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Abstract. In this paper we investigate the problem of model reduction with a view to large-scale logistics
networks. Such networks are modeled by means of graphs, which prescribe the structure of material flow.
An aim of the proposed model reduction procedure is to preserve important features within the network.
We introduce the LogRank as a measure for the importance of locations, which is based on the structure of
and flows within the network. We argue that these properties reflect relative importance of locations. Based
on the LogRank we identify subgraphs of the network that can be neglected or aggregated. The effect of
this is discussed for a few motifs. Using this approach we present a meta algorithm for structure-preserving
model reduction that can be adapted to different mathematical modeling frameworks. The capabilities of
the approach are demonstrated with a test case, where we model a logistics network as a Jackson network,
i.e., a particular type of queueing network.

PACS. 02.01.Ox Graph theory – 89.75.Fb Structures and organization in complex systems – 89.75.Kd
Patterns

1 Introduction

In this paper we present an approach to model reduction
of dynamic and large-scale logistics networks that aims
to preserve major structural characteristics of the origi-
nal network. Many dynamical systems, whether occurring
as models of natural phenomena or designed by man, can
be interpreted as an interaction of different components
each of which is governed by dynamics admitting inputs
from or producing output for other components. The pos-
sible interaction is described by a topological structure,
which can be interpreted in a natural way as a graph or
network. In applications the underlying network is fre-
quently large, especially so in the areas of logistics. The
structure of a logistics network is given by the connections
between locations of the network. Within large-scale lo-
gistics networks raw material suppliers, manufactures and
the original equipment manufacturer contribute with their
factories and facilities to the large number of locations. In
addition warehouses and distribution centers of retailers
are also called locations in this paper.

Typical processes taking place in such networks are
production, storage and shipment of different commodi-
ties. Material, information and monetary flows connect the
locations of a logistics network and create the structure of
the network. The structure of a flow is frequently char-
acterized as linear, convergent, divergent, or non-linear.
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Here linear denotes a simple chain of locations passed
one after the other, convergent describes flows originat-
ing from a large number of locations and ending in a few
end locations, divergent describes the opposite structure
in which a few sources feed a larger number of end lo-
cations, while nonlinear in this context simply denotes a
more intricate structure which does not fit into the other
categories.

In this context it should be noted that the magnitude
of a flow between location i and location j could differ from
the flow between location i and location k. This observa-
tion motivates the assumption that different locations can
be of different relevance for the network. However, flows
within logistics networks are usually the result of dynamic
processes and thus time-varying. They may change their
magnitude over time, for instance, because a factory may
dynamically adjust its production rate and output in or-
der to satisfy the given demand, which is changing over
time. Hence, every location of the network can be consid-
ered as a dynamical system, which changes the magnitude
of linked flows. Moreover the dynamics of one location de-
pends on the states at other locations due to interactions.
The resulting behavior is typically nonlinear. The number
of locations appears to be large in modern logistics net-
works and their interconnection structure can be rather
complicated [1]. This leads to complex dynamics of the
whole network.
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A mathematical model that enables to predict this be-
havior can help practitioners to handle and to design such
networks or its parts so that an efficient and robust per-
formance will be guaranteed. In addition such a model
allows for further analysis of the network, e.g., for stabil-
ity analysis and to predict the dynamics for a given set of
parameters and initial data.

There are different approaches in the literature to model
such networks. The most common are queueing networks
[2,3], reentrant lines [4,5], approaches based on conserva-
tion laws [6,7] and many others [8–10]. Taking the inter-
connection structure of the network into account this leads
to coupled systems of equations describing the behavior
of the whole network. Due to the size of such networks
the coupled systems contain a large number of equations
which are usually nonlinear. This makes it difficult to per-
form analysis and simulations. One possible way out is to
find a reduced size model that approximates the original
network and its behavior, i.e., that describes the most im-
portant part of its structure and has dynamical properties
close to the ones of the original network. This reasoning
motivates the research presented in this paper.

Model reduction of linear input-output systems has
been an active research subject in recent years. A clas-
sical approach in this area is to describe the approxima-
tion error of lower order estimates of stable linear systems
in terms of the induced operator norm from the space
of square integrable inputs to square integrable outputs.
This approach using balanced truncation is well under-
stood and explicit error estimates are available, see for
example [11–13]. More recently, Krylov subspace meth-
ods have become attractive since they provide methods at
reasonable computational cost for very large systems [14,
12]. In case of nonlinear systems the theory is not that
well developed. There are specialized methods developed
for particular cases or classes of systems, see e.g. [15–17].
In this paper we do not specialize to the classical case of
linear systems as for logistics systems in particular other
model classes are more appropriate. For this reason we
start an investigation of model reduction based on rank-
ing techniques in graphs, which has the benefit of allowing
to keep structural features of a given network. These are
usually destroyed in approaches using balanced trunca-
tion or Krylov subspace methods. We note, however, that
recently this problem has also been investigated for lin-
ear systems in [18] – although without the use of ranking
ideas.

The method we propose in this paper is based on the
consideration of flows in a network. This method is in
particular designed for the approximation of logistics net-
works. We represent such networks as graphs, where the
logistics locations are vertices and the edges represent the
flows between them. Our idea is to find those locations
through which the main flows in the network are routed.
Then, to reduce the model, we keep this most important
part of the network and exclude the less important lo-
cations or aggregate them with other vertices. For this
purpose we quantify the importance of locations in the
following way. We say that the importance of a location

is a positive number proportional to the stationary prob-
ability that an arbitrarily taken single part of the flow in
the network will be found at this location. This station-
ary probability has to be defined with respect to a suitable
Markov chain. This number is called LogRank of the lo-
cation. A similar idea is used by the PageRank algorithm
to quantify the importance of web pages in the internet
[19]. There are other ranking schemes with similar char-
acteristics, e.g., HITS [20] and SALSA [21], see also [22]
and the references therein. In contrast to these algorithms
we take not only the structure of the network into account
but also the magnitude of the flows between the locations.

In the reduction process we aim to preserve the main
structure of the network in the sense of preserving the
main flows. For this purpose we look for special subgraphs,
called motifs [23–25] in the network and apply aggregation
of vertices of lower ranks with those of higher rank in these
motifs. In general, such an approximation might lead to a
change in the importance order of the remaining vertices.
We provide a constructive procedure which preserves the
ranking order of the remaining vertices. In this paper we
introduce a heuristic meta algorithm for the exclusion or
aggregation of locations in a logistics network such that
the relative order of importance is preserved.

The paper is organized as follows. In the next section
we introduce notation and give some background from ma-
trix and graph theory. Section 3 introduces the notion of
importance of a logistics location in a network and ex-
plains how it can be calculated. Section 4 describes graph
transformations that lead to a reduced model and pre-
serve the order of importance. In Section 5 we collect all
the steps starting from identification of the locations im-
portance to an algorithm that leads to a reduced model of
a logistics network. This method is illustrated with help of
Jackson networks in Section 6. Discussion and concluding
remarks are given in Section 7.

2 Preliminaries on nonnegative matrices and
directed graphs

This section provides notions and results about nonnega-
tive matrices and graphs that will be used throughout the
paper.

A vector v ∈ Rn is called nonnegative, if every compo-
nent is nonnegative, i.e., vi ≥ 0, i = 1, . . . , n and a matrix
M ∈ Rn×n is said to be nonnegative M ≥ 0 (resp. posi-
tive M > 0) if its components mij are nonnegative (resp.
positive), i.e., mij ≥ (>) 0. The nonnegative orthant of
the n-dimensional space Rn is denoted by Rn+. The trans-
pose of a vector v respectively a matrix M is denoted
by vT, resp. MT. In this paper we find it convenient to
use the 1-norm of vectors, which for v ∈ Rn is given by
‖v‖ =

∑n
i=1 |vi|. The n-dimensional vector with entries

all equal to 1 is denoted by en. A nonnegative vector v
is called a stochastic, if its components sum to one, i.e.,



B. Scholz-Reiter et al.: Structure-preserving model reduction of large-scale logistics networks 3

‖v‖ = 1. A matrix M ≥ 0 is called column normalized, if

n∑
i=1

mij =

{
1 ∃ i : mij > 0,
0 mij = 0 ∀ i = 1, ..., n.

A matrix M ≥ 0 is called column stochastic, or briefly
stochastic, if eT

nM = eT
n, i.e., columns are stochastic. It is

substochastic, if the column sums are bounded by 1. If MT

is colum (sub)stochastic, we call M row (sub)stochastic.
The spectrum of a matrix M is denoted by σ(M) and the
spectral radius ρ(M) is

ρ(M) = max{|λ| : λ ∈ σ(M)}.

If a matrix M is stochastic, then ρ(M) = 1, [26].
A matrix M ∈ Rn×n is called reducible, if there exists

a permutation matrix P ∈ Rn×n such that

PTM P =
[
A 0
B C

]
,

where the matrices A and C are square. Otherwise, M
is said to be irreducible. The Perron-Frobenius Theorem,
cf. [26, Theorem 2.1.4] provides fundamental insight in the
spectrum of positive resp. nonnegative, irreducible matri-
ces.

