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Abstract

The study of the stability properties of switched and hybrid systems gives rise to a number

of interesting and challenging mathematical problems. The objective of this paper is to out-

line some of these problems, to review progress made in solving these problems in a number

of diverse communities, and to review some problems that remain open. An important contri-

bution of our work is to bring together material from several areas of research and to present

results in a unified manner. We begin our review by relating the stability problem for switched

linear systems and a class of linear differential inclusions. Closely related to the concept of

stability are the notions of exponential growth rates and converse Lyapunov theorems, both

of which are discussed in detail. In particular, results on common quadratic Lyapunov func-

tions and piecewise linear Lyapunov functions are presented, as they represent constructive

methods for proving stability, and also represent problems in which significant progress has

been made. We also comment on the inherent difficulty of determining stability of switched

systems in general which is exemplified by NP-hardness and undecidability results. We then

proceed by considering the stability of switched systems in which there are constraints on the

switching rules, through both dwell time requirements and state dependent switching laws.

Also in this case the theory of Lyapunov functions and the existence of converse theorems is

reviewed. We briefly comment on the classical Lur’e problem and on the theory of stability

radii, both of which contain many of the features of switched systems and are rich sources of

practical results on the topic. Finally we present a list of questions and open problems which

provide motivation for continued research in this area.
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1 Motivation

The past decade has witnessed an enormous interest in systems whose behaviour can be described
mathematically using a mixture of logic based switching and difference/differential equations.
This interest has been primarily motivated by the realization that many man-made systems, and
some physical systems, may be modelled using such a framework. Examples of such systems
include the Multiple-Models, Switching and Tuning paradigm from adaptive control [119], Hybrid
Control Systems [67], and a plethora of techniques that arise in Event Driven Systems. Due to the
ubiquitous nature of these systems, there is a growing demand in industry for methods to model,
analyse, and to understand systems with logic-based and continuous components. Typically, the
approach adopted to describe and analyse these systems is to employ theories that have been
developed for differential equations whose parameters vary in time. Differential equations whose
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Figure 1: A hybrid model of a car with a manual gearbox [31, 74].

parameters are time-varying have been the subject of intense study in several communities for the
best part of the last century, e.g. [131, 99, 150, 34, 35]. While major advances in this topic have
been made in the Mathematics, Control Engineering, and more recently, the Computer Science
communities, many important questions that relate to their behaviour still remain unanswered,
even for linear systems. Perhaps the most important of these relate to the stability of such
systems. The objective of this paper is to review the theory of stability for linear systems whose
parameters vary abruptly with time and to outline some of the most pressing questions that remain
outstanding.

The study of differential equations whose parameters vary discontinuously has been the subject
of study in the Mathematics community [51, 165]. While research on this topic has progressed at
a steady pace, the past decade in particular has witnessed a developing interest in this topic in
several other fields of research. The multi-disciplinary research field of Hybrid Systems that has
emerged as a result of this interest lies at the boundaries of computer science, control engineering
and applied mathematics.

A Hybrid System is a dynamical system that is described using a mixture of continuous/discrete
dynamics and logic based switching. The classical view of such systems is that they evolve accor-
ding to mode dependent continuous/discrete dynamics, and experience transitions between modes
that are triggered by ‘events’. The following examples show that this feature occurs in diverse
areas of application.

Example 1 (see [29]) Automobile with a manual gearbox. The motion of a car that travels along
a fixed path can be characterised by two continuous variables: velocity v and position s. The
system has two inputs: the throttle angle (u) and the engaged gear (g). It is evident that the
manner in which the velocity of the car responds to the throttle input depends on the engaged
gear. The dynamics of the automobile can therefore be thought of as hybrid in nature: in each
mode (engaged gear) the dynamics evolve in a continuous manner according to some differential
equation. Transitions between modes are abrupt and are triggered by driver interventions in the
form of gear changes.

Example 2 (see [64]) Network congestion control. The Transmission Control Protocol (TCP) is
the protocol of choice for end-to-end packet delivery in the internet. TCP is an acknowledgement
based protocol. Packets are sent from sources to destinations and destinations inform sources of
packets that have been successfully received. This information is then used by the i’th source to
control the number of unacknowledged packets (belonging to source i) in the network at any one
time (wi). This basic mechanism provides TCP sources operating in congestion avoidance mode
[94] with a method for inferring available network bandwidth and for controlling congestion in the
network. Upon receipt of a successful acknowledgement, the variable wi is updated according to
the rule: wi ← wi + a where a is some positive number, and then a new packet is inserted into
the network. This is TCP’s self clocking mechanism. If wi exceeds an integer threshold, then
another packet is inserted into the network to increase the number of unacknowledged packets by
one. TCP deduces from the detection of lost packets that the network is congested and responds
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Figure 2: A hybrid model of TCP operation in congestion avoidance mode.

Concentration of regulatory
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ẋ = f1(x) ẋ = f2(x)

Figure 3: Switched system model of gene regulatory dynamics.

by reducing the number of unacknowledged packets in the network according to: wi ← βwi where
β is some number between zero and 1.

Example 3 Biology. A genetic regulatory network [7, 40, 39] consists of a set of interacting genes,
each of which produces a protein through a process known as gene expression. These proteins
can then regulate rates of gene expression in the network. The dependence of a gene’s rate
of expression on the concentrations of its regulatory proteins is typically nonlinear, and in a
number of cases appears to be well described by a steep sigmoid function [111], with the regulatory
dynamics changing rapidly when protein concentrations cross various threshold values. In order to
facilitate analysis, several authors have suggested approximating these sigmoidal interactions by
step functions [40, 111]. This approximation leads to a class of switched systems with piecewise
linear dynamics. While such models have a number of limitations, they can provide valuable
qualitative insights into the dynamics of gene regulation.

It should be clear from the above examples that Hybrid Systems provide a convenient method
for modelling a wide variety of complex dynamical systems. Unfortunately, while the modelling
paradigm itself is quite straightforward, the analysis remains a highly nontrivial task. The basic
difficulty in their analysis is that even simple hybrid dynamical systems may exhibit extremely
complicated nonlinear behaviour. Thus, while switched and hybrid systems provide an attrac-
tive paradigm for modelling a variety of practical situations, the analysis of such systems is far
from straightforward. In fact, the study of switched systems has raised a number of challenging
mathematical problems that remain to a large extent unanswered. Many of these problems are
related to stability issues in Hybrid dynamical systems [65, 90] and give rise to a number of basic
questions in this area, some of which we now list.

(i) Arbitrary switching. Is it possible to determine verifiable conditions on a family of constitu-
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ent systems that guarantee the stability of the associated switched system under arbitrary
switching laws? Much of the work on this problem has been focussed on the question of
common Lyapunov function existence.

(ii) Dwell time. If we switch between a family of individually stable systems sufficiently slowly
then the overall system remains stable [90, 118]. This raises the question of determining how
fast we may switch while still guaranteeing stability. In other words what is the minimum
length of time that must elapse between successive switches to ensure that the system remains
stable? This problem is usually referred to as the dwell time problem.

(iii) Stabilization. While switching between stable systems can cause instability, on the other
hand it is sometimes possible to stabilize a family of individually unstable systems by swit-
ching between them appropriately. Based on this observation, several authors have worked
on the problem of determining such stabilizing switching laws [50, 173].

(iv) Chaos. Even though it is beyond the scope of the present paper, Chase, Serrano and Ra-
madge presented an example in [32] to illustrate how chaotic behaviour can arise when
switching between low dimensional linear vector fields. This raises the question as to whe-
ther it is possible to determine if a switched system can exhibit chaotic behaviour for a given
set of constituent vector fields.

(v) Complexity. Other problems that have been considered include questions relating to the
complexity and decidability of determining the stability of switched systems [20, 18], and
the precise nature of the connection between stability under arbitrary switching and stability
under periodic switching rules (periodic stability) [17, 179, 85, 36, 60].

The objective of this article is to review the major progress that has been made on a number
of these basic questions and other related problems over the past number of years, see also [103].
As part of this process we will attempt to outline the major outstanding issues that have yet to
be resolved in the study of switched linear systems.

2 Definitions and Mathematical Preliminaries

Throughout this paper our primary concern shall be with the stability properties of the switched
linear system

ΣS : ẋ(t) = A(t)x(t) A(t) ∈ A = {A1, . . . , Am}, (1)

where A is a set of matrices in R
n×n, and t → A(t) is a piecewise constant1 mapping from the

nonnegative real numbers, R+, into A. For each such mapping, there is a corresponding piecewise
constant function σ from R+ into {1, . . . ,m} such that A(t) = Aσ(t) for all t ≥ 0. This mapping
σ is known as the switching signal, and the points of discontinuity, t1, t2, . . ., of A(t) (or σ(t))
are known as the switching instances. We denote the set of switching signals by S. A function
x : R+ → R

n is called a solution of (1) if it is continuous and piecewise continuously differentiable
and if there is a switching signal σ such that

ẋ(t) = Aσ(t)x(t) ,

for all t except at the switching instances of σ. By convention we only consider right continuous
switching signals. This does not affect the set of solutions, as any other choice would only change
the differential equation on a set of measure zero.

