form (sometimes also known as decompanion form) and because the
companion form ofK, + U, is K7 by similarity. By taking transposes of the previous equaiae have
found the desired transformation that concludes the proafse that (11) holds.

Consider the sequence of conditions in (11):

Kyz = (K +Uj)z, (m=1)
(KD)*e = (k)" + KIUS + US KL+ (UF)) 2, (m=2)



By induction these conditions require that
Uy (K3)"z=0, for m=0,....,n.—2.

Consider now the intersection of the kernelstgf (k7)™ for m =0,...,n. — 2

Ne—2
Vo= ﬂ ker Uy (KQT)m

m=0

As rank { U} = 1, the kernel ofU] (KT)™ has dimensiom, — 1 for m = 0,...,n. — 2 and so
by dimensionality reasons we find thdtim V' > 1. Choose ant € V, = # 0. If the set of vectors
{z;m,m=0,...,n.— 1} is linearly independent, then (11) holds and we are donéidfis not the case
this means that the lower-dimensional subspace

W::span{xm|m:07...,nc—1}

is KZ-invariant and by definition is contained in the kernel (@f. Hence on this lower dimensional
subspacek? is not perturbed by/?. We may then repeat the argument on the restrictio$fto an
invariant subspace complementaryita This procedure can be iterated until (11) holds on one atlyese
lower dimensional complementary subspaces. For reasatismnehsionality this procedure terminates and
the assertion follows. [ |

Comment: Theorem 4.3 reduces the complexity of the stability analysfi the switched system
considerably. To guarantee asymptotic stability of thetcwad system (4) withV = 2 we only need
to consider the asymptotic stability of the switched systgven by

t=K(t)xr, K(t)e{K,...,Ky} C R (12)

for arbitrary switching signals. Thus, the stability pretn of the switched system (4) of ordej + 2n.
is reduced to the stability problem of a switched system dkor..

Comment: It should be emphasised that the proof of Theorem 4.3 reheth® fact that the controller-
matrices are in companion form. At this point it is not cledrawrole the specific realisation chosen for
the controllers plays for the result. However, it is obvidbat the equivalencéii) < (iii) can only be
true whenrank{K; — Ky} = rank{U,} = 1.

Comment: The equivalence of the asymptotic stability of the systejnaf#d (12) is less obvious than
intuition might suggest. As we shall see in the next sectiba, result does not generalise for systems
with more than two subsystems. In this context it is worthingthat the switched system (12) is not
explicitly part of the closed-loop system (4). For the sWwéd system (12) the controller dynamik&s act
on the same state-space; however the controllers in thedslosp system (4) are realised as individual
LTI systems and therefore do not share the states.

Note, that the transformed system matrices (10) are in bdtegonal form. Applying Theorem 4.2 we
also find an extension of Theorem 4.3 on common quadratic uyap functions.

Corollary 4.2: Consider the matrice$i;, H, in (5) and let Assumption 3.1 be satisfied such that
o(Hy) = Ay Uo(K)) for kIl = 1,2, k # I. Assume furthermore that, N o(K;) = 0, k = 1,2.
Then there exists a common quadratic Lyapunov function Her switched system given by the set of
matrices{ H,, H»} if and only if the switched system given by the set of matrit&s, K>} has a common
guadratic Lyapunov function.

C. The case ofV = 3

The above findings suggest that the switched closed-lodpray&l) is stable if and only if the switched
system (12) consisting of the controllers form a stable esystUnfortunately that is not true as the
following example shows.



Example 4.1:Consider the switched process (2) with= 3, where

0 1 0 1 0 1
A= (—11.84 —2.4)’ Az = (—34.28 —11.6)’ As = (—29.7 —11)7

andb, = (0 1)T, ¢t = (1 0) for k = 1,2,3, and let the requested target-poles be givenAby=
{—1+3i,-1.8, -8},
It can be verified that the pole-placement requirement isfsad by the following set of controllers

(3) with
0 1 0 1 0 1
K= (—9.6 —9.4)’ Ky = (—7.4 —0.2)’ Ky = (—5.5 —0.8)’

andm? = (30.34 —7.536), m§ = (—109.7 34.1), m§ = (—19.35 42.54), andl, = (0 1)",j, =0
for k=1,2,3.
It can be numerically verified thdt (z) = z¥ Pz with

p_ 3.0745 0.0671
~\0.0671 0.4356

is a common quadratic Lyapunov function for the switchedesys(12) withK (¢) € { K, K, K3}. Hence,
the switched system (12) consisting of the controllers 1srgtotically stable for arbitrary switching.