Theorem 1 (a) If M ∈ Rn×n is positive, then ρ(M) is a
simple eigenvalue of M , greater in modulus than the
modulus of any other eigenvalue in σ(M).

(b) If M ≥ 0 is irreducible, then ρ(M) is a simple eigen-
value, any eigenvalue of M of the same modulus is also
simple, M has a positive eigenvector x corresponding
to ρ(M), and any nonnegative eigenvector of M is a
scalar multiple of x.

The eigenvector to the eigenvalue ρ(M) is called the Per-
ron vector. A matrix M is called primitive if there exists
a positive integer k ∈ N such that Mk > 0. Note that
any primitive matrix is irreducible. The converse is false,
in general. For the following connection between primitive
and irreducible matrices we refer to [26, Theorem 2.1.7].

Lemma 1 For M ≥ 0 the following are equivalent.

(a) M is irreducible and ρ(M) is greater in magnitude than
any other eigenvalue.

(b) M is primitive.

Another useful connection between irreducible and prim-
itive matrices is the following, cf. [26, Corollary 2.2.28].

Lemma 2 An irreducible matrix is primitive, if its trace
is positive.

In the following we use the notation from [27]. A di-
rected graph with weights consists of a finite vertex set V
and an edge set E, where a directed edge from vertex i
to vertex j is an ordered pair (i, j) ∈ E ⊂ V × V . The
weights can be represented by a |V | × |V | weighted ad-
jacency matrix A, where aij ≥ 0 denotes the weight of
the directed edge from vertex i to vertex j. By convention

aij > 0, if and only if (i, j) ∈ E. We will denote a directed
graph with weights of this form by G = (V,E,A). Further
for each vertex i ∈ V the indegree is

in(i) = |{j ∈ V : (j, i) ∈ E }|,

where | · | denotes the cardinality of a set and

out(i) = |{j ∈ V : (i, j) ∈ E }|

denotes the outdegree of the vertex i ∈ V . Additionally,
we define for each vertex i the set of successors by

S(i) = {j : (i, j) ∈ E}

and the set of predecessors by

P (i) = {j : (j, i) ∈ E}.

A path from vertex i to j is a sequence of distinct ver-
tices starting with i and ending with j such that there is
a directed edge between consecutive vertices. A directed
graph is said to be strongly connected if for any ordered
pair (i, j) of vertices, there is a path which leads from i
to j. In terms of the weighted adjacency matrix this is
equivalent to the fact that A is irreducible, [26].

3 Identification of important locations in
large-scale logistics networks

In this section we introduce a scheme to identify the im-
portance of locations of a logistics network. The approach
is based on the structure of the network and on a represen-
tative flow between the locations, where we consider the
material flow. The consideration of the material flow has
several advantages in the analysis of logistics networks. It
can be easily measured or quantified compared to the in-
formation flow. In comparison to the monetary flow within
the network it is less confidential and hence more easily
accessible. Also to some extent, the material flow allows to
deduce information about the monetary and information
flow within the network. Note that a real world material
flow within a logistics network needs to be normalized to
a standard unit. We propose to do this by measuring all
segments of the material flow by units of final product.
For instance two headlights of a car would be measured
as one part, since two headlights are necessary for the fi-
nal assembly of one car. In the following we mean this
normalized material flow whenever we speak of material
flow.

As an initial step we number the logistics locations
from 1 to n. To model the structure of the network we
form a directed graph G = (V,E) where the vertices V =
{1, ..., n} represent the locations. The set of edges is given
by

E = {(i, j) ∈ V × V : there is material flow from i to j}.

Associated to the edge set E we define a matrix, denoted
by M , that reflects the relative material flow between the
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locations. To be precise, let fij denote the observed mag-
nitude of the material flow from location i to j over a
pre-defined period. This allows to capture the dynamics
of the network. Then the matrix M is given by

mij :=


fij∑n
i=1 fij

(i, j) ∈ E,

0 else.

Note that the normalization is such that the inflow to each
location sums to one. Thus the quantity mij denotes the
proportion of the material, which is received by location
j from location i, relative to all the material received by
location j.

Our interpretation of importance for a location in a
logistics network is the following. Consider M as the tran-
sition matrix of a homogeneous Markov chain with state
space V = {1, . . . , n}. This chain evolves according to
x(k + 1) = Mx(k). Then mij is the probability to move
from vertex j to vertex i. So mij may be interpreted as the
probability that location j places an order with location i.
However, in a logistics network driven by a pull policy the
flow of orders is stepwise [28]. In particular retailers place
their orders at the OEM locations. Based on these orders
the OEM location places orders at their suppliers and so
on. This process terminates as soon as a source supplier
is reached. So the locations take the decision where to or-
der required material. If the chain described above has a
stationary distribution then it represents the proportion
of orders placed at the locations.

Consequently, the importance of a location for the lo-
gistics network is indicated by the stationary distribution
of the Markov chain, if it exists. A stationary distribution
of a homogenous Markov chain is given by a stochastic
eigenvector r ≥ 0 of the transition matrix M to the eigen-
value one, i.e.,

M r = r.

From the Perron-Frobenius Theorem 1 it follows that, if
the transition matrix is irreducible the Markov chain has
a unique stationary distribution r > 0, [26]. Hence in the
irreducible case there is only one solution describing the
importance of the locations.

Figure 1 illustrates a small sample network of a logis-
tics network. The matrix M , that contains the relative
material flows, is for the example scenario given by

M =



0 0 15
25 0 0 0 0

0 0 10
25 1 0 0 0

0 0 0 0 1 1 0
0 0 0 0 0 0 1
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0


.

Remark 1 From the graph illustrated in Figure 1 it can be
concluded that matrixM of the example is not irreducible.
There is no unique stationary distribution and indeed as

Source suppliers
(Production of A)

OEM locations
(Production of B

consumes A)

Retailers
(Distribution of B)

v1v1v1 v2v2v2

v3v3v3 v4v4v4

v5v5v5 v6v6v6 v7v7v7

15

20 5

5010

50

Material flow between the locations

Fig. 1. Logistics network weighted with material flow.

the matrix is not stochastic, it is not even the transition
matrix of a Markov chain.

In order to follow the outlined reasoning and to obtain
a reasonable result that reflects the importance of the var-
ious locations in the logistics network the corresponding
graph has to be modified. In the remainder of this section
we present modifications of M that ensure irreducibility.
These adjustments are based on inherent characteristics
of logistics networks.

3.1 Connecting retailers and source suppliers

In this subsection we present necessary modifications of
the matrix M for the case that the structure of the cap-
tured logistics network does not ensure an irreducible and
stochastic matrix. This requirement is mainly driven by
the characteristics of source suppliers. Locations model-
ing source suppliers have indegree zero, i.e., they do not
place any orders at other locations and do not receive any
material. This leads to zero columns in the corresponding
transition matrix, which implies reducibility. In this con-
text ordinary retailers have an outdegree of zero. Hence
they represent sinks and do not deliver any material to
other locations within the network. We propose to model
real world retailers that have outgoing links by two sepa-
rate locations, one of which has outdegree zero.

In order to obtain a stochastic matrix from M we pro-
pose to connect the source suppliers with the retailers. To
this end we assume that the material flow within the net-
work is also subject to the exchange of information about
placed orders between the locations. In particular it can be
argued that the source suppliers need information about
the orders of the retailers in order to prepare for a timely
delivery of material to directly linked locations. This is
motivated by the need of adjusting the processes of raw
material sourcing and the requirements to eliminate the
Bullwhip-Effect [10].

Given a logistics network that is managed with a pull
policy, it cannot be guaranteed in general that a certain
order of a retailer will originate its processing at a certain
source supplier. Thus, the information about the actual
path of a processed order through the network is not avail-
able as we only have the information contained in the fij
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at our disposition. Note that many different actual paths
may lead to the same fij .

In the transition matrix M we connect the source sup-
pliers with the retailers, if a path between them exists. In
this context we assume that a source supplier anticipates
an allocation of his production according to the relative
demand of the connected retailers. In other words, he will
be responsible for the fulfillment of these orders in some
sense. This may be interpreted as the probability that a
source supplier j is the point of origin for the processing
of an order of retailer i. This approach assumes that there
are no preferential paths between the particular locations.
Equivalently, we wish to consider the probability that an
order initiated by a retailer j will arrive at the source
supplier i.

To incorporate this interpretation in the graph G =
(V,E) we consider the set of retailers, denoted R ⊂ V ,
and the set of source suppliers, denoted S ⊂ V . They can
be characterized by

S := {i ∈ V : in(i) = 0} and R := {i ∈ V : out(i) = 0}.

We now specify the relationship between source suppliers
and retailers. Let i ∈ R be a retailer and j ∈ S be a
source supplier, we say that i affects j if and only if the
graph G = (V,E) contains a path from source supplier j
to retailer i.

Given a source supplier j ∈ S the set of all retailers
affecting j is denoted by Rj . Moreover, given a retailer
i ∈ R the set of locations that are directly connected to i
is denoted by

P (i) = {k ∈ V : (k, i) ∈ E , i ∈ R}.