For 1 ≤ i ≤ m, the ith constituent system of the switched linear system (1) is the linear
time-invariant (LTI) system

ΣAi
: ẋ = Aix. (2)

1We recall that by definition piecewise constant maps have only finitely many discontinuities in any bounded
time-interval.
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We can think of the system (1) as being constructed by switching between the constituent LTI
systems ΣA1

, . . . ,ΣAm
, with mode switches occurring at the switching instances, and the precise

nature of the switching pattern being determined by the switching signal.
For a given switching signal σ ∈ S, the system ΣS evolves like an LTI system between any two

successive switching instances. Thus for each switching signal σ, and initial condition x(0), there
exists a unique continuous, piecewise differentiable solution x(t) which is given by

x(t) = [eA(tk)(t−tk)eA(tk−1)(tk−tk−1) . . . eA(t1)(t2−t1)eA(0)(t1)]x(0), (3)

where t1 < t2 < . . . , is the sequence of switching instances and tk is the largest switching instance
smaller than t.

It should be noted that the stability theory of switched linear systems has close links with
the corresponding theory for linear differential inclusions (LDIs) [4, 165]. The linear differential
inclusion related to the set A = {A1, . . . , Am} is denoted by

ẋ(t) ∈ {Ax(t) | A ∈ A} . (4)

A solution of this inclusion is an absolutely continuous function x satisfying ẋ(t) ∈ {Ax(t) | A ∈ A}
almost everywhere. By an application of Filippov’s theorem this is equivalent to saying that there
exists a measurable map A : R+ → A such that

ẋ(t) = A(t)x(t) , almost everywhere ,

see [51] for details. So studying the differential inclusion (4) amounts to extending the set of
switching signals to the class of measurable functions. If we are studying the system for arbitrary
switching sequences, the effect of this is often negligible. In fact, if we consider the convex hull of
A, denoted by convA and the convexified differential inclusion

ẋ(t) ∈ {Ax(t) | A ∈ convA} , (5)

then the solution sets of the three systems we have now defined are closely related. To make this
statement precise, we denote by Rswitch

t (x) the set of points that can be reached from an initial
condition x at time t by solutions of (1), i.e.

Rswitch
t (x) := {y ∈ R

n×n | ∃ switching signal σ such that y = x(t;x, σ)} .

Similarly, we introduce the notation Rldi
t (x),Rconv ldi

t (x) for reachable sets of (4) and (5), respec-
tively, then we have for all t ≥ 0, x ∈ R

n that

Rswitch
t (x) ⊂ Rldi

t (x) ⊂ Rconv ldi
t (x) = clRswitch

t (x) , (6)

see, e.g., [4, 51]. For an in-depth investigation of the structure of the signal set and its interplay
with the dynamics of (4), we refer to [33]. We also note that systems equivalent to (4) are often
studied under the name of linear parameter-varying systems. We will make brief reference to the
relation between this literature and switched systems where appropriate in the sequel.

Notation. We will write r(A) for the spectral radius of the matrix A, that is the largest among
the absolute values of its eigenvalues. We write P > 0 to indicate that the symmetric matrix P is
positive definite, and P ≥ 0 to indicate positive semidefinite. Similarly P < 0 and P ≤ 0 indicate
negative definite and negative semidefinite respectively.

2.1 Discrete-Time Systems

Thus far we have only considered switched linear systems in continuous-time. However, as in the
example of TCP congestion control discussed in the last section, it is also of interest to study
discrete-time switched linear systems. In discrete-time, a switched linear system has the form

ΣS : x(k + 1) = A(k)x(k) A(k) ∈ A = {A1, . . . , Am}, (7)
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where as before A is a set of matrices in R
n×n and k → A(k) is a mapping from the nonnegative

integers into A. The notions of switching signal, switching instances and constituent systems are
defined analogously to the continuous-time case. The existence of solutions to (7) is straightfor-
ward. In the discrete time case, the analysis of (7) is equivalent to that of the discrete linear
inclusion

x(t + 1) ∈ {Ax(t) | A ∈ A} . (8)

On the other hand the solution set is significantly enlarged when going over to the convexified
inclusion

x(t + 1) ∈ {Ax(t) | A ∈ convA} . (9)

It is of interest to note that the exponential stability of (7), (8) and (9) is equivalent nonetheless,
as we shall discuss in the sequel.

2.2 Exponential Growth Rates

One of the basic properties of switched linear systems is that a growth rate may be defined as in the
case of linear time-invariant systems. The definition proceeds similarly in continuous and discrete
time. There are several approaches to defining the exponential growth rate, all of which turn
out to be equivalent. A trajectory based definition considers Lyapunov exponents of individual
trajectories, which are defined by

λ(x0, σ) := lim sup
t→∞

1

t
log ‖x(t;x0, σ)‖ .

The exponential growth rate of the switched system is then defined by the maximal Lyapunov
exponent

κ(A) := sup{λ(x0, σ) | x0 6= 0, σ ∈ S} .

A different point of view is to consider the evolution operators corresponding to the system equa-
tions (1), resp. (7). In continuous time these are defined as the solution of

Φ̇σ(t, s) = Aσ(t)Φσ(t, s) , Φσ(s, s) = I .

Similarly, in discrete time we have for t ≥ s

Φ(t + 1, s) = Aσ(t)Φσ(t, s) , Φσ(s, s) = I .

The growth of the system can then also be measured by considering the maximal growth of the
norms or the spectral radii of the operators Φ(t, 0) as t→∞. Ultimately, these definitions coincide.
More precisely, it is known that

κ(A) = lim sup
t→∞

1

t
log max

σ∈S
r(Φσ(t, 0)) = lim sup

t→∞

1

t
log max

σ∈S
‖Φσ(t, 0)‖ . (10)

The previous equality has been obtained by two different avenues. In discrete-time this was
first shown by Berger and Wang [12] and alternative ways of proving the result have been presented
by Elsner [47] and Shih, Wu and Pang [151]. On the other hand the result has also been implicit
in the Russian literature. Namely, in the continuous time setting Pyatnitskii and Rapoport [142]
show that if system (1) has an unbounded trajectory, then there exists a periodic switching signal
σj ∈ S of period T such that r(Φσj

(T, 0)) = 1, i.e. we can find a periodic switching signal for which
the system is marginally stable. This implies in particular, that absolute stability is equivalent to

κ̄ := lim sup
t→∞

1

t
log max

σ∈S
r(Φσ(t, 0)) < 0 .

(see Definition 5 and subsequent comments for the definition of absolute stability). On the other
hand Barabanov [9] shows that absolute stability is equivalent to

κ̂ := lim sup
t→∞

1

t
log max

σ∈S
‖Φσ(t, 0)‖ < 0 .
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As both κ̄, κ̂ are additive with respect to spectral shifts, i.e. κ̄(A−αI) = κ̄(A)−α, for all α ∈ R,
they have to satisfy κ̄ = κ̂.

In the area of discrete-time systems the growth rate of discrete inclusions is often defined as
ρ(A) := eκ(A). This quantity has become notorious under the name of joint spectral radius or
generalized spectral radius.

There are numerous approaches to the computation of growth rates, either in their guise as
maximal Lyapunov exponents or as joint spectral radii. We cannot cover these methods here but
refer the reader to the various methods presented in [56, 98, 10, 57].

3 Stability for Switched Linear Systems

As with general linear and nonlinear systems, numerous different concepts of stability have been
defined for switched linear systems, including uniform stability, uniform attractivity, uniform
asymptotic stability and uniform exponential stability. We now recall the definitions of uniform
stability and uniform exponential stability.

Definition 4 The origin is a uniformly stable equilibrium point of ΣS if given any ǫ > 0, there is
some δ > 0 such that ‖x(0)‖ < δ implies ‖x(t)‖ < ǫ for t ≥ 0, for all solutions x(t) of the system.

Definition 5 The origin is a uniformly exponentially stable equilibrium of ΣS if there exist real
constants M ≥ 1, β > 0 such that

‖x(t)‖ ≤Me−βt‖x(0)‖ (11)

for t ≥ 0, for all solutions x(t) of ΣS.

Uniform exponential stability is often called absolute stability especially in the Russian litera-
ture. It is known that the related concepts of attractivity and asymptotic stability together are
equivalent to exponential stability for switched linear systems [38, 9, 37]. For a switched linear
system the exponential growth rate κ defined in (10) is negative if and only if (11) is satisfied for
some β > 0, that is if and only if the origin is uniformly exponentially stable.