However we can find a switching sequence for which the cldseg-switched system (4) is un-
stable. Consider the periodic switching signal associatétl the monodromy matrixd(t + 7,t) =
BTzl where T = Ty + Ty, + T3 and T) = 0.72,7, = 0.32,73 = 0.22. The spectral radius
o(®(T,0)) =1.024 > 1. Hence, there exists a periodic switching sequence fortwthie closed-loop sy-
stem is unstable [16].

The above example shows that Theorem 4.3 and Corollary 4r®otée generalised for systems with
an arbitrary number of subsystems since we have found a CQLthdéocontrollers and cannot conclude
stability, let alone the existence of a CQLF. Thus we have sonteto Theorem 4.1 for the analysis of
switched systems (5) witlv > 3.

V. CONTROLLERS WITH INTEGRATORS

Many control problems require the use of controllers wittegnators to meet the design specifications.
A straight forward implementation of controllers with igtators using the controller architecture proposed
in this paper will lead to closed-loop system matrices (Shwaigenvalues at zero. These eigenvalues are
inherited by the zero-poles of the controllers that are wtiva in the loop. However, the stability results
derived in the previous sections require that the constiteéosed-loop systems = H,x, k € Z are
stable LTI systems and thus we cannot apply the stabilitylt®svhen the controllers have integrators. In
this section we show that this problem can be resolved bysithga variation of the local-state controller
architecture such that the stability results derived earh this paper can be applied.

In the following we shall assume that the controllers hawe shme number of integrators for each
modek € Z. Then we can choose a controller-architecture such thaethegrators are shared by the
controllers and therefore are always active in the closeg.lé-or this purpose we choose a controller
architecture with a joint integrator in front of the conteslbank as shown in Figure 2 such that the local
controllersCy(s) have no pure integrator.

Choosing the state-vector of the closed-loop system as(z] o™ a1 --- x%)T yields the system
matrices
Ae b bim{ogm oo bymiOen
—T' 0 0 - 0
Hk — 0 ll K1 0 0
: . 0 .

0 lN 0 KN
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Fig. 2. Controller architecture with joint integrator.

for all k € 7.

Positioning the joint integrator in front of the controlleenk preserves the property of the system
matricesrank{H, — H,} = 1 for k # I V k,l € Z, since the matrice${, again only differ in then,’th
row. Since the integrator is constantly active in the clokegh the eigenvalues aoff, V k& € 7 lie in the
open left half-plane if Assumption 3.1 is satisfied. Henbe, esults of the previous section are applicable
to controllers with integrators when choosing a controflechitecture with a joint integrator in front of
the controller bank.

VI. TRANSIENT-FREE SWITCHING

The switched control scheme can induce undesirable trandigamics. In this section we show that
these transients can be avoided using the local-stateotlentarchitecture described above. In particular
we shall consider transient dynamics that occur due to bimidgcwhen the subsystems have reached
steady-state. To analyse the transient dynamics of theclsedt system we introduce the input-output
description of the switched closed-loop system. For eactletoc 7 the dynamics are given by:

y(t) = Gz(t) (14)

where F,, € R™*! is some pre-filter gain an@ € R'*" is the constant output matrix for all modes.
The following example motivates the closer investigatibthe transient dynamics of switched systems.
Example 6.1:Consider the process (1) with switched linear dynamics ammredes. The dynamics
of the constituent modes are described by the transferitumsct

1
L Pys) = .
s Y=

We choose first-order controllers for the control of this qgass. The closed-loop poles are given by
Ay = { —2,-20}. The controllers with transfer functions

—72 s—14

Gils) = ;5 @) = T35

Pi(s) =




11

satisfy this pole assignment and Assumption 3.1. For cosgi@n of the static steady-state error we use
the pre-filter gaing; = —0.5556 and F, = —2.3529.

The resulting closed-loop system dynamics are identicaddch mode and given by the transfer function
1+ Cu(s)Pu(s) — s24+22s54+40°

Since we apply first-order controllers the autonomous $wicclosed-loop system is asymptotically
stable for arbitrary switching signals (Corollary 4.1) ahdg the switched input-output system (13)-(14)
is bounded-input bounded-output stable [16].

Figure 3a shows a step response of the closed-loop systera. &lswitching signab(t) is cho-
sen that changes the mode every 10 time-units. At every lswgcinstant we can observe a signi-
ficant transient response before the output reaches itserefe value again. Note that the switching

Tk (s) ke {1,2}).