So the total inflow of material to retailer i is given by the
sum of the material flow of all predecessor of i, i.e.,

pi :=
∑

k∈P (i)

fki, i ∈ Rj .

We set pi := 0 if i 6∈ Rj . Further, for source supplier j
the sum of the material flow over all retailers affecting j
is given by

qj :=
∑
i∈Rj

pi, j ∈ S.

This quantity is strictly greater than 0, otherwise a source
supplier j would be disconnected from the network. A case
which we exclude from our considerations. We use qj as a
normalization factor and define the impact of the retailer
i to the source supplier j by

pi
qj
, j ∈ S, i ∈ Rj .

To integrate this information to the graph that describes
the network we have to amend the edge set. That is, the
additional edges are given by

E′ := {(i, j) ∈ V × V : j ∈ S, i ∈ Rj}.

Note that the sets E and E′ do not intersect. This is be-
cause E′ contains only edges (i, j) ∈ V ×V which start at
vertices i ∈ Rj ⊂ V that have outdegree zero in the graph
G = (V,E). Therefore we consider in the following the
graph G = (V, E) that includes the additional structure,
i.e., the edge set is given by

E := E ∪ E′. (1)

The corresponding weighted adjacency matrix M is de-
fined by

Mij :=


mij (i, j) ∈ E,
pi
qj

(i, j) ∈ E′,

0 else.

(2)

The notation M will be used throughout the paper to
express explicitly the incorporation of the retailers orders.
This raises the question which properties the modified ad-
jacency matrix has.

Proposition 1 The matrix M is column stochastic.

Proof. The matrix M is column stochastic if and only if
eT
nM = eT

n, i.e.,

n∑
i=1

Mij = 1 (3)

for all j ∈ V . Since the matrix M is column normalized
it suffices to show that (3) holds for every j ∈ S. So for
j ∈ S equation (3) reads

n∑
i=1

Mij =
n∑
i=1

pi
qj

=
1
qj

∑
i∈Rj

pi =

∑
i∈Rj

∑
k∈P (i) fki∑

i∈Rj

∑
k∈P (i) fki

= 1.

This shows the assertion. �

Further, we investigate the irreducibility of the matrix
M in terms of the retailers and the source suppliers. To
this end we consider the graph, denoted G′ = (V ′, E ′),
that consists solely of retailers and source suppliers. That
is, the vertex set V ′ ⊂ V is given by

V ′ := R∪ S.

To define the edge set E ′ we take on the one hand the
edge set E′, i.e., the edges from the retailers to the source
suppliers. On the other hand we incorporate the opposite
direction of the material flow. That is, we consider the set
E′′ = {(i, j) : i ∈ S, j ∈ R, there is a path from i to j }.
The edge set of G′ is then defined by

E ′ := E′ ∪ E′′.

The reversion of the edges in E′ corresponds to the fact
that the graph G′ is bipartite, i.e., the vertex set V ′ can
be partitioned into the two classes R and S such that ev-
ery edge origins in one class and ends in the other class.
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A further property that may be assumed for logistics net-
works is that eventually every material flow ends in some
retailer of the network as well as ultimately every location
except source suppliers receive material from source sup-
pliers. In terms of the graph G describing the network this
characteristic can be expressed as

for all i ∈ V \ R there is a j ∈ R
such that there is a path from i to j, and

for all i ∈ V \ S there is a j ∈ S (4)
such that there is a path from i to j.

Proposition 2 The weighted adjacency matrix M of the
graph G satisfying (4) is irreducible if and only if the graph
G′ is strongly connected.

Proof. Assume that M is irreducible. Then the graph G
is strongly connected. This implies that for every pair of
distinct vertices (i, j) there is a path from i to j. In partic-
ular, for every source supplier s and every retailer r there
is a path from s to r. Hence, the fact that E ′ contains for
every edge (s, r) also its reverse implies that G′ is strongly
connected.

Conversely, assume that G′ is strongly connected. To
conclude that M is irreducible we have to show that for
every pair of distinct vertices (i, j) ∈ V × V , there exists
a path in G from i to j. For (i, j) ∈ (R∪S)× (R∪S) the
claim follows directly from the strong connectivity of G′.
So consider a pair of distinct vertices (i, j), where i, j ∈
V \ (R∪ S). By (4) there is a path from i to at least one
retailer ri ∈ R and as G′ is strongly connected there is
path from i to any source supplier s ∈ S that contains ri.
Further, since j ∈ V \ (R∪S) there is at least one source
supplier sj ∈ S such that there is a path from sj to j.
Finally, the assertion follows by the concatenation of the
paths from i to ri, from ri to sj and from sj to j. �

The modification of the logistics network given in Fig-
ure 1 is shown in Figure 2, where the additional edges E′
are depicted by dashed lines.

Source suppliers
(Production of A)

OEM locations
(Production of B

consumes A)

Retailers
(Distribution of B)

v1v1v1 v2v2v2

v3v3v3 v4v4v4

v5v5v5 v6v6v6 v7v7v7

15

20 5

50
10

50

Material flow between the locations
Relative capacity allocation

Fig. 2. This figure illustrates the modification proposed in this
section for the logistics network example.

The corresponding modified weighted adjacency ma-
trix is of the form

M =



0 0 15
25 0 0 0 0

0 0 10
25 1 0 0 0

0 0 0 0 1 1 0
0 0 0 0 0 0 1
20
25

20
75 0 0 0 0 0

5
25

5
75 0 0 0 0 0

0 50
75 0 0 0 0 0


. (5)

The bipartite graph G′ of retailers and source suppliers is
shown in Figure 3. Together with Proposition 2 it follows

Source
suppliers

Retailers

v1v1v1 v2v2v2

v5v5v5 v6v6v6 v7v7v7

Material flow between the locations
Relative capacity allocation

Fig. 3. This figure illustrates the graph G′ for the logistics
network example.

that the matrix M is irreducible. The unique stationary
distribution for this example is given by

r ≈
[
.1111 .2222 .1852 .1481 .1481 .0370 .1481

]T
. (6)

Remark 2 The modification presented in this subsection
does in general not ensure the irreducibility of the adja-
cency matrix M. For instance the deletion of the edge
(v2, v3) in the graph G = (V,E) implies that the graph G′
is no longer strongly connected.

3.2 Embedding into a larger network

This subsection provides a modification of the adjacency
matrix M that ensures the irreducibility and thus the
uniqueness of the stationary distribution. The approach
is derived from the recent development in logistics net-
works, where the distribution of e.g. production facili-
ties and OEM locations in logistics networks has become
global. Furthermore, the ability to be swift to react on
local economics circumstances (e.g. strikes) forces the lo-
gistics network to procure material locally from location
that are not part of the network. The concept to include
these exterior effects is to embed the given logistics net-
work into a larger network.

Consider a logistics network G = (V, E) with n loca-
tions, where the relative material flows and the retailers
orders are described by the matrixM. Let the size of the
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larger network be n + m � n, i.e., it consists of n + m
vertices. We number the vertices of the overall network
in such a way that the first n vertices correspond to the
logistics network of interest. As the structure of the large
network outside the given logistics network is unknown
we assume that every vertex is connected to every other
vertex with equal weight. The connection of the original
network to the large network is regulated by a parameter
c ∈ [0, 1]. Here c = 1 corresponds to decoupling, and c = 0
corresponds to the fact that the original network structure
has vanished. First we consider the case where the struc-
ture outside the given logistics network is unknown and
the interaction of the network of interest with the large
network is assumed to be weak. This corresponds to c be-
ing close to one.

The interconnection structure of the large network and
the embedding is given by the (n+m)× (n+m) matrix

L =

cM+ 1−c
n+meneT

n
1

n+meneT
m

1−c
n+memeT

n
1

n+m emeT
m

 . (7)

The matrix L is column stochastic and primitive. Thus
by the Perron-Frobenius Theorem 1 the matrix L has a
unique positive normalized right eigenvector correspond-
ing to the eigenvalue 1, which we denote by r. We partition
this vector as r =

[
rT
n r

T
m

]T, rn ∈ Rn+, rm ∈ Rm+ .

Proposition 3 Given a logistics network described by the
matrixM that is embedded into a larger network described
by (7). Let the Perron vector r be partitioned as

[
rT
n r

T
m

]T.
Then rn is an eigenvector corresponding to the eigenvector
1 of the matrix

cM+ (1− c) 1
n

eneT
n .

Proof. By assumption we have

rn =
(
cM+

1− c
n+m

eneT
n

)
rn +

1
n+m

eneT
mrm ,

and

rm =
1− c
n+m

emeT
nrn +

1
n+m

emeT
mrm .

The second equation implies by multiplication from the
left

eT
mrm = (1− c) m

n+m
eT
nrn +

m

n+m
eT
mrm .

and so

eT
mrm = (1− c)m

n
eT
nrn .

Inserting this expression in the first equation yields

rn =
(
cM+

1− c
n+m

eneT
n

)
rn

+
1

n+m
en(1− c)m

n
eT
nrn

=
(
cM+

(1− c)
n

eneT
n

)
rn.