In a slight abuse of notation we shall often speak of the stability or exponential stability of
the system ΣS itself. One of the major topics discussed here is the problem of establishing when
the system (1) is exponentially stable for arbitrary switching signals. In this case, Definition 5
requires the existence of constants M ≥ 1, β > 0 such that (11) is satisfied for every piecewise
continuous switching signal σ(t). When considering the question of exponential stability under
arbitrary switching, it is necessary to assume that the matrices A1, . . . , Am in the set A are all
Hurwitz (all of their eigenvalues lie in the open left half of the complex plane), thus ensuring that
each of the constituent LTI systems is exponentially stable.

In certain situations, it is not necessary to guarantee stability for every possible switching
signal and a number of authors have considered questions related to the stability of switched
linear systems under restricted switching regimes. One important example of this kind is state-
dependent switching, where the rule that determines when a switch in system dynamics may occur
is determined by the value of the state-vector x. The example of a genetic regulatory network
discussed in the previous section was of this type.

All of the above definitions concern the stability properties of the system (1). In practice
however, it is often necessary to consider systems with inputs and outputs of the form

ẋ = A(t)x + B(t)u
y = C(t)x

. (12)

In this context the notion of bounded-input bounded-output (BIBO) stability arises. Formally,
the input-output system (12) is uniformly BIBO stable if there exists a positive constant η such
that for any essentially bounded input signal u, the zero-state response y satisfies

ess. sup
t≥0
‖y(t)‖ ≤ ηess. sup

t≥0
‖u(t)‖ .



STABILITY CRITERIA FOR SWITCHED AND HYBRID SYSTEMS 8

Essentially, if a system is BIBO stable, this means that an input signal cannot be amplified by
a factor greater than some finite constant η after passing through the system. While we shall
not consider BIBO stability explicitly here, it should be noted that if the system (1) is uniformly
exponentially stable, then the corresponding input-output system (12) is BIBO stable provided
the matrices B(t), C(t) are uniformly bounded in time [112], which is the case when the system
switches between a finite family of matrices.

4 Stability for Arbitrary Switching

The arbitrary switching problem is concerned with obtaining verifiable conditions on the matrices
in A that guarantee the exponential stability of the switched system (1) for any switching signal.
A number of general approaches to this problem have been investigated, many of which rely on
the construction of common quadratic and nonquadratic Lyapunov functions for the constituent
systems of (1). In this context, it has been established that the existence of a common Lyapunov
function is necessary and sufficient for the exponential stability of a switched linear system. In
particular, a number of authors have derived converse theorems that prove the existence of common
Lyapunov functions under the assumption of exponential stability. We begin by describing some of
these theorems and then proceed by reviewing results on the common Lyapunov function existence
problem for switched linear systems. Many of the mature results in this area concern the existence
of common quadratic Lyapunov functions (CQLFs) and this part of our review reflects this fact.
Nevertheless, some results are also presented concerning the existence of common nonquadratic
Lyapunov functions.

4.1 Converse Theorems

Lyapunov theory played a key role in the stability analysis of both linear and nonlinear systems for
much of the last century [97, 136, 120, 77]. The key idea of this approach is that the stability of a
dynamical system can be established by demonstrating the existence of a positive definite, norm-
like, function that decreases along all trajectories of the system as time evolves. Much of the recent
research on the stability of switched linear systems has been directed towards applying similar ideas
to the class of systems (1); relating the stability of such systems to the existence of positive definite
functions, V , on R

n such that V (x(t)) is a decreasing function of t for all solutions x(t) of (1).
Before discussing results that have been derived for specific forms of Lyapunov functions, we first
present a number of more general facts about Lyapunov theory as it relates to the stability of
switched linear systems.

First of all, note that if a positive definite function V (x(t)) decreases along all trajectories
of the system (1) for arbitrary switching signals, then this certainly must be true for constant
switching signals. Hence, any such function V would have to be a common Lyapunov function for
each of the constituent LTI systems of (1). It is well established [116, 90, 37] that if a common
Lyapunov function exists for the constituent systems of a switched linear system, then the system
is uniformly exponentially stable for arbitrary switching signals. We shall now discuss the work of
a variety of authors who have considered the problem of deriving converse theorems to establish
the necessity of common Lyapunov function existence for uniform exponential stability under
arbitrary switching.

In [116], it was established that the uniform exponential stability of the system (1) under arbi-
trary switching is equivalent to the existence of a common Lyapunov function V for its constituent
LTI systems. Formally they derived the following result.

Theorem 6 The system (1) is uniformly exponentially stable for arbitrary switching signals if
and only if there exists a strictly convex, positive definite function V , homogeneous of degree 2, of
the form

V (x) = xTL(x)x where L(x) ∈ R
n×n and

L(x)T = L(x) = L(cx) for all nonzero c ∈ R, x ∈ R
n,
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such that

max
y∈Ax

∂V (x)

∂y
≤ −γ‖x‖2

for some γ > 0, where Ax = {A1x, . . . , Amx} and

∂V (x)

∂y
= inf

t>0

V (x + ty)− V (x)

t

is the usual directional derivative of the convex function V [146].

A number of points about the results presented in [116] are worth noting.

(i) While we have stated Theorem 6 for switched linear systems of the form (1), the result was
originally derived in [116] for the associated linear differential inclusion (4). However, the
statement given here follows from combining (6) with Theorem 1 of [116], and shows that
common Lyapunov function existence is a necessary condition for the uniform exponential
stability of the switched linear system (1) under arbitrary switching.

(ii) Theorem 6 establishes that any switched linear system which is uniformly exponentially
stable under arbitrary switching, must have a common Lyapunov function that is strictly
convex and homogeneous of degree two.

(iii) Furthermore, it was shown in [116] that the uniform exponential stability, under arbitrary
switching, of the switched linear system (1), is equivalent to the existence of:

(a) A piecewise quadratic (convex but not necessarily continuously differentiable) common
Lyapunov function;

(b) A piecewise linear (convex but not necessarily continuously differentiable) common
Lyapunov function;

(c) A smooth (C∞), common Lyapunov function, of the form V (x) =
∑M

i=1(l
T
i x)2p, for

some integer p > 0 and vectors l1, . . . , lM in R
n. Such a Lyapunov function is homoge-

neous of degree 2p.

(iv) It has been shown in the paper [37] that the uniform exponential stability of the switched
linear system (1) under arbitrary switching, is equivalent to the existence of a C1 common
Lyapunov function that is homogeneous of degree two.

Note that an example was presented in [37] to show that the uniform exponential stability
of (1) under arbitrary switching does not in general imply that there exists a common quadratic
Lyapunov function for its constituent systems. This had already been noted by Brockett in [30].

In the context of converse Lyapunov theorems, the work of Brayton and Tong, described in [27],
is also worthy of mention. These authors established that the existence of a common Lyapunov
function for the constituent systems of a discrete-time switched linear system is equivalent to the
uniform stability of the system under arbitrary switching. Independently, Barabanov [8] showed
that for an exponentially stable discrete linear inclusion there is always a norm that is a Lyapunov
function. In particular, this implies by the convexity of norms, that if the set A generates an
exponentially stable discrete linear inclusion, then so does convA.

More recently, Lin, Sontag and Wang derived a general converse Lyapunov theorem for non-
linear systems with time-varying parameters in [92]. An earlier result on the existence of diffe-
rentiable Lyapunov functions (on compact sets) for exponentially stable time-varying systems can
be found in [110]. The more general results presented in [92] can be applied to stable invariant
sets as well as to equilibria, and establish (among other things) that for nonlinear systems, with
time-varying parameters, the existence of a globally uniformly asymptotically stable equilibrium
is equivalent to the existence of a smooth Lyapunov function. The subsequent converse Lyapunov
theorems for switched nonlinear systems presented in [101] and [37] follow from Theorem 2.9 of
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[92]. Related results for input to state stability, a notion that we shall not discuss here have ap-
peared in [102]. Finally, we note the recent result of Mason, Boscain and Chitour that shows that
while a common Lyapunov function always exists for systems that are exponentially stable under
arbitrary switching, its level curves may in fact be arbitrarily complex [108]. Thus searching for
such a function using numerical techniques is not easy.

4.2 The CQLF Existence Problem

Quadratic Lyapunov functions play a central role in the study of linear time-invariant systems.
Their existence is well understood in this context and consequently, studying the existence of such
functions is a natural starting point in the study of switched linear systems. At the heart of the
CQLF existence problem is the desire to find useful criteria to determine whether a given collection
of Hurwitz matrices {A1, . . . , Am} has a CQLF. The main purpose of this Section is to survey the
known results in this area, and indicate the different lines of attack that have been used. Despite
the considerable work done so far, there are still some open questions that remain to be resolved.

4.2.1 Definitions

Recall that V (x) = xT Px is a quadratic Lyapunov function (QLF) for the LTI system ΣA : ẋ = Ax

if (i) P is symmetric and positive definite, and (ii) PA+AT P is negative definite. Let {A1, . . . , Am}
be a collection of n×n Hurwitz matrices, with associated stable LTI systems ΣA1

, . . . ,ΣAm
. Then

the function V (x) = xT Px is a common quadratic Lyapunov function (CQLF) for these systems if
V is a QLF for each individual system. Given a set of matrices {A1, . . . , Am}, the CQLF existence
problem is to determine whether such a matrix P exists. A secondary question is to construct a
CQLF when one is known to exist. It is a standard fact that an LTI system ΣA has a QLF if and
only if the matrix A is Hurwitz. This property is also equivalent to the exponential stability of
the system ΣA, so for a single LTI system there is no gap between the existence of a QLF and
exponential stability. Therefore a simple spectral condition determines completely the stability of
the LTI system ΣA.