0
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Fig. 3. Step-response of the closed-loop system in Example 6.1 with fitkehswy instanced 0, 20, 30, . ... Part (a) shows the evolution
of the outputy(¢), Part (b) shows the two controller-states(t) and x2(t).

is slow enough to allow the system to reach practically stesdte between two consecutive swit-
ching instances, i.e. the observed transient-peaks aredumtto unsettled control signals or states.
0]
Loosely speaking, these transients occur due to statstirs after the switch until the system reaches
steady-state again. However, if we design the switchedsysiich that the steady-state is equal for all
modes, these transients are avoided.
Theorem 6.1:The switched input-output system (13)-(14) has no tramsiesponses when switching
at steady-state, if and only if
H7'F; = H'F;, Vijel.
Proof. Let t;,, be the switching instant in which the system switches frondenoto mode; and
let lim, ., 2(t) = # = —H.'Fyr whereiz® denotes the steady-state of the LTI system in moétr
the constant input. During the intervalt; <t <t the dynamics of the switched system are given
by (H;, F;,C;). Hence,

Tht1

i(ty,) = Hz9+ Fyr
= —H;H 'Fr+ Fjr.
The switched system shows no transient response if and bul;j ) = 0. Thus
0 = —H;H 'Fr+ Fyr
H7'Fr = H;'Fyr
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Sincer is a constant scalar, the proof is complete. [ |

The above theorem is a necessary and sufficient conditiathéaransient-free switching at steady state.
This condition can be easily translated into a transfer tionccondition for the control design. Loosely
speaking, these transients occur due to the controllee-statsition after the switch. While controller
Ck(s) is active in the loop the control-output of C(s) evolves according to

= Gils) R(s).
Assume now that switching only occurs when the closed-lgsgesn reached (practically) steady-state, i.e.
& ~ 0. Since we consider systems in control-canonical form, thedition of Theorem 6.1 is equivalent
to demanding that the controller-outputs at steady-state is constant for each méde Z. Thus we
require that for each modec 7 there exists a; € R such that

lim Gis)
s—0 1 + Ci(s)Px(s)

Comment: In case the process dynamics have integral action for eaa® roondition (15) is always
satisfied. When the open-loop system does not contain anramtegand also for the case where all
integrators belong to the controllers, the transient-freedition reduces to:

Ko Kp, =~ Vkel,

UZ(S)

=y Vkel (15)

where K¢, , Kp, are the steady-state gains of the controller and procesaem respectively. A more
detailed discussion of these cases can be found in [17].

Comment: Condition (15) is formulated in the frequency-domain sudt thcan be easily incorporated
into the control-design procedure (Assumption 3.1). I, fdy adding one extra degree of freedom we
can achieve both, stability of the switched system and ieat$ree switching when the system is in
steady-state.

VII. SUMMARISING EXAMPLE

The following example illustrates the results in this papée consider a switched process with two mo-
des and demonstrate that the proposed design procedule gielosed-loop switched system that is stable
for arbitrary switching. Moreover, we choose controllenshwntegrators using the controller architecture
described in Section V and demonstrate that transientsnegehing can be achieved simultaneously.

Example 7.1:Given the process (2) with transfer functions

2 1

Pl(s):s+9’ PZ(S):s+8

and let the target poles b = {—0.5+¢,—10}. We shall require a controller with integrator. Using the
standard pole-placing method yields the two controllers

—12.755 4+ 12.5 —3.385 4+ 6.25
Ci(s) = Cy(s) = 2T 22
1(8) 8(8+8) 3 2(S> S(S—|—2)

If we implement the controller using a joint integrator imrit of the controller bank, we obtain for the
controller matriceds; = —8 and K, = —2. Since K, K, are scalar Corollary 4.1 guarantees exponential
stability of the closed-loop system for arbitrary switain

Consider now the transient performance of the switched sydter a unit step the closed-loop system
reaches the steady-state= (1 1.4 0.7 0.18)T in mode 1 andi, = (1 1.92 0.96 0.24)T in mode 2.
Thus the condition in Theorem 6.1 is not satisfied and we éxpesee transient dynamics at the switching
instances. Figure 4a shows the step-response of the saittbged-loop system when the process mode
switches every 20 time-units. Even though the system reasteady-state in every switching interval, we
can observe considerable transients at the switchingniossa
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Fig. 4. (a) stable switched system with transients, (b) stable switched swyétieout transients using condition (15); the lower line indicates
the scaled switching signal, respectively.