This is the desired equality. �

However, in general the interconnection with the em-
bedding network is not uniform. That is, some locations
sell more products to exterior locations while others buy
material from certain exterior locations. So the previous
result has to be generalized in the following fashion, cf.
[29]. Given a column stochastic matrixM let v =

[
vT
n v

T
m

]T
and w =

[
wT
n w

T
m

]T ∈ Rn+m be two stochastic vectors
that describe the relationship of the logistics network with
the outside world. More precisely, the component wm re-
flects the procurement of material from locations that are
not contained in the network. The part vn indicates the
sale of material to locations outside the given logistics net-
work. The corresponding weighted matrix for a large net-
work with n+m vertices is defined by

L =

cM+ (1− c)wneT
n vneT

m

(1− c)wmeT
n vmeT

m

 . (8)

As before c describes the strength of the coupling between
the original network given by M and the larger network.
We assume that

v > 0 and wm > 0. (9)

Note that this implies the irreducibility of the matrix L.
Then we obtain the following generalization.

Theorem 2 Given a logistics network described by the
matrix M and stochastic vectors v, w such that (9) is sat-
isfied. Let the Perron vector r be partitioned as [rT

nr
T
m]T.

Then rn is an eigenvector corresponding to the eigenvector
1 of the matrix

Mc(v, w) := cM+ (1− c)
(
wn +

eT
mwm

1− eT
mvm

vn

)
eT
n .

(10)

Furthermore, Mc(v, w) is primitive.

Proof. By assumption we have

L

[
rn
rm

]
=
[
rn
rm

]
and so

rn =
(
cM+ (1− c)wneT

n

)
rn + vneT

mrm,

rm = (1− c)wmeT
nrn + vmeT

mrm.

Multiplying the second equation from the right by eT
m we

obtain

eT
mrm = (1− c)eT

mwmeT
nrn + eT

mvmeT
mrm ,

and so

eT
mrm = (1− c) eT

mwm
1− eT

mvm
eT
nrn .
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Note that the previous expression is well defined, as it
holds by assumption that vn 6= 0 and so eT

mvm < 1. In-
serting this in the first equation we obtain

rn =
(
cM+ (1− c)wneT

n

)
rn

+ vn(1− c) eT
mwm

1− eT
mvm

eT
nrn

=
(
cM+ (1− c)

(
wn +

eT
mwm

1− eT
mvm

vn

)
eT
n

)
rn.

This implies the first assertion.
To prove the second assertion, assume that Mc(v, w)

is reducible. Then there exists a permutation matrix P ∈
Rn×n such that

PTMc(v, w)P =
[
Q11 0
Q12 Q22

]
with quadratic matrices Qii ∈ Rni×ni , i = 1, 2. This im-
plies that the first n1 entries of PTvn and PTwn are both
zero. For the augmented permutation matrix diag(P, Im)
it follows that[

PT 0
0 Im

]
L

[
P 0
0 Im

]
=

Q11 0 0
Q12 Q22 ∗
∗ ∗ ∗


contradicting the irreducibility of L. The assertion follows
from Lemma 2 as the second term in (10) has a nonzero
diagonal entry. �

The framework derived in this section provides a unique
stationary distribution of the discrete Markov chain with
transition matrix Mc(v, w). According to the interpreta-
tion of the importance of locations in a logistics network
this approach uniquely determines the importance of each
location.

Definition 1 Let G = (V, E ,Mc(v, w)) describe a logis-
tics network. The normalized eigenvector associated to the
eigenvalue one of Mc(v, w) is called the LogRank of G.

3.3 Comparison to other ranking schemes

A common feature of ranking schemes such as PageRank,
HITS, SALSA, and LogRank is the attempt to extract in-
formation from the network structure. Conceptually the
steps in the definition of LogRank are comparable to the
ranking scheme known as PageRank. Note that the justi-
fication of these steps is based on inherent logistics con-
siderations.

The PageRank algorithm is based on the following
equation, where the PageRank ri of vertex i is

ri =
∑
j∈P (i)

1
out(j)

rj . (11)

This means that in the PageRank scheme for a vertex
the number of the predecessors and their outdegree is of

interest and moreover each vertex shares its PageRank
equally to all its successors. This is contrary to the Log-
Rank scheme for two reasons. To see this we note that
basic part of (10) can be written as

ri =
∑
j∈S(i)

fij∑
j∈P (i) fij

rj . (12)

So on the one hand the LogRank focuses on the inde-
gree and on the other hand a vertex shares its LogRank
proportionally to the sum of the weights of all ingoing
edges. Roughly speaking, a significant difference between
the ranking schemes is given by the directions of the edges
under consideration. Furthermore, the handling of zero
columns in the original matrix formulation is different.
Zero columns represent vertices with outdegree zero in
the PageRank algorithm, whereas in the LogRank scheme
they represent vertices with indegree zero. The PageRank
ensures that the transition matrix is column stochastic by
the addition of the term 1

nen dT. This reflects the idea
that from every sink vertex there are edges with the uni-
form weight 1

n to every vertex of the graph. The vector
d ∈ Rn+ is defined by di = 1 if out(i) = 0 and di = 0
else. In contrast to this the LogRank scheme uses network
inherent information, as described in Section 3.1. How-
ever, the significance of Theorem 2 lies in the fact, that
the PageRank procedure for ensuring primitivity of the
matrix is equivalent to the assumption that the network
under consideration is weakly coupled with a large fully
interconnected network. That is, since

eT
n

(
wn +

eT
mwm

1− eT
mvm

vn

)
= 1

the term wn + eT
mwm

1−eT
mvm

vn coincides with the teleportation
vector of the personalized PageRank algorithm [22]. The
embedding interpretation appears to be new even in the
context of PageRank.

The standard PageRank scheme applied to the exam-
ple given by Figure 1 is[

α(N +
1
n

en dT) + (1− α)
1
n

en

]
r = r,

where the matrix N is given by

N =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
1 1

2 0 0 0 0 0
0 1

2 0 0 0 0 0
0 0 1

2 0 0 0 0
0 0 1

2 0 0 0 0
0 0 0 1 0 0 0


.

The result for this case with α = 0.95 is

r ≈
[
.0793 .0793 .1924 .1170 .1707 .1707 .1905

]T
.
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It can be seen that the standard PageRank scheme has the
drawback, that all source suppliers have the same rank.
The reason for this phenomenon is, that the source sup-
pliers represent sources and the term 1

nen dT does not use
all network inherent information, as described in Subsec-
tion 3.1. In particular, each source supplier receives the
same share of rank from all other locations.

An application of the method proposed in the Subsec-
tions 3.1 and 3.2 to the example from Figure 1, where the
interaction with locations outside the logistics network is
assumed to be

v =
1
20
[
3 1 6 1 2 1 1 2 2 1

]T
,

w =
1
9
[
0 0 0 0 0 0 0 2 3 4

]T
,

and c = 0.95 leads to the LogRank

r ≈
[
.1278 .2055 0.2066 0.1301 .1558 .0407 .1335

]T
.
(13)

Remark 3 (Summary) What all this amounts to is that
the LogRank scheme to identify the importance of loca-
tions in logistics network has the following characteris-
tics. The embedding of the given network into its external
world guarantees the irreducibility of the matrixMc(v, w)
and thus the uniqueness of the LogRank. Even if the ma-
trix M is already irreducible, it is reasonable to embed
the network into a larger one. The reason for this can be
seen by comparing the results of the example. In (6) the
network is not embedded into a larger network, whereas
in (13) the relation to exterior locations has been taken
into account. This information allows a specification of
the LogRank such that the LogRank of location four and
seven does not coincide.

4 LogRank preserving graph transformations

In this section we make use of the rank and graph struc-
ture information for the reduction of network size. In par-
ticular, we will apply the key result Theorem 2 provided
in the previous Section 3 to calculate the LogRank of each
location. Thus we modify the matrix M according to (2)
and (10) and obtain the matrix Mc(v, w). To keep the
notation simple we denote this matrix Mc(v, w) just by
A. Let A be column stochastic. Hence the corresponding
graph G = (V,E,A) is strongly connected.

In our reduction approach we are going to omit the
vertices with low rank. During the process of approxima-
tion we aim to preserve the main structure of material flow
of the original network. To this end we will introduce ag-
gregation rules for vertices with low rank; fortypical sub-
graphs occurring in the network. Such subgraphs we will
call motifs [30]. The main object of interest for the struc-
tural model reduction of logistics networks is the matrix
M that describes an interconnection structure of the net-
work. This matrix will be used to identify the motifs and
to describe aggregation rules. We single out the following

motifs: parallel connections, sequential connections of ver-
tices and almost disconnected subgraphs. These reduction
rules are inspired by the rank properties of motifs in [31,
32].

4.1 Aggregation of vertices

By aggregation of vertices we understand the construc-
tion of smaller graphs in which vertices may represent
nonempty subsets of vertices in the original graph. In the
most general case we can assume that we aggregate arbi-
trary subsets of vertices of the graph G = (V,E,A).

To this end we consider a disjoint partition

V = {1, . . . , n} =: J1 ∪ J2 ∪ . . . ∪ Jk .