For a collection of Hurwitz matrices the situation is more complicated in several respects.
Firstly, in general, CQLF existence is only a sufficient condition for the exponential stability of a
switched linear system under arbitrary switching. Secondly, no correspondingly simple condition
is known which can determine the existence of a CQLF for a family of LTI systems, although
progress has been made in some special cases. The rest of this section will describe a variety of
approaches which have been used to attack this problem, and outline some of the open problems.

In many cases it is useful to analyse the mapping P 7→ PA + AT P as a linear function on the
space of real symmetric n × n matrices, denoted Sn×n. The Lyapunov map defined by the real
n× n matrix A is

LA : Sn×n → Sn×n, LA(H) = HA + AT H (13)

The following properties of LA are well-known, [71]. (i) If A has eigenvalues {λi} with associated
eigenvectors {vi}, then LA has eigenvalues {λi + λj}, with eigenvectors {viv

T
j + vjv

T
i }, for all

i ≤ j. It follows immediately that LA is invertible whenever A is Hurwitz, since in this case
λi + λj cannot be zero. (ii) A is Hurwitz if and only if there exists P > 0 such that LA(P ) < 0.
Note that in this case xT Px is a QLF for the system ΣA.

Now define PA to be the collection of all positive definite matrices which provide QLF’s for
the system ΣA, that is

PA = {P > 0 : LA(P ) < 0} (14)

Clearly PA is an open convex cone in Sn×n. The above results concerning the Lyapunov map show
that PA is nonempty if and only if A is Hurwitz. In this language, the CQLF existence problem
for a collection of matrices {A1, . . . , Ak} is the problem of determining whether the intersection
of the cones PA1

∩ · · · ∩ PAk
is nonempty.
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There are some straightforward observations that can be made at this point. Firstly, for
A ∈ R

n×n, the cones PA and PA−1 are identical. Thus, there exists a CQLF for the systems
ΣA1

, . . . ,ΣAm
if and only if there is a CQLF for the systems ΣA

ǫ1
1

, . . . ,ΣA
ǫm
m

where ǫi = ±1 for
i = 1, . . . ,m. Secondly, CQLF existence is invariant under a change of coordinates. That is, if
R ∈ R

n×n is nonsingular, then

PR−1AR = RT PA R ≡ {RT PR : P ∈ PA} (15)

Therefore CQLF existence for the family of systems ΣA1
, . . . ,ΣAm

is equivalent to CQLF existence
for the transformed family ΣR−1A1R, . . . ,ΣR−1AmR.

4.2.2 Dual Formulation

The QLF and CQLF existence problems have dual formulations which will play an important
role in some of our later discussions. To set up the notation, define L̂A to be the adjoint of the
Lyapunov map with respect to the standard inner product 〈X,Y 〉 = Tr XT Y on Sn×n, that is

〈X,LA(Y )〉 = 〈L̂A(X), Y 〉 (16)

for all X,Y ∈ Sn×n. It follows that

L̂A : Sn×n → Sn×n, L̂A(H) = AH + HAT = LAT (H) (17)

We will use the following formulation of duality, which can be found for example in [78]: given
a collection of Hurwitz matrices {A1, . . . , Ak}, there exists a CQLF if and only if there do not

exist positive semidefinite matrices X1, . . . ,Xk (not all zero) satisfying
∑k

i=1 L̂Ai
(Xi) = 0. That

is,

∃ P > 0 such that LAi
(P ) < 0 for all i = 1, . . . , k

⇐⇒ 6 ∃ X1, . . . ,Xk ≥ 0 (not all zero) such that

k∑

i=1

L̂Ai
(Xi) = 0 (18)

4.3 Numerical Approaches to the CQLF problem

While we shall concentrate here on theoretical results obtained on the CQLF existence problem,
it should be noted that numerical methods are also available for testing for CQLF existence.
Recent advances in computational technology along with the development of efficient numerical
algorithms for solving problems in the field of convex optimization have resulted in the widespread
use of linear matrix inequality (LMI) techniques throughout systems theory. For details on the
various applications of LMI methods in systems and control consult [24, 46, 53]. In this section, we
focus on one specific aspect of this development; the use of LMI methods to test for the existence
of a CQLF for a number of stable LTI systems.

The conditions for V (x) = xT Px to be a CQLF for the asymptotically stable LTI systems ΣAi
,

i ∈ {1, . . . ,m} are equivalent to a system of linear matrix inequalities (LMIs) in P , namely

P = PT > 0, (AT
i P + PAi) < 0 for i ∈ {1, . . . ,m} (19)

The system of LMIs (19) is said to be feasible if a solution P exists; otherwise the LMIs (19)
are infeasible. Thus, determining whether or not the LTI systems ΣAi

, i ∈ {1, . . . ,m} possess
a CQLF amounts to checking the feasibility of a system of LMIs. Solvers for LMIs are built on
convex optimization algorithms developed over the past two decades which are capable of solving
this type of problem with considerably more speed than was possible using previous techniques.
Conversely, it is also possible to verify that no CQLF exists for the LTI systems ΣAi

via the use
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of LMI techniques. More specifically [24], there is no CQLF for the LTI systems ΣAi
if there exist

matrices Ri = RT
i , i ∈ {1, . . . ,m} satisfying2

Ri > 0, Σm
i=1(A

T
i Ri + RiAi) > 0. (20)

While LMIs provide an effective way of verifying that a CQLF exists for a family of LTI systems
there are a number of drawbacks associated with this approach which should be noted.

(i) LMIs provide little insight into why a CQLF may or may not exist for a set of LTI systems or
into the relationship between CQLF existence and the dynamics of switched linear systems.
For instance, the problem of identifying specific classes of systems for which CQLF existence
is equivalent to uniform exponential stability under arbitrary switching is of considerable
interest and importance. We shall describe some system classes of this type later in this
section. A purely numerical approach to CQLF existence cannot answer this and similar
questions.

(ii) LMI-based methods are not effective when the number of constituent systems is very large
and they cannot be directly applied to check for the existence of a CQLF for an infinite
family of systems. Recently, an alternative numerical technique based on iterative gradient
descent methods has been presented in [91]. The methods described in this paper can be
combined with randomization algorithms and applied to compact, possibly infinite, families
of system matrices A. In this case, it has been shown that the algorithm will converge to a
CQLF with probability one, provided such a CQLF exists.

4.4 Special Structures of Matrices That Guarantee Existence of a CQLF

Some special cases are known where the structure of the matrices {A1, . . . , Am} by itself guarantees
the existence of a CQLF for the associated LTI systems, provided of course that the matrices are
Hurwitz. We now review these cases.

4.4.1 Matrices with Lyapunov Function x
T

x

The condition that a system ΣA have the Lyapunov function xT x is

LA(I) = AT + A < 0 (21)

where I is the n× n identity matrix. If {A1, . . . , Am} is a collection of matrices which all satisfy
the condition (21), then xT x must be a QLF for every individual system, and hence must be a
CQLF for the collection. The condition (21) is satisfied in the following cases:

(i) A is normal (i.e. AAT = AT A) and Hurwitz,

(ii) if A satisfies (21) and if the matrix S is skew-symmetric, (i.e. if ST = −S), then A + S also
satisfies (21).

4.4.2 Triangular and Related Systems

If the Hurwitz matrices {Ai} are all in upper triangular form, then it was shown in [156], and
independently in [117], that the collection of systems ΣAi

always has a CQLF, and furthermore
that the matrix P which defines the CQLF can be chosen to be diagonal. This result extends to
the case where there is a nonsingular matrix R for which the matrices {R−1AiR} are all upper
triangular, by the remarks in Section 4.2.1.

One interesting application of this result arises when the matrices A1, . . . , Am all commute with
each other. In this case there is a unitary matrix U such that U∗AiU is in upper triangular form
for each i = 1, . . . ,m [71], and it then follows that the systems ΣA1

, . . . ,ΣAm
have a CQLF [119].