In order to meet the additional condition (15) for transifree switching we need a controller with an
extra degree of freedom. As additional target-pole we chogs= —20. Using pole-placement we obtain
the controller transfer functions

Ci(s) 2.75%2 — 6.255 + 125 Co(s) 63.95% — 12.55 + 250

S) = S) = .

! $3 4+ 222 + 27.78s  ° $3 + 2852 + 83.33s

Choosing again a controller structure with joint integratee can realise the controllers using

0 1 49.00 0 1 —5076.39
K= (—27.78 —22) = (—66.44) K2 = (—83.33 —28) = (—1802.17) (16)

and lh=10= (1 O)T

Since the switched system has two modes and the Assumplios satisfied we can analyse the stability
of the close-loop switched system by only considering thexines K, and K, Theorem 4.3. Both matrices
Ky, K2 are in companion form and the product K, has the positive eigenvalues = 4.6, A, = 500.3.
Thus by Theorem 3.1 in [18] a CQLF exists for (12). It followsTyeorem 4.3 that the closed-loop system
(5) is exponentially stable for arbitrary switching andrthexists a CQLF fo{ H,, H,} by Corollary 4.2.
Explicit numerical expressions for the closed-loop systeatrices and the respective Lyapunov functions
are given in the Appendix.

The steady-state of the close-loop system is constant (1 1 0.036 0 0.012 O)T for all k € 7.
Thus the condition of Theorem 6.1 is satisfied and we expestéono transient dynamics when switching
in steady-state. Indeed the simulation of the step-regpohshe closed-loop system shows no transients
at the switching instances (Figure 4b).
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VIII. CONCLUSIONS AND DISCUSSION

In this paper we considered a typical control problem fortslwed linear systems. It is shown that
the stability analysis can be considerably simplified byngghe proposed design-law and the local-state
controller architecture. Further, for systems with fireier controllers we have shown that stability for
arbitrary switching is always guaranteed. In the case thatstvitched system has only two modes, the
stability of the switched closed-loop system is equivaterthe stability of the switched system defined by
the controller-matrices. Thus the stability analysis degates from a switched system of ordgr+ 2n,
to that of a switched system of order.

Furthermore, we have shown that transients at the switansignces can be avoided when satisfying
condition (15). By adding an extra degree of freedom bothilgtabf the closed-loop system and transient-
free switching at steady-state can be achieved.

The stability analysis in this paper depends fundamentatiythe assumption that the poles of the
closed-loop transfer function are invariant while switahi This requires that the respective controller
outputs are instantaneously activated whenever the onede changes. From a practical point of view
this is an unrealistic assumption. In most applicationgeheill be a certain time-delay between the
mode-switch of the process and the switching of the conigiad. The impact of such delays on the
stability of the closed-loop system are an important pnobénd are subject of future research.

An open question is also how the realisations of the tranffactions effect the results in this
paper €.f. [10]). Throughout this paper we assume that the individaaitollers are realised in control
canonical form. While this is a realistic approach a différemice of the realisation might provide better
performance or stability properties. Since we can choosedimtroller realisations independently of each
other, it might be possible to find conditions on the realisat that simplify the stability analysis.
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APPENDIX

The closed-loop system matrices of the switched system amipke 7.1 with the controller realisations
(16) are given by

-9 55 980 -—1329 0 0 -3 639 0 0 —-5076.4 —1802.2

-1 0 0 0 0 0 -1 0 0 0 0 0
H1 _ 0 0 0 1 0 0 : H2 _ 0 0 0 1 0 0

0 1 -278 —22 0 0 0 1 —27.8 22 0 0

0 0 0 0 0 1 0 0 0 0 0 1

0 1 0 0 —83.3 —28 0 1 0 0 —83.3 —28

Indeed it can be verified thaf (z) = 2”7 Pz with

P 0.9492 0.0113
= 10.0113 0.0163

is a CQLF for the switched system (12) ahdz) = 27 Pyx with

0.0006 0.0007 —0.0279  —0.0027 —0.0067 —0.0129

0.0007 0.0132 —0.0228 —0.0688 —0.9193 —0.0543

P, — —-0.0279 —0.0228  13.3803 1.9447  —29.3872  0.9925
H = —0.0027 —0.0688 1.9447 1.5944 —0.1306  —0.2960
—0.0067 —0.9193 —29.3872 —0.1306 149.6891 3.0613

—0.0129 —0.0543 0.9925 —0.2960 3.0613 3.0188

is a CQLF for the closed-loop switched system (5).