The vertices of the reduced graph G̃ = (Ṽ , Ẽ, Ã) are given
by

Ṽ = {J1, . . . , Jk} . (14)

The edge (Jj , Ji) is in the edge set Ẽ if there are k ∈
Jj , l ∈ Ji such that (k, l) ∈ E. In other words, the subsets
of vertices Jj keep the connections which were present in
the graph G. Finally, we have to define the weights of
Ã. Assuming that A is irreducible we use the normalized
Perron vector r of A and define

ãij :=
∑
ν∈Ji

1∑
µ∈Jj

rµ

∑
µ∈Jj

rµaνµ . (15)

Theorem 3 Consider a strongly connected weighted di-
rected graph G = (V,E,A). Let r be the (unique) normal-
ized Perron vector of A. Given a disjoint partition

V = {1, . . . , n} =: J1 ∪ J2 ∪ . . . ∪ Jk ,

and the corresponding construction of the reduced graph
G̃ = (Ṽ , Ẽ, Ã) given in (14), (15), then Ã is irreducible
and the unique normalized Perron vector r̃ of Ã has the
property

r̃i =
∑
ν∈Ji

rν , i = 1, . . . , k . (16)

Proof. The proof follows by calculation. By construction
it is clear that r̃ > 0 and

∑k
i=1 r̃i = 1. So compute

(
Ãr̃
)
i

=
k∑
j=1

ãij r̃j =
k∑
j=1

∑
ν∈Ji

1∑
µ∈Jj

rµ

∑
µ∈Jj

rµaνµ
∑
η∈Jj

rη

=
∑
ν∈Ji

k∑
j=1

1∑
µ∈Jj

rµ

∑
µ∈Jj

rµaνµ
∑
η∈Jj

rη

=
∑
ν∈Ji

k∑
j=1

∑
µ∈Jj

rµaνµ =
∑
ν∈Ji

n∑
µ=1

rµaνµ =
∑
ν∈Ji

rν

= r̃i ,

where in the last equation but one we have used that r is
the normalized Perron eigenvector of A. Irreducibility of
Ã is clear by construction. �
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Remark 4 (i) The construction in the previous lemma cor-
responds to: (a) taking the sums of the rows i for i ∈
Jj to obtain the row associated to i and (b) taking the
weighted sums of the columns weighted with the corre-
sponding entry of the normalized leading Perron vector.
Assuming that the vertices are ordered so that sets Jj
contain jk consecutive vertices, i.e., J1 = {1, . . . , j1}, J2 =
{j1 + 1, . . . , j1 + j2}, . . . , Jk = {1 +

∑k−1
l=1 jl, . . . ,

∑k
l=1 jj}

these operations may be given the matrix representation

Ã = Ψ AΦ,

where

Ψ :=


1 . . . 1 0 . . . 0 . . . 0
0 . . . 0 1 . . . 1 0 . . . 0
...

...
. . .

. . . 0 1 . . . 1 0
0 . . . 0 . . . 0 . . . 0 I#J

 ,
and

Φ :=



ṽ1 0 0 0
...

...

ṽj1 0
...

0 ṽj1+1 . . .
...

... 0
0 ṽj1+j2

. . .
ṽ1+

Pk−1
l=1 jl

0
...

...
ṽPk

l=1 jj
0
I#J



.

(ii) General aggregation, as discussed in Theorem 3,
may not preserve the main network structure if applied
to arbitrary subgraphs. Therefore we develop aggregation
rules for typical network motifs.

4.2 Typical motifs

We consider three types of motifs. The first motif consists
of vertices that are connected in parallel, see Figure 4 for
an example of such a motif. The second motif is given
by sequentially connected vertices and is shown in Fig-
ure 6. An almost disconnected subgraph is the third type
of motif, see Figure 8. In the following subsections we
will show how such motifs can be aggregated using (15).
The information about the material flow and the struc-
ture of a logistics network will be reflected in the graph
G = (V,E,A). The result of Theorem 3 will guarantee the
rank preserving property.

4.2.1 Parallel connections

Parallel connections are characterized by vertices having
the same predecessor and successor sets consisting of a

single vertex. That is, the vertices VJ := {v1, . . . , vk} ⊂ V
are connected in parallel, if every vertex has only one ingo-
ing and one outgoing edge and the ingoing edges originate
from one vertex v ∈ V and also the outgoing edges end
in solely one vertex v′ ∈ V . To be precise, VJ = {i ∈
V : P (i) = v, S(i) = v′}. As an example in Figure 4 the
vertices v1, . . . , vk are connected in parallel.

vvv

v1v1v1 vkvkvk

v′v′v′

...

Fig. 4. Parallel connection of vertices v1, . . . , vk.

To obtain a graph of a smaller size we aggregate the
vertices VJ to a single vertex J and do not change the
remaining graph. So, we consider the smaller network de-
scribed by the reduced graph G̃ = (Ṽ , Ẽ, Ã), where the
vertices are given by

Ṽ = {V \ VJ} ∪ J, (17)

and the edges are given by

Ẽ = E \ {(v, w), (w, v′) : w ∈ VJ}
∪ {(v, J), (J, v′) : J, v, v′ ∈ Ṽ }. (18)

The corresponding cut-out of the reduced graph is shown
in Figure 5. In the following we renumber the vertices in V

vvv

JJJ

v′v′v′

Fig. 5. The vertices v1, . . . , vk are aggregated to J .

such that the first l = n−k−2 vertices correspond to the
vertices that are not directly connected with the parallel
connection, the vertex v corresponds to l + 1, the vertex
v′ corresponds to l + 2 = n− k and the vertices v1, ..., vk
connected in parallel have the labels n−k+ j, j = 1, ..., k.
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The weights of the reduced weighted adjacency matrix Ã
are obtained according to the formula (15). That is,

ãij = aij (19)

for i, j = 1, ..., l + 2. The last row i = l + 3 except for the
diagonal element is given by

ãij = an−k+l,j + ...+ an,j . (20)

The last column j = l+ 3 except for the diagonal element
is given by

ãij =
rn−k+1 ai,n−k+l + ...+ rn ai,n

rn−l+1 + ...+ rn
(21)

and the diagonal element is

ãl+3,l+3 =
rn−k+1 (an−k+1,n−k+1 + ...+ an,n−k+1)

rn−k+1 + ...+ rn

+ ....+
rn (an,n−k+1 + ...+ an,n−k+1)

rn−k+1 + ...+ rn
. (22)

Note that Ã matrix is irreducible if A is. By Theorem 3
the LogRank of the reduced network G̃ = (Ṽ , Ẽ, Ã) has
the following properties.

Corollary 1 Let G = (V,E,M) be a directed graph. Let r
be the LogRank calculated using the matrix A obtained by
(2) and(10). Assume the vertices VJ ⊂ V are connected in
parallel. Consider the reduced graph G̃ = (Ṽ , Ẽ, M̃) with
the vertex set Ṽ given by (17), edge set Ẽ given by (18).
Let r̃ be the LogRank of Ã defined by (19)-(22).

Then the LogRank of vJ ∈ Ṽ is the sum of the Log-
Ranks of the aggregated vertices in VJ , while the LogRank
of the unaffected vertices v1, . . . , vl+2 is preserved.That is,

r̃T =
[
r1 . . . rl+2 rn−k+1 + . . .+ rn

]
.

4.2.2 Sequential connections

The second motif is given by sequentially connected ver-
tices that we describe as follows. The vertices of the set
VJ = {v1, ..., vk} are called sequentially connected if there
exist vertices v, v′ ∈ V \ VJ such that

P (vi) =

{
v i = 1,
vi−1 i = 2, ..., k

and

S(vi) =

{
vi+1 i = 1, ..., k − 1,
v′ i = k.

In Figure 6 a cut-out of a graph is shown, where the ver-
tices VJ = {v1, . . . , vk} are sequentially connected. Based
on this structure a possibility to attain a graph of smaller
size is to aggregate the sequentially connected vertices to
a single vertex and to leave the structure of the remaining

vvv v1v1v1 ......... vkvkvk v′v′v′

Fig. 6. Sequential connection of vertices v1, . . . , vk.

vvv JJJ v′v′v′

Fig. 7. Vertices v1, . . . , vk are aggregated.

graph as it is. We denote the new vertex by J . A cut-out
of the new reduced graph is shown in Figure 7. So we con-
sider the reduced graph G̃ = (Ṽ , Ẽ, Ã), where the vertices
are given by

Ṽ = {V \ VJ} ∪ J (23)

and the edges are given by

Ẽ = E \ {(v, w), (w, v′), (w1, w2) : w,w1, w2 ∈ VJ}
∪ {(v, u), (u, v′) : u, v, v′ ∈ Ṽ }. (24)

In the following we renumber the vertices V such that the
first l = n− k− 2 vertices correspond to the vertices that
are not directly connected with the sequential connection,
the vertex v is labeled by l+1, the vertex v′ by l+2 and the
vertices v1, ..., vk receive the labels n− k + j, j = 1, ..., k.

The corresponding weighted adjacency matrix Ã can
be created from A where the rows and columns corre-
sponding to the vertices v1, . . . , vk are replaced by a row
and column corresponding to new vertex J . The weights
are then given by (15), which coincides with the expres-
sions (19)-(22). Note that Ã is irreducible. By Theorem 3
the LogRank of the reduced network G̃ = (Ṽ , Ẽ, Ã) has
the following properties.