2This follows easily from (18).
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This result has an extension to a class of systems with noncommuting matrices [60]. To explain
this class, let g = {A1, . . . , Am}LA denote the Lie algebra generated by the matrices {A1, . . . , Am},
that is the collection of all matrices of the form {Ai, [Ai, Aj ], [Ai, [Aj , Ak]], . . . }. If g is solvable,
then it follows from a well-known theorem of Lie [63] that the matrices {A1, . . . , Am} can be put
into upper triangular form by a nonsingular transformation. Recall that a Lie algebra is said to be
solvable if g

k = {0} for some finite k, where the sequence of Lie algebras g
0, g1, g2, . . . are defined

recursively by g
k+1 = [gk, gk], and g

0 = g. The basic example of a solvable Lie algebra is the Lie
algebra generated by a set of upper triangular matrices, where it can be seen that the nonzero
entries of g

k retreat further from the main diagonal at each step.
Using this result, and the results of [117, 156] concerning CQLF existence for upper triangular

matrices, it follows that if g = {A1, . . . , Am}LA is solvable, then the systems ΣA1
, . . . ,ΣAm

have
a CQLF. The most general result along these lines is the following theorem due to Agrachev and
Liberzon [2]. The theorem describes the type of Lie algebra which can be generated by a collection
of Hurwitz matrices that share a CQLF. Their result also shows that if g is not of this type, then
it could be generated by a collection of matrices whose LTI systems are individually stable, but for
which the corresponding switching system can be made unstable with some switching sequence.
So the theorem describes the most general conclusions about the CQLF existence question which
can be reached using only the Lie algebra structure generated by the collection {A1, . . . , Am}.

Theorem 7 (see [2]) Let A1, . . . , Am be Hurwitz matrices, and ĝ = {I,A1, . . . , Am}LA where I

is the identity matrix. Let ĝ = r⊕ s be the Levi decomposition, where r is the radical, and suppose
that s is a compact Lie algebra. Then the systems ΣA1

, . . . ,ΣAm
have a CQLF. Furthermore, if s is

not compact, then there is a set of Hurwitz matrices which generate ĝ, such that the corresponding
switched linear system is not uniformly exponentially stable.

Given the body of literature that has been dedicated to, and continues to be dedicated to,
triangular systems, a few further comments are in order.

(i) In essence, establishing the stability of triangular switched linear systems is as straightfor-
ward as for LTI systems; uniform exponential stability under arbitrary switching is equivalent
to the exponential stability of all of the constituent systems. Thus, the system is exponen-
tially stable if and only if all the eigenvalues of the system matrices A1, . . . , Am lie in the
open left half of the complex plane.

(ii) It is important to appreciate that the property of a family of matrices being simultaneously
triangularisable is not robust, and that this requirement is only satisfied by a very limited
class of systems.

(iii) From a practical viewpoint, the requirement of simultaneous triangularisability imposes un-
realistic conditions on the matrices in the set A. It is therefore of interest to extend the
results derived by [117] with a view to relaxing this requirement. In this context several
authors have recently published new conditions for exponential stability of the switching
system. Typically, the approach adopted is to bound the maximum allowable perturbations
of the matrix parameters from a nominal (triangularisable) set of matrices, thereby guaran-
teeing the existence of a CQLF; see [117]. An alternative approach is presented in [161, 162];
rather than assuming maximum allowable perturbations from nominal matrix parameters,
it is explicitly assumed that every pair of matrices, Ai, Aj , belonging to A, can be simulta-
neously triangularised by some nonsingular matrix Tij . By placing additional assumptions
on the eigenvectors of the matrices in A, the authors show asymptotic stability of the origin.

(iv) Several papers in the area of switching systems are related to the simultaneous triangu-
larization of a set of matrices. For example, matrices that commute are simultaneously
triangularisable. Hence, the commuting vector field result of Narendra and Balakrishnan
[119] is a special case of the above discussion [153]3.

3It is worth noting that it has been shown by Shim et. al. [152] that a common Lyapunov function exists for
commuting vector fields even if the vector fields are themselves nonlinear.
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(v) To apply the above results, it is necessary to be able to determine if a nonsingular T exists
such that for all Ai in a set of matrices A, TAiT

−1 is upper triangular. McCoy’s theorem,
and the already dicussed Lie Algebraic conditions, provide verifiable tests for the existence
of such a T . [84, 156, 89].

4.5 Necessary and Sufficient Conditions for Special Classes

One longstanding goal in the field of switched systems has been to find simple algebraic conditions
for existence of a CQLF for a set of matrices {A1, . . . , Am}. In the discrete-time case it is known
by the work of Kozyakin [82], that exponential stability is not a property that can be described by
finitely many algebraic constraints in the set of pairs of 2× 2 matrices. In this section we describe
several cases where such conditions are known.

4.5.1 Two Second Order Systems

For a pair of second order systems there is a complete solution to the CQLF existence problem.
We quote the following result from [158].

Theorem 8 Let A1 and A2 be 2× 2 Hurwitz matrices. Then the two LTI systems ΣA1
and ΣA2

have a CQLF if and only if the matrix products A1A2 and A1A
−1
2 have no negative real eigenvalues.

Theorem 8 provides an extremely simple and elegant solution to the CQLF problem for the
case of two matrices in R

2×2. It is known that CQLF existence is a conservative criterion for the
stability of second order systems; however, the simplicity of Theorem 8 demonstrates the usefulness
of using CQLF methods to analyse stability, and it provides insights into the precise relationship
between CQLF existence and stability. In particular, using this result, it can be shown that if a
CQLF fails to exist for a pair of LTI systems ΣA1

, ΣA2
, with A1, A2 ∈ R

2×2 Hurwitz, then at least
one of the related switched linear systems

ẋ = A(t)x A(t) ∈ {A1, A2} (22)

ẋ = A(t)x A(t) ∈ {A1, A
−1
2 } (23)

fails to be exponentially stable for arbitrary switching signals. Moreover, Theorem 8 has been
used in [61, 106] to show that for second order positive switched linear systems 4 with two stable
constituent systems, CQLF existence is in fact equivalent to exponential stability under arbitrary
switching.

No simple spectral condition is known when there are more than two matrices in R
2×2, although

the following result provides some useful information in this case [158]. Suppose that ΣAi
are stable

LTI systems in the plane. If any subset of three of these systems has a CQLF, then there is a
CQLF for the whole family. This can be viewed as a consequence of Helly’s theorem from convex
analysis [146] in combination with the discussion of intersection of the cones PAj

in Section 4.2.1.

4.5.2 Two Systems with a Rank One Difference

Suppose that A ∈ R
n×n is Hurwitz, and b, c ∈ R

n. Then there is again a simple spectral condition
which is equivalent to CQLF existence for the systems {ΣA,ΣA−bcT }. This condition was origi-
nally derived as a frequency domain condition using the single-input single-output (SISO) Circle
Criterion [120], however it was later realised [159] that the condition has the following natural and
elegant formulation similar to Theorem 8 [154].

Theorem 9 Let A1 and A2 be Hurwitz matrices in R
n×n, where the difference A1 −A2 has rank

one. Then the two LTI systems ΣA1
and ΣA2

have a CQLF if and only if the matrix product A1A2

has no negative real eigenvalues.

4A positive dynamical system is one where nonnegative initial conditions imply that the state vector remains in
the nonnegative orthant for all time.
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Theorem 9 provides a simple spectral condition for CQLF existence for a pair of exponentially
stable LTI systems whose system matrices differ by a rank one matrix. Further, it follows from
this result that for a switched linear system

ẋ = A(t)x A(t) ∈ {A1, A2}, (24)

where A1, A2 ∈ R
n×n are Hurwitz and rank(A2 − A−1

1 ) = 1, CQLF existence is equivalent to
exponential stability under arbitrary switching signals.

4.6 Sufficiency

In addition to the results discussed above, several authors have developed tests for CQLF existence
which provide sufficient conditions. In some cases these tests allow explicit computations, and
therefore can be useful in practical applications.

4.6.1 Lyapunov Operator Conditions

In a series of papers [125, 123, 124, 126], Ooba and Funahashi derived conditions involving the
Lyapunov operators LA defined in (13). The key idea in their work is the observation that ΣA1

and ΣA2
have a CQLF if and only if there is some positive definite Q such that LA1

L−1
A2

(Q) is
also positive definite. This leads to their following result [123]. Recall that for an operator L on

the space of symmetric matrices Sn×n, L̂ denotes the adjoint of L with respect to the usual inner
product on Sn×n.

Theorem 10 Let A1 and A2 be n× n Hurwitz matrices, and suppose that

L̂A2−A1
LA2−A1

− (L̂A1
LA1

+ L̂A2
LA2

) < 0 (25)

Then ΣA1
and ΣA2

have a CQLF.
A second similar, but independent condition is presented in [124] involving the Lyapunov

operators of the commutators of the matrices A1 and A2. In one of their other papers [125], Ooba
and Funahashi derive sufficient conditions which involve minimal eigenvalues computed using the
Lyapunov operators. Given a collection of Hurwitz matrices {A1, . . . , Am} in R

n×n, define

µij = λmin

(
LAi
L−1

Aj
(I)
)

, i, j = 1, . . . ,m (26)

where I is the n × n identity matrix, and where λmin is the smallest eigenvalue, and define the
m×m matrix

M = (µij)i,j=1,...,m. (27)

Then we have the following result.

Theorem 11 Suppose that the matrix M defined in (27) is semipositive, meaning that there is
a vector x ∈ R

n with xi ≥ 0 for all i, such that (Mx)i > 0 for all i. Then the systems ΣAi
,

1 ≤ i ≤ m, have a CQLF.

4.7 Necessary and Sufficient Conditions for the General Case

In this section we review a new approach to deriving necessary and sufficient conditions for exi-
stence of a CQLF, based on the duality condition (18). This relation states that ΣA1

, . . . ,ΣAm

do NOT have a CQLF if and only if there are positive semidefinite matrices X1, . . . ,Xm (not all
zero) which satisfy the equation

m∑

i=1

AiXi + XiA
T
i = 0. (28)
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In the statement of the next theorem, for matrices A ∈ R
n×m, B ∈ R

p×q, the notation A ⊗ B

denotes the usual Kronecker product in R
np×mq (see Chapter 4 of [72]). The main idea is to

rewrite (28) in the following form.

Theorem 12 Suppose that equation (28) holds, and let d = rk(X1 + · · · + Xm). Then there are
positive semidefinite d×d matrices Y1, . . . , Ym, with rk(Yi) = rk(Xi) for all i, and a skew-symmetric
d× d matrix S such that

det
( m∑

i=1

Ai ⊗ Yi + I ⊗ S
)

= 0 (29)

where I is the n × n identity matrix. Conversely, if (29) holds for some positive semidefinite
matrices {Yi} and skew symmetric matrix S, then the equation (28) holds, with {Xi} positive
semidefinite and not all zero, and rk(Xi) ≤ rk(Yi) for all i.

The key to deriving (29) is to select a basis v1, . . . , vd for the range of X1 + · · · + XM , and
express the matrices Xi with respect to this basis as

Xi =

d∑

p,q=1

(Yi)pqvpv
T
q (30)

The d× d matrix Yi is also positive semidefinite, and has the same rank as Xi.
Using (29), four necessary and sufficient conditions were derived for nonexistence of a CQLF

for a pair of 3× 3 Hurwitz matrices [81]. Three of the conditions can be expressed as singularity
conditions for some convex combinations of Ai and A−1

i . For example one of the conditions says
that some convex combination of A1, A2 and (xA1 + (1− x)A2)

−1 is singular for some 0 ≤ x ≤ 1.
Testing this condition involves searching over a three-parameter space, so it is quite infeasible.
The main importance of the conditions lies in the possibility that they can lead to new insights
into the CQLF problem.

4.8 Stability Radii

The existence of a Lyapunov function or a common quadratic Lyapunov function for a switched
system implies exponential stability. This is a robust property, meaning that small perturbations
of the systems data do not destroy stability. One is often interested in quantifying this robustness
and this is the aim in the study of stability radii.

We assume we are given a nominal asymptotically stable system, which we take for the sake
of simplicity to be time-invariant. It is thus of the form

ẋ = A0x . (31)

Due to imprecise modelling it may be expected that the system of interest does not have the same
dynamics as the nominal system, but can be interpreted as a particular system in the class

ẋ(t) =

(
A0 +

m∑

k=1

δk(t)Ak

)
x(t) (32)

Here the matrices Ak, k = 1, . . . ,m are prescribed, modelling the expected perturbations of the
systems, while δ(t) = (δ1(t), . . . , δm(t) is an unknown, essentially bounded perturbation. The
question is how large this perturbation may be without destroying stability. To measure this size
we prescribe a norm ‖·‖ in R

m, and denote by ‖·‖∞ the corresponding norm on bounded functions
δ : R+ → R

m.
The stability radius in a switched systems sense is then given by

rLy(A, (Ai)) = inf{‖δ‖∞ | (32) is not exponentially stable for δ} . (33)
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Stability radii of this type are discussed in [33, 70]. In particular, the interested reader will find
an in depth discussion of related literature in these references. The calculation of stability radii
has been studied in [176] in the discrete time case and in [58] in continuous time. Of course, this
is again a difficult problem, as already the determination of the growth rate is NP-hard. We note
that if the set {

A0 +

m∑

k=1

δkAk | ‖δ‖ ≤ 1

}
,

is a polytope, then we are in the case of the switched system (1) again, as by (6) the exponential
stability of the inclusion (4) and (1) are equivalent.

We note that in the theory of stability radii there is an elegant interpretation of the CQLF
problem. This applies to the special case that perturbations are measured in the spectral norm
‖ · ‖2 and the perturbation is determined by structure matrices B ∈ R

n×l, C ∈ R
q×n. We are thus

considering perturbed systems of the form

ẋ(t) = (A + B∆(t)C) x(t) (34)

where ∆(t) ∈ R
l×q is an unknown perturbation. In this case three different stability radii may

be defined corresponding to real constant, real time-varying, and complex constant perturbations.
They are given by

rR(A,B,C) := inf {‖∆0‖2 | ∆0 ∈ R
l×q : (34) is not exp. stable for ∆(t) ≡ ∆0} ,

rLy(A,B,C) := inf {‖∆‖∞ | ∆ : R+ → R
l×q : (34) is not exp. stable for ∆} ,

rC(A,B,C) := inf {‖∆0‖2 | ∆0 ∈ C
l×q : (34) is not exp. stable for ∆(t) ≡ ∆0} .

The relation between these stability radii is

rR(A,B,C) ≤ rLy(A,B,C) ≤ rC(A,B,C) . (35)

In particular, we have

Theorem 13 (see [69]) Let A ∈ R
n×n be Hurwitz and B ∈ R

n×l, C ∈ R
q×n. The following

statements are equivalent:

(i) ρ < rC(A,B,C),

(ii) there exists a CQLF for the set of matrices

{A + B∆C | ‖∆‖2 ≤ ρ} .

In view of (35) it is of course interesting to find conditions that guarantee rR(A,B,C) =
rC(A,B,C), because in this case the intrinsically difficult problem of calculating the stability
radius of switched systems reduces to the calculation of the complex stability radius. For the
latter problem there exist quadratically convergent algorithms if stability radii are constructed
with respect to the spectral norm. One interesting case where this can be done concerns the area
of positive systems. In fact, for this system class the problem turns out to be particularly simple.

A matrix B ∈ R
n×m is called nonnegative, if all its entries are nonnegative numbers. We denote

this property by (B)ij ≥ 0. Recall, that a matrix A ∈ R
n×n is called Metzler, if all offdiagonal

entries are nonnegative numbers. Metzler matrices are precisely the matrices for which (eAt)ij ≥ 0
for all t ≥ 0. For this system class the following result has been shown in [52] for the more general
case of positive systems in infinite dimensions.

Theorem 14 Let A ∈ R
n×n be Metzler and Hurwitz. Assume B ∈ R

n×l, C ∈ R
q×n are nonnega-

tive. Then
rR(A,B,C) = rLy(A,B,C) = rC(A,B,C) = ‖CA−1B‖−1

2 .

The previous result shows that determining the stability radius or stability margin of switched
systems is quite easy for positive systems subjected to a particular perturbation structure.
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4.9 Decidability and Computability Issues

At this point some readers may wonder whether Lyapunov theory is not overkill for analysing
switched linear systems. After all, explicit solutions to any given differential equation of this form
can be constructed by piecing together solutions of the constituent linear time-invariant systems
as in (3), and the stability properties of such solutions, for any given switching sequence, can be
easily deduced. We shall see that this comment is naive and that determining the properties of
all such solutions is a computational impossibility.

In the discrete-time case, the computational complexity and decidability of problems regarding
stability properties of linear inclusions have been actively investigated. The problem can be des-
cribed as follows. Consider a finite set of matrices A = {A1, . . . , Am} ⊂ R

n×n and the associated
switched system

x(t + 1) = A(t)x(t) , A(t) ∈ A , t ∈ N . (36)

One might be tempted to ask for a good algorithmic procedure for deciding whether the set A
defines an exponentially stable or stable system.

An easy answer would be possible, if the question can be decided by checking a finite number
of algebraic inequalities, as one does in the Schur-Cohn test for single matrices. To formulate
the problem we consider m-tuples of matrices M = (A1, . . . , Am) ∈ (Rn×n)m and we denote by
Σ(A1, . . . , Am) the system (36) corresponding to the set A of distinct matrices in M .

Definition 15 A set Y is called semi-algebraic in R
p, if it can be represented as a finite union of

sets, that are each described by a finite number of polynomial equalities and inequalities.

The first negative result is then

Theorem 16 (Kozyakin [82]) Given n,m ≥ 2, the sets

{(A1, . . . , Am) ∈ (Rn×n)m | Σ(A1, . . . , Am) is exponentially stable} ,

{(A1, . . . , Am) ∈ (Rn×n)m | Σ(A1, . . . , Am) is stable} .

are not semialgebraic.

In fact, the proof of Kozyakin even shows that both sets are not subanalytic, a notion of real
analytic geometry, that we cannot discuss here, see [83]. Summarizing, this shows that there is no
simple description of the set of stable systems in algebraic or even analytic terms, which suggests
that the problem of deciding whether a given system is stable is a computationally difficult one,
in general.