Corollary 2 Let G = (V,E,M) be a directed graph. Let r
be the LogRank calculated using the matrix A obtained by
(2) and(10). Assume the vertices VJ ⊂ V are sequential-
lyconnected. Consider the reduced graph G̃ = (Ṽ , Ẽ, M̃)
with the vertex set Ṽ given by (23), edge set Ẽ given by
(24). Let r̃ be the LogRank of Ã defined by (19)-(22).

Then the LogRank of vJ ∈ Ṽ is the sum of the Log-
Ranks of the aggregated vertices in VJ , while the LogRank
of the unaffected vertices v1, . . . , vl+2 is preserved.That is,

r̃T =
[
r1 . . . rl+2 rn−k+1 + . . .+ rn

]
.

4.2.3 Almost Disconnected Subgraphs

A further structure in the network, that suggests itself to
a reduction is given by subgraphs which are connected to
the remainder of the network through just a single ver-
tex. So we consider a set of vertices VJ = {v1, ..., vk} and
an distinguished vertex v∗ ∈ V \ VJ such that any path
from vi, i = 1, . . . , k to the remainder of the vertices in
V \VJ , and any path from V \VJ to VJ necessarily passes
through the vertex v∗. If we assume that the whole graph
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is strongly connected, this implies in particular, that the
subgraph induced by VJ ∪ {v∗} is by itself strongly con-
nected.

In Figure 8 an example graph is shown, where the ver-
tices VJ = {v1, . . . , vk} are connected with the rest of the
graph only through the vertex v.

v1v1v1

v2v2v2

v3v3v3

v∗v∗v∗

Fig. 8. The subgraph consisting of the vertices VJ =
{v1, v2, v3} is almost disconnected from the graph.

To reduce the network size we aggregate the vertices
of the subgraph VJ with vertex v∗ and do not change the
remainder of the graph. We denote the new vertex by J .
For the example in Figure 8 the reduced graph is shown in
Figure 9. So we consider the reduced graph G̃ = (Ṽ , Ẽ, Ã),
where the vertices are given by

Ṽ = (V \ {VJ ∪ v∗}) ∪ J (25)

and the edges are given by

Ẽ = E \ {(w1, w2), (v∗, w1), (w1, v
∗) : w1, w2 ∈ VJ}

∪ {(J, u) : u ∈ Ṽ , (v∗, u) ∈ E)}
∪ {(u, J) : u ∈ Ṽ , (u, v∗) ∈ E)}. (26)

The corresponding weighted adjacency matrix Ã can be
created from A where the rows and columns correspond-
ing to the vertices v∗, v1, . . . , vk are replaced by a row and
column corresponding to new vertex J . The corresponding
weights are given by (15), which coincides with the expres-
sions in front of Corollary 1. By Theorem 3 the LogRank
of the reduced network G̃ = (Ṽ , Ẽ, Ã) has the following
properties.

In the following we number the vertices V such that
the first l = n − k − 1 vertices correspond to the vertices
from V \ {VJ ∪ v}, the vertex v∗ corresponds to l+ 1, and
the vertices from the subgraph v1, ..., vk have the labels
n− k + 1, ..., n.

JJJ

Fig. 9. Subgraph VJ and node v∗ are merged to vertex J .

Corollary 3 Let G = (V,E,M) be a directed graph. Let r
be the LogRank calculated using the matrix A obtained by
(2) and(10). Assume the vertices VJ ⊂ V form a subgraph
connected with the rest of the graph through the vertex v∗.
Consider the reduced graph G̃ = (Ṽ , Ẽ, M̃) with the vertex
set Ṽ given by (25), edge set Ẽ given by (26). Let r̃ be the
LogRank of Ã defined by (15).

Then the LogRank of vJ ∈ Ṽ is the sum of the Log-
Ranks of the aggregated vertices in VJ , while the LogRank
of the unaffected vertices v1, . . . , vl+2 is preserved.That is,

r̃T =
[
r1 . . . rl rn−k + . . .+ rn

]
.

4.3 Discussion of reduction rules

In this section we have introduced a broadly defined aggre-
gation process based on the LogRank. In the most general
case this process is hardly structure-preserving. For this
reason motifs have been considered as a way of controling
the way of changing the structure. The three typical motifs
parallel connections, sequential connections, and almost
disconnected subgraphs have been discussed in detail.In
logistics contexts further motifs might be of interest and
could be discussed based on Subsection 4.1. The reduction
rules presented in this section preserve the main structure
of the network as well the ranks of the unaffected vertices.
In the following section we will utilize the ranking tech-
nique from Section 3 and reduction rules for typical motifs
from Sections 4.2.1-4.2.3 to introduce a meta algorithm for
the reduction of large-scale logistics networks.

5 Meta algorithm for structural model
reduction guided by LogRank

Large-scale logistics networks can be modeled as dynami-
cal systems. They can consist of several hundreds of loca-
tions and connections. In order to analyse such a network
(e.g. logistic performance or robustness) models are used.
A model of smaller size that approximates the character-
istics of the original network facilitates the analysis and
is desirable. In particular, given the same input a model
of smaller size should produce the same output compared
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to the original model by not exceeding a predefined ac-
ceptable error. To this end a suitable approach to model
reduction needs to be applied. In the context of logistics
networks two different dimensions of model reduction ex-
ist. First, the structure of the network can be simplified.
However essential structures of the network should be pre-
served. Second, the accuracy of the modelled dynamics of
the network can be reduced in order. Note, that both di-
mensions are interdependent.

In this section we introduce our approach to structure-
preserving model reduction. This approach is guided by
the LogRank introduced in Section 3. As we do not want
to restrict ourselves to a particular model class, we present
a meta algorithm for model reduction of logistics networks.

We use the following notation. The input-output map
of the network G = (V, E ,Mc(v, w)) is denoted by f and
f̃ denotes the input-output map for the network G̃ =
(Ṽ , Ẽ ,M̃c(v, w)). The comparison of the given network
and its approximation is done by the investigation of the
difference of the input-output maps. That is, for a prede-
fined norm ‖ · ‖ the reduction error is defined as

e := ‖f − f̃‖.

Due to the fact that any model reduction is a trade off
between the size of the approximating system and the er-
ror, let ε > 0 denote an acceptable upper bound for the
reduction error. Further, there is an upper bound on the
LogRank of the vertices that are allowed to be reduced.
This bound is denoted by ∆. The set of vertices that has
a LogRank less then ∆ is denoted by R∆. That is,

R∆ = {v ∈ V : LogRank(v) < ∆}.

The vertices of R∆ = {v1, ..., vl} are arranged in ascend-
ing order to their LogRank, i.e., vi ≤ vj if and only if
LogRank(vi) ≤ LogRank(vj). Consequently, this set con-
tains the candidates of vertices that might be aggregated
with other vertices. For the vertex v1 ∈ R∆ the candi-
date list C(v1, r) of reasonable motifs containing v1 is set
up. These motifs are assessed based on the rank r of the
involved locations and ordered in ascending order.

Algorithm 1 summarizes the steps of the structure-
preserving approach to model reduction. The meta algo-
rithm is not fixed for a specific class of mathematical mod-
els. It can be adapted to various modeling approaches in
order to capture the context specific characteristics of the
given logistics network.

The iterative algorithm is initialized with the ranking
of the original large-scale logistics network. The obtained
ranking is used in order to generate the waiting list R∆
of locations that might be merged. The idea of the al-
gorithm is to keep locations with a high importance and
to try to consolidate locations with lower importance. To
this end for the first location of the waiting list R∆ the
candidate list C(v1, r) is created. While the candidate list
is not empty one considers the first candidate for model
reduction. In particular this means that in a first attempt
a simplification of the structure is performed. In a second
step, if necessary, one tries to reduce the order of the mod-

Algorithm 1 Meta algorithm for structure-preserving
model reduction guided by LogRank.

Compute the LogRank r of the network G = (V, E ,Mc(v, w))
and generate R∆

repeat
Delete and consider v1 ∈ R∆;
Generate candidate list C = C(v1, r);
while C 6= ∅ do

Delete and consider c1 from the candidate list C;
if for c1 reduction error e ≤ ε then

aggregate c1;
clear C;
Generate new waiting list R∆;

end if
end while

until R∆ = ∅

elled dynamic system. Afterwards the input-output map-
ping of the original structure and approximated structure
is compared. This assessment needs to satisfy the previ-
ously defined upper bound for the reduction error ε. If the
obtained error should be less than ε, then the model reduc-
tion is performed. In addition the candidate list C(v1, r)
is cleared and a new waiting list R∆ is derived based on
the changed ranking of the locations. Otherwise the next
candidate is considered. This process continues until the
candidate list is empty. Afterwards the next location of
the waiting list R∆ is considered. The whole process ter-
minates when no more model reduction can be performed.
The reason is either that the model reduction error ex-
ceeds the upper bound for the reduction error ε or that no
locations of lower importance exist that could be merged.
In Section 6 the meta algorithm is applied to an example
of a logistics network.

6 Example: Jackson networks

In this section we model logistics networks as Jackson net-
works. To this end we follow the description of Jackson
networks given in [3].

An open Jackson network consists of V = {1, ..., n} lo-
cations (in the theory of queueing networks these are fre-
quently called stations), where orders (jobs or customers)
are processed. The processing times of orders at each loca-
tion are identically and independently distributed (i.i.d.),
following an exponential distribution with a finite mean
that may depend on the queue length. The processing rate,
denoted µi(xi), at location i where xi products are present
is given by a function

µi : Z+ → R+

with µi(0) = 0 and µi(x) > 0 for all x > 0. The evolution
of the orders through the network is determined by the
routing matrix P , where pij denotes the probability that
an order leaving location i will go to location j. With this
convention the row sums of P are bounded by 1. One of
the main characteristics of Jackson networks is that all
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orders at each location belong to the same class and all
orders follow the same service time distribution and the
same routing mechanism. Hence Jackson networks belong
to single class models. So at each location the orders are
processed according to their arrivals, that is first-in-first-
out (FIFO).

There are three different types of Jackson networks:
open, closed and semiopen Jackson networks. They are
distinguished by the way in which new orders may ar-
rive from the outside. In the following we focus on open
Jackson networks. Here the orders arrive from the out-
side according to a Poisson process with rate α > 0. Each
arriving order is independently routed to location i with
probability p0i ≥ 0, with

∑n
i=1 p0i = 1. This means that

at location i the orders are arriving from outside with
rate αp0i. After an order has been served at location
i, it either routes through the network according to the
routing matrix P , or leaves the network with probability
pi0 = 1 −

∑n
j=1 pij . The matrix P is (row) substochastic

and hence has spectral radius ρ(P ) ≤ 1. In the following
we assume that ρ(P ) < 1. This has the effect that the
expected time that an order stays in the network is finite.

The effective arrival rate λi of orders at location i is
given by the sum of arrivals from the outside and the inter-
nal transitions. This quantity satisfies the traffic equation

λi = αp0i +
n∑
j=1

pji λj , i ∈ V.

For λ =
[
λ1 ... λn

]T and a =
[
αp01 ... α p0n

]T a matrix
form expression of the traffic equation is

λ = a+ PTλ. (27)

The number of orders present at location i at time t is
denoted by Xi(t) and from the description above it follows
that

{(Xi(t))ni=1 : t ∈ R+}

defines a continuous time Markov chain. Let X = (Xi)ni=1,
x = (xi)ni=1 and π(x) = P[X = x] denote the stationary
distribution. Then, if for Mi(k) := µi(1) · · ·µi(k) it holds
that

∞∑
k=1

λki
Mi(k)

<∞

the stationary distribution π of the open Jackson network
is of the following product form

π(x) =
n∏
i=1

(
1−

∞∑
k=1

λki
Mi(k)

)−1
λxi
i

Mi(xi)

for all x ∈ Zn+, cf. [3, Theorem 2.1]. Consequently, given
the processing rates for the locations all that is needed
to write down the stationary distribution is the effective
arrival rate λ.

6.1 Effective arrival rates and ranks

In the following we explain that for particular Jackson
networks the ranking scheme proposed in Section 3 is in
one to one correspondence with the effective arrival rate
of the locations.

To this end we define the outflow probability vector
po =

[
p10 ... pn0

]T, the external inflow probability vector

pe =
[
p01 ... p0n

]T and the stochastic matrix

P :=
[
PT pe
pT
o 0

]
.

The interconnection of the Jackson network with the out-
side world is represented by the vectors a = αpe and po.

In terms of the matrix P the outside world is repre-
sented by the n+ 1st row and column. The corresponding
weighted graph G(P ) = (V ,E, P

T
) has the n+ 1 vertices

V = V ∪ {n + 1} and the edge set E is determined by
the nonzero entries of P

T
. So, on the subgraph induced

by the vertices in V the graph G(P ) coincides with the
graph G(P ) representing the Jackson network. The addi-
tional vertex n+ 1 represents the outside world and edges
from or to that vertex represent inflows to resp. outflows
from the Jackson network.

We now show that in the context of logistic networks it
is reasonable to assume that P is irreducible. To this end
note that in logistics networks it is reasonable to assume
that every location of the network receives products either
from the outside world or from another location within the
network. Otherwise there would be parts of the network
not engaged in logistic activity which is implausible.

The condition that every location receives products
directly from the outside or through other locations of the
network can be formulated in terms of G(P ) as

for all vertices i ∈ V (28)
there exists a path from n+ 1 to i.

Proposition 4 Consider a Jackson network with routing
matrix P . If ρ(P ) < 1 and condition (28) is satisfied, then
the matrix P is irreducible.

Proof. Irreducibility of P is equivalent to the irreducibil-
ity of P

T
which is equivalent to the graph G(P ) being

strongly connected. We show the latter, that is, for every
pair of vertices (i, j) ∈ V ∪ {n + 1} there is a path from
i to j. From (28) it follows that there is a path from ver-
tex n + 1 to every vertex i ∈ V . Further, by definition
the matrix P is column stochastic and since ρ(P ) < 1
it follows that pk0 > 0 for some k ∈ V , so that the last
row of P is not equal to 0. Assume now that there are
vertices i for which there are no paths from i to n+1 and
if necessary relabel the vertices so that there is no path
from W− := {1, . . . ,m} to n + 1 and for the remaining
vertices W+ := {m + 1, . . . , n} such a path exists. Note
that m < n as pk0 > 0 for some k ∈ V . By construc-
tion there is no path from the vertices in W− to those in
W+. Consequently, if we consider the Markov chain with
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transition properties given by P and initial condition sup-
ported on W− then the states of the chain remain in W−
with probability 1. It follows that the chain admits a sta-
tionary measure supported on W− and so the matrix P
has an eigenvalue equal to 1. By assumption it follows
that W− = ∅.

Hence the graph G(P ) admits a path from k to n+ 1
for every vertex k ∈ V . This shows the assertion. �

From now on we assume that P is irreducible and
return to the relation of Jackson networks to the Log-
Rank. The traffic equation implies that α = α‖pe‖ =
‖(I − PT)λ‖, which in turn implies that

α =
n∑
i=1

λi

1−
n∑
j=1

pji

 =
n∑
i=1

λi pi0 = pT
o λ. (29)

The combination of the traffic equation (27) and (29) leads
to the eigenvalue problem[

PT pe
pT
o 0

]
·
[
λ
α

]
=
[
PTλ+ a∑

pi0 λi

]
=
[
λ
α

]
.

As P is irreducible, the effective arrival rate λ is the unique
solution of

(PT + pep
T
o ) λ = λ, pT

oλ = α. (30)

If we compare this condition to the matrixM defined
in (2), then we see a close relation, if we again consider
the sets of retailers R and source suppliers S. Namely, we
can assume that pei > 0 if and only if i ∈ S and poi > 0 if
and only if i ∈ R. If for every source supplier there exists
a path to any retailer, then the matrix (PT+pepT

o ) defined
in (30) is exactly the matrix M defined in (2). For this
we interpret the Jackson network in terms of unfullfilled
orders, so that pij represents the probability, that location
i places an order at location j, if it receives an order. This
is in correspondence with the previous definition of mij .
If we now include a further external effect to the Jackson
network in the form

P c(v, w) := c(PT+pepT
o )+(1−c)

(
wn +

eT
mwm

1− eT
mvm

vn

)
eT
n

this shows that for such Jackson networks the LogRank
and the effective arrival rate coincide (up to a constant
multiple).

Remark 5 We note that the previous argument is not evi-
dent in the general case. As we can see from (5) the weight
matrixM is in general a perturbation of M of higher rank.
Whereas in the construction of Jackson networks the ma-
trix (PT + pep

T
o ) is always a rank-one perturbation of PT.

6.2 Omission of low rank locations

One approach to obtain a network of smaller size is the
omission of locations that have an effective arrival rate

smaller than a pre-defined number ∆. In this section we
derive error estimates for the resulting effective arrival
rates. To this end we order the locations of the Jackson
network such that the effective arrival rates satisfy

λ1 ≥ . . . ≥ λl > ∆ ≥ λl+1 ≥ . . . ≥ λn.

Further, by small abuse of notation let λ1 =
[
λ1 . . . λl

]T
and λ2 =

[
λ1+1 . . . λn

]T. The corresponding eigenvalue
problem can then be written as

PT
11 P

T
12 pe1

PT
21 P

T
22 pe2

pT
o1 pT

o2 0

 ·
λ1

λ2

α

 =

λ1

λ2

α

 . (31)

The reduced eigenvalue problem, where the locations with
effective arrival rate smaller than ∆ are excluded, can then
be written the following[

PT
11D

pe1
‖pe1‖

pT
o1D 0

]
·
[
λ̃
α

]
=
[
λ̃
α

]
, (32)

where D = diag(P11 el + po1)−1. In particular, we assume
that the matrix in (32) has no zero columns and that (28)
is applicable.

As a first result we note a minimal error that is neces-
sary if deletions are performed.