To investigate the problem further, recall that a computational problem is called of class P , if
there exists an algorithm on a Turing machine that solves the problem in a time that depends in a
polynomial manner on the amount of information needed to describe a particular instance of the
problem. A problem is in class NP if a nondeterministic Turing machine can solve the problem
in polynomial time. In particular, any problem in P is in NP . A problem is termed NP -hard,
if by its solution any other problem in the class NP can be solved, so that it is at least as hard
as any other NP problem. It is one of the fundamental open questions, whether P = NP , but
assuming this is not the case, this means that for any NP hard problem there is no algorithm
that computes the answer to this question in a time that is a polynomial function of the size of
the data.

Theorem 17 (Tsitsiklis and Blondel [168]) Unless P = NP , there is no algorithm that ap-
proximates the joint spectral radius ρ in polynomial time for all finite sets of matrices {A1, . . . , Am},
n,m ≥ 2.

Definition 18 A problem is said to be algorithmically decidable if there exists an algorithm to
solve it that terminates after a finite number of steps with the correct answer. If a problem is not
algorithmically decidable, then it is said to be algorithmically undecidable.
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A more fundamental question is whether checking exponential stability is algorithmically de-
cidable. As we have seen exponential stability is equivalent to ρ(M) < 1 and stability implies
ρ(M) ≤ 1. The following theorem states that determining the maximum spectral radius of a
switched linear system is algorithmically undecidable.

Theorem 19 (Blondel and Tsitsiklis [19]) The problem, whether ρ(M) ≤ 1 is algorithmically
undecidable, even when restricted to setsM containing only 2 elements. Furthermore, the problem
of determining whether M is stable, is undecidable.

It is an open question, whether it is algorithmically decidable if a discrete linear inclusion is
exponentially stable, that is, if ρ(M) < 1, see [15].

4.10 Periodic Systems and Switched Systems

One class of switching system for which easily verifiable conditions for stability are known is the
class of periodic switched linear systems. For this system class, necessary and sufficient conditions
are available from Floquet theory [114, 148]; the growth rate of these systems is determined by
the spectral radius of the evolution operator evaluated at the period (and suitably normalized).
Since any general system may be thought of as a periodic system whose period is infinite, and
notwithstanding the decidability issues that we have just discussed, it is natural to question the
precise relationship between switched linear systems with arbitrary switching signals and those
with periodic switching signals. In view of the equality (10) we already know that periodic swit-
ching signals can have growth rate arbitrarily close to the uniform exponential growth rate of the
system. However, this does not answer the question posed below, which asks whether it is possible
to realize the growth rate with one particular periodic switching signal.

Consider the system ẋ = A(t)x, A(t) ∈ {A1, . . . , Am}. Suppose that the switching
system is exponentially stable for all periodic switching signals σ. Does this imply that
the system is exponentially stable for arbitrary switching signals?

The above question has been studied extensively for both discrete and continuous-time switched
systems; see, for example, [142] and [16] and the references therein. In principle, if it were true,
it would provide a method for testing the exponential stability of any given switching system,
through considering the stability of the system under periodic switching signals.

For discrete-time systems, this question is equivalent to the finiteness conjecture that was
introduced by Lagarias and Wang [85]. The conjecture has been disproved by Bousch and Mairesse
[23], so in discrete time the answer to the above question is no. Blondel, Theys and Vladimirov
have presented an alternative analysis of this example in [16]. In particular, in the latter paper the
existence of a switching system is shown where all periodic switching signals results in transition
matrices with spectral radius strictly less than one, whereas the joint spectral radius ρ = exp(κ) =
1. Hence, it would appear that periodic stability does not generally imply stability of switched
linear systems under arbitrary switching signals in discrete-time. Note that the counter example
relies crucially upon the switched system operating at the boundary of stability; namely, the
system is characterised by a limiting generalised spectral radius of 1.

While the counter example is certainly interesting, it merely states that switching systems that
are marginally stable (neither divergent nor convergent), need not be characterised by periodic
motions at the boundary of stability. However, by introducing a robustness margin, namely by
insisting that r(Φσ(T, 0)) < 1− ε, for a suitable ε > 0, and for all periodic switching signals σ, we
can conclude that robust periodic stability does indeed imply asymptotic stability.

The following sufficient condition for stability of discrete-time systems is due to Gurvits [60,
Theorem 2.3], and a continuous-time version of the result has been given in [179]. Note that the
result is an improvement on (10).
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Theorem 20 The switched linear system (1) is asymptotically stable under arbitrary switching if
and only if there exists an ε > 0 such that r(Φσ(T, 0)) < 1−ε for all periodic switching signals σ.

As mentioned above, this result holds for both continuous and discrete-time systems. Thus if
the switched system is periodically stable with some finite robustness margin ε, then it is expo-
nentially stable for arbitrary switching signals. In principle, the above theorem gives a practical
method for testing the stability of any given switching system.

In continuous-time, there are several positive results available for low-dimensional systems,
showing that periodic stability is sufficient for stability under arbitrary switching. Results of
this type have been derived by Pyatnitskii and Rapoport [140, 141] as well as by Barabanov
[11]. In particular, for second order systems of the form ẋ = A(t)x,A(t) ∈ {A1, A2}, where
rank(A1 − A2) = 1, stability under arbitrary switching may be tested by considering all periodic
switches with two switches per period (worst case switching). Similar results have been obtained
for third order systems, as well as for higher order systems that leave a proper cone invariant [143].
A numerical approach for determining stability based on finding periodic solutions is described
in [105]. However, the extension of these results to general higher dimensional continuous-time
systems remains an open question.

4.10.1 Describing Functions for Switched Systems

A simple argument that identifies the existence (or nonexistence) of unstable periodic switching
sequences is given in [138, 153]. Here, the authors consider systems of the form

ẋ = A(t)x, A(t) ∈ {A,A + bcT },

= (A + σ(t)bcT )x, σ(t) ∈ {0, 1}, (37)

where A,A+bcT are n×n companion matrices, b, c ∈ R
n×1, and where the switching signal σ(t) is

assumed to be periodic. By introducing the output y and setting xT = [y, ẏ, . . . , y(n−1)], systems
of this form can be conveniently represented in the frequency domain. The key to the analysis
in [138, 153] revolves around finding conditions under which a sinusoid, at a particular critical
frequency ωc, undergoes an amplitude magnification of unity, and an effective net phase shift of
2π as it traverses the feedback loop in Figure 4 (i.e., by assuming that the system destabilises via
a sinusoidal limit cycle). Clearly, the existence of such an output signal, yc(t) = A sin(ωct + θ),
constitutes the existence of a marginally stable (unstable) limit cycle as a result of switching. If
σ(t) is assumed to be periodic with period Tσ, then

σ(t) =

∞∑

−∞

knejnωσt,

where the ki are the Fourier coefficients of σ(t) and ωσ = 2π
Tσ

. Then, by applying the principle of
harmonic balance, the condition for the existence of yc(t) is that,

Yc(jω) = G(jω)

+∞∑

−∞

knYc(j(ω + nωσ)). (38)

Clearly, finding conditions under which (38) is satisfied is not simple. However, by assuming the
typical low-pass characteristic of G(jω) enables us to neglect the effect of frequency components
in σ(t) with the exception of n = 0 and n = −1, and by assuming that the system destabilises
via a sinusoidal limit cycle whose frequency is half that of the switching signal σ(t), then one
obtains using Describing Function-like [109] arguments the following approximate condition for
the existence of yc(t):

−
1

G(jω)
= k0 + k1e

−2jωt0 (39)
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Figure 5: Example.

where t0 ∈ R is some arbitrary time-origin. Equation (39) suggests that the intersection of the
inverse Nyquist plot of −G(jω) and one of the family of circles centred at (k0, 0) with radius k1

for some frequency ωc, for all k0, k1, implies the existence of a periodic switching signal σ(t) with
fundamental frequency 2ωc such that the system is marginally unstable.

Example 21 Consider the system (37) with

A1 =

(
0 1
−2 −2

)
, A2 =

(
0 1
−10 −2

)
.

It is easy to verify that G(s) = 8
s2+2s+10 . The plot of − 1

G(jω) is depicted in Figure 5, and 10 circles

centered at (k0, 0) with radius k1 are depicted for σ(t) with a single switch per period and with
duty cycle increasing in steps of 0.1. For σ(t) of this form, the above analysis does not indicate
the existence of marginally stable sinusoidal signals of the form discussed above.

Remark 22 Note that due to the approximation implied in condition (39) the method does not
yield reliable results either in terms of stability or instability. However it can serve as a convenient
engineering tool for the system design. Including higher harmonics can improve accuracy and even
approximate the smallest feedback gain for which a periodic solution is obtained [178].

To conclude we state a convenient result, formulated in terms of matrix cones, that identifies
unstable periodic switching sequences in switched linear systems arising due to unstable chattering.
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Theorem 23 (see [155, 163]) A sufficient condition for the existence of a switching sequence,
such that the system (1) is unstable, is that there exists nonnegative constants {α1, α2, . . . , αm},
with

∑m
i=1 αi > 0 such that

∑m
i=1 αiAi has an eigenvalue with a positive real part.