Proposition 5 Consider the effective arrival rate λ1 de-
fined by (31) and the effective arrival rate defined by (32).
Then it holds that

‖D λ̃− λ1‖ ≥
‖pT
o2λ2‖
‖pT
o1‖

.

Proof. On the one hand, by (31) it holds that

α = pT
o1λ1 + pT

o2λ2.

On the other hand follows from (32) that

α = pT
o1D λ̃.

The combination of the two equalities implies that

‖pT
o2λ2‖ = ‖pT

o1(Dλ̃− λ1)‖ ≤ ‖pT
o1‖ ‖Dλ̃− λ1‖.

This shows the assertion. �

In the next result we obtain lower and upper bounds
for the reduction error based on the deletion threshhold
that is chosen.

Proposition 6 Consider the effective arrival rate λ1 de-
fined by (31) and the effective arrival rate defined by (32).
Then the following holds true

cα (I − PT
11)−1 pe1 ≤ λ1 − λ̃ ≤ ∆(I − PT

11)−1PT
12en−l,

where cα = α
(

1− 1
‖pe1‖

)
.
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Proof. From (31) and (32) it follows that

λ1 = PT
11λ1 + PT

12λ2 + αpe1

λ̃ = PT
11Dλ̃+

α

‖pe1‖
pe1.

By using cα := α
(

1− 1
‖pe1‖

)
the difference of λ1 and λ̃

can be represented by

λ1 − λ̃ = PT
11λ1 − PT

11Dλ̃+ cαpe1 + PT
12λ2. (33)

First we verify the right inequality. Since ‖pe1‖ ≤ 1 it
follows that

cαpe1 = α

(
1− 1
‖pe1‖

)
pe1 ≤ 0,

where the inequality has to be understood component-
wise. Further since the matrix PT

12 and the vector λ2 are
nonnegative and λ2 ≤ ∆ en−l it holds that

λ1 − λ̃ ≤ PT
11

(
λ1 −Dλ̃

)
+∆PT

12 en−l.

Another representation of the last inequality is(
I − PT

11

)
λ1 −

(
I − PT

11D
)
λ̃ ≤ ∆PT

12 en−l.

Since ρ(P11) < 1 the inverse of
(
I − PT

11

)
exists and is

nonnegative. This implies

λ1 −
(
I − PT

11

)−1 (
I − PT

11D
)
λ̃

≤ ∆
(
I − PT

11

)−1
PT

12 en−l.

From the fact that
(
I − PT

11

)−1 =
∑∞
k=0(PT

11)k it follows
that(
I − PT

11

)−1 (
I − PT

11D
)

= I +
(
I − PT

11

)−1
PT

11 (I −D) ,

which implies that

λ1 − λ̃ ≤ ∆
(
I − PT

11

)−1
PT

12 en−l

+
(
I − PT

11

)−1
PT

11 (I −D) λ̃.

Furthermore it holds that P11 el + po1 < el and this im-
plies that the diagonal entries of D are greater than 1.
Consequently the matrix I −D is nonpositive. Moreover,
the nonnegativity of PT

11,
(
I − PT

11

)−1 and λ̃ shows that(
I − PT

11

)−1
PT

11 (I −D) λ̃ ≤ 0.

Hence it holds that

λ1 − λ̃ ≤ ∆
(
I − PT

11

)−1
PT

12 en−l.

To prove the left inequality we start again with (33).
Since PT

12 and λ2 are nonnegative it follows that

λ1 − λ̃ ≥ PT
11λ1 − PT

11Dλ̃+ cα pe1.

The matrix D is nonegative and the diagonal entries are
greater than one and the off-diagonal entries are zero.
Hence as λ̃ is nonnegative it holds that

λ1 − λ̃ ≥ PT
11λ1 − PT

11 λ̃+ cα pe1.

Further, since (I − PT
11)−1 exists and is nonnegative it

holds that

λ1 − λ̃ ≥ cα(I − PT
11)−1pe1.

This shows the assertion. �

Simple omission of locations provides an easy way of
reducing the network without paying too much atten-
tion to the error that is involved. However, the effective
arrival rate λ determines the stationary distribution π.
As the LogRank is closely related to λ, it may be of
greater interest to perform the reduction such that the
LogRank remains unchanged. We explain how to perform
the necessary reduction steps by an application of the
meta alogrithm from Section 5 in the next section.

6.3 Test Case

In this subsection we discuss a test case that illustrates
the scheme introduced in Section 5. We consider the fol-
lowing test scenario the topology of which is depicted in
Figure 10. We would to point out that the structure of the
network is close to symmetric. However, the magnitude of
the flows leads to an asymmetric LogRank.

The weighted matrix M that takes the relation of the
source suppliers and the retailers into account is given by

M =
1
20

[
0 B
A 0

]
, A =

6 6 6 6 6 6
5 5 5 5 5 5
2 2 2 2 2 2
7 7 7 7 7 7

 .
where the weighted flow matrix is

B =



10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 20 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 13 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 7 20 20 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 20 9 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 16 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 13 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 7 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 16 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 17 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 3 20 20 0 0
0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 20 20



.
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Source suppliers
(Production of A)
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Fig. 10. The topology of the test example.

The application of Theorem 2 leads to the following

v =
1

230



3
14
10
17
2
1
8
3
16
5
19
17
13
3
6
1
4
14
18
12
9
5
11
3
10
6



, w =
1
9



0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
3
4
2



, LogRank ≈



.0201

.0355

.0322

.0189

.0451

.0083

.0405

.0445

.0622

.0169

.0620

.0116

.0106

.0500

.0273

.0787

.0772

.1024

.0937

.0489

.0405

.0165

.0563



.

The matrix B reflects the relative material flow between
the locations and the matrix A represents the modification
described in Subsection 3.1. The conderation of the corre-
sponding bipartite graph that consists only of the source
suppliers and the retailers shows that it is complete. This

corresponds to the fact that the matrix B has rank one.
The embedding of the logistics network into its environ-
ment is described by the vectors v and w.

According to the LogRank we divide the set of loca-
tions as follows. The important locations are chosen to be
those that have a LogRank of at least .06. In Figure 10 the
blue vertices correspond to the highly important locations.
Further, the locations with a LogRank lower than .03 are
considered to be locations of low importance. These are
the locations that are candidates for model reduction. In
Figure 10 they are depicted by the red.

We have now collected the necessary information to
start the meta algorithm. We use the motifs parallel con-
nections, sequential connections, and almost disconnected
subgraphs.

We discuss examplarily the first steps of the Algo-
rithm 1 with respect to the motifs discussed in Subsec-
tion 4.2. According to the LogRank the set of vertices
that are supposed to be reduced is given by

R∆ = {v6, v13, v12, v22, v10, v4, v1, v15}.

In the first step the vertex v6 is considered. As this vertex
is almost disconnected from the network, it is aggregated
with vertex v10, denoted v′10. By Theorem 3 the update of
the list is

R∆ = {v13, v12, v22, v4, v1, v′10, v15}.

In the second iteration the vertex v13 is part of a parallel
connection and hence aggregated with vertex v12. The new
vertex is denoted by v′12. The corresponding update is

R∆ = {v22, v4, v1, v′12, v′10, v15}.
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Source suppliers
(Production of A)

2nd-tier suppliers
(Production of B

consumes A)
1st-tier suppliers
(Production of C

consumes B)
OEM locations
(Production of D

consumes C)
Local warehouses

(Storage and
shipping of D)

Retailers
(Distribution of D)

v2v2v2 v3v3v3 v5v5v5

v′7v
′
7v
′
7 v8v8v8 v′9v

′
9v
′
9

v11v11v11 v′12v′12v′12 v′14v′14v′14

v16v16v16 v17v17v17

v18v18v18 v′19v′19v′19

v20v20v20 v21v21v21 v23v23v23

Low importance High importance

Fig. 11. The reduced network of the test example.

A successive continuation in this manner leads then to the
network depicted in Figure 11. Note that although the ver-
tex v′12 has still a LogRank smaller than .03 it cannot be
reduced further since it is neither part of a sequential or
parallel connection nor almost disconnected from the lo-
gistics network. However, if further motifs had been under
consideration the procedure might continue.

As we have seen in this section our approach to structure-
preserving model reduction can be easily adapted and ap-
plied to Jackson networks.

7 Conclusions

This paper provides a new heuristic approach for structure-
preserving model reduction of large-scale networks with
flows that is in particular suitable for logistics systems.
For this purpose we consider such networks as graphs with
weighted edges and develop the LogRank scheme to evalu-
ate importance of vertices in this graph. Further, we pro-
vide a motif based meta algorithm for the reduction in
size of the graph such that the main features are pre-
served. Here we focus on the material flow. We illustrate
our methods with the help of examples. In particular, we
consider the LogRank and model reduction for Jackson
networks.

In future work we plan to analyze the relation be-
tween dynamical properties of the reduced and the orig-
inal networks in more detail. In particular, we are go-
ing to study conditions under which stability properties
are preserved by the LogRank guided approximation. The
approach should be further developed to preserve stabil-
ity properties. Also, estimates for the approximation error
need to be investigated.
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