Remark 24 We note that similar results, albeit in another context, are obtained in [173, 50]. In
these papers the authors consider the quadratic stabilization of switched linear systems. In [173]
it is shown that a switched linear system is quadratically stabilisable if

∑m
i=1 αiAi is Hurwitz for

some {α1, . . . , αm}; in [50] it is shown that this condition is both necessary and sufficient for the
quadratic stabilization of switched linear systems where switching takes place between two LTI
systems. In both cases the authors use arguments from Lyapunov theory to obtain their results.
While it may be possible to use the Lyapunov-based arguments in [173, 50] to obtain the previous
result, it is shown in [163] that this result follows immediately from the nature of the solution to
(1) using only arguments from Floquet theory. A direct consequence of this result is the existence
of a periodically destabilising switching sequence; this is entirely consistent with the more general,
but also more abstract results presented in [142].

Remark 25 The conditions of Theorem 23 guarantee the existence of a periodic switching sequence
such that the system (1) is unstable. More specifically, given a positive sum that has an eigenvalue
with a positive real part for some nonnegative constants {α1, . . . , αm}, an unstable switching
sequence for (1) is constructed as follows: (a) scale the positive constants αi such that

∑m
i=1 αi = 1;

(b) let the matrix Ai describe the dynamics of (1) for αiT seconds. Then, for sufficiently small T ,
the periodic switching sequence so defined results in an unbounded solution to (1).

Theorem 23 has a number of interesting consequences for the switched system (1):

(i) It is well known that a necessary condition for the existence of a common quadratic Lyapunov
function (CQLF), V (x) = xT Px, P = PT > 0, for the LTI systems ΣAi

, i ∈ {1, . . . ,m},
with V̇ (x) < 0, is that

∑m
i=1 αiAi is Hurwitz for all αi ≥ 0, with

∑m
i=1 αi > 0. Hence

the condition that this sum has no eigenvalues with positive real part is necessary for the
existence of a CQLF. It follows from Theorem 23 that this condition is a much stronger
necessary condition; namely, it is also necessary for the existence of any type of common
Lyapunov function for the systems ΣAi

.

(ii) Often design laws based upon the existence of a CQLF place unnecessarily conservative
restrictions on the switching system. However this is not necessarily true for second order
systems. It follows from Theorem 8 that if a CQLF does not exist for ΣA1

and ΣA2
then one

of the following positive sums is singular (and hence non-Hurwitz) for some α0 ∈ [0, 1]. 5

α0A1 + (1− α0)A2,

α0A1 + (1− α0)A
−1
2 ,

Hence, as we mentioned above in Section 4, from Theorem 23, the nonexistence of a CQLF
for (1) implies that an unstable, or a marginally unstable6 switching sequence exists for at
least one of the dual switching systems

ẋ = A(t)x, A(t) ∈ {A1, A2}, (40)

ẋ = A(t)x, A(t) ∈ {A1, A
−1
2 }. (41)

Although this observation is not true for m > 2 matrices [157], it is somewhat surprising
since it implies a strong connection between the stability problem for (1), and the CQLF
existence problem for the constituent systems ΣAi

, namely:

5The stated implication can be obtained as follows. Suppose that A1A2 (respectively A1A
−1

2
) has a negative

real eigenvalue, −λ. Then det[λI + A1A2] = 0. Since A2 is Hurwitz, this implies that det[λA
−1

2
+ A1] = 0; hence,

the matrix λA
−1

2
+ A1 is singular.

6By marginally unstable we mean a switching sequence for which all solutions are bounded and for which there
is one solution that does not converge to 0.
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given two stable second order LTI systems for which a CQLF does not exist, it
follows that an unstable, or marginally unstable, switching sequence exists for one
of the associated switching systems (40) and (41).

4.11 Common Piecewise Linear Lyapunov Functions

Most of the available results for the arbitrary switching problem are related to the existence of
common quadratic Lyapunov functions. However it is not difficult to construct a switched li-
near system that is asymptotically stable for arbitrary switching sequences where the constituent
systems do not have a common quadratic Lyapunov function (see for example [37]). A rapidly ma-
turing area of research is concerned with determining conditions for the existence of nonquadratic
Lyapunov functions.

It follows from the converse theorem of Molchanov and Pyatnitski, Theorem 6, that a common
piecewise quadratic, or a common piecewise linear Lyapunov function always exists provided that
the underlying switched linear system is asymptotically stable for arbitrary switching. Motivated
by this result, a number of authors have sought to develop verifiable conditions for the existence
of piecewise linear Lyapunov functions (PLLF) of the form

V (x) = max
1≤i≤N

{wT
i x} (42)

where wi ∈ R
n, i = 1, . . . , N and the linear functions wT

i x are called generators of the piecewise
linear Lyapunov function. The function (42) is induced by a polyhedral set of the form

P =
{
x ∈ R

n : wT
i x ≤ c, i = 1, . . . , N

}
, c ∈ R+ .

Such functions can be shown to be proper and locally Lipschitz [122] and decompose the state-
space into a number of convex cones whose interiors are pairwise disjoint. The polyhedral set P is
called positively invariant with respect to the trajectories of a dynamical system if for all x(0) ∈ P
the solution of x(t) ∈ P for t > 0. A complete survey of properties of positively invariant sets and
their usage for a series of problems in control theory can be found in [13].

If the polyhedron P is bounded and centrally symmetric, then it describes a polytope and the
Lyapunov function V can be expressed as

V (x) = ||Wx||∞ = max
1≤i≤N

{|wix|} (43)

where W ∈ R
N×n, N ≥ n has full rank n. Functions of the form (43) are radially unbounded,

have a unique minimum, and the onesided derivative exists [116].
The existence of piecewise linear Lyapunov functions has been considered in a number of papers

for establishing the stability of nonlinear time-varying systems and numerical techniques for the
calculation of such functions have been developed. The existence question for piecewise linear
Lyapunov functions can be traced back to a series of papers in the sixties by Rosenbrock [147]
and Weissenberger [171] on Lur’e type systems. However, despite several decades of research,
powerful algebraic tools for the existence of piecewise linear Lyapunov functions remain scarce.
Although the class of PLFs appears powerful in theory, the computational requirements necessary
to establish their existence represents a serious bottleneck in practice. The main reason is that
a complex representation (with a large number of parameters) is usually required for a solution
to be found rendering the techniques applicable to low-dimensional problems only. Indeed few
theoretical tools exist to support the development of numerical or analytical tests for checking the
existence of such functions. One notable exception is the following result that was obtained in
[115, 116]:

Theorem 26 The function V (x) = ||Wx||∞ is a common piecewise linear Lyapunov function for
the switched system (1) if and only if there exist Qi ∈ R

N×N , i = 1, . . . ,m such that

q
(i)
kk +

N∑

l=1

l 6=k

|q
(i)
lk | < 0 (44)
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and

WAi −QiW = 0 (45)

for i = 1, . . . ,m. Here, q
(i)
jk denotes the (j, k) entry in the matrix Qi.

A generalization of this result for norm-based Lyapunov functions of the form V (x) = ||Wx||p
can be found in [79, 93].

A particular problem for the lack of results in this area is that it appears to be difficult to
specify a-priori the number N of generators that are necessary for the construction of a common
Lyapunov function (42) for a given switched system. We note that recently some progress on this
question has been made in the context of LTI systems [22, 21]. In this work, the authors relate
the number of faces of the PLLF (43) to the location of the spectrum of the system matrix A.
The results in these papers may serve as a starting point for the derivation of conditions for the
existence of a common PLLF for a set of LTI systems.

In [180] the existence of a PLLF with four faces (N = 4) is considered for second-order switched
systems with two subsystems.

Theorem 27 Given the switched linear system (1) with A1, A2 ∈ R
2×2 and spec (Ai) ⊂ (−∞, 0),

i = 1, 2, where spec
(
αA1+(1−α)A2

)
∩R = ∅ for some α ∈ (0, 1), there exists a common piecewise

linear Lyapunov function (43) with N = 4 if and only if for all α ∈ [0, 1] the absolute value of the
real part of the eigenvalues of

αA1 + (1− α)A2,

is greater than the imaginary part.

Finally we note that a number of attempts have been made to develop numerical techniques
for the construction of such Lyapunov functions. In [27] and [28] Brayton and Tong develop an
algorithm for difference inclusions which calculates a series of balanced polytopes converging to
the level set of a common PLLF after a finite number of steps. Barabanov [10] proposed another
technique for checking asymptotic stability of a linear differential inclusion. An algorithm is con-
structed which calculates the Lyapunov exponent and a common PLLF in a finite number of steps.
This idea has been developed initially for difference inclusions and requires a sufficiently dense
discretization and progressive refinements. Again convex hull computations increase the compu-
tational load significantly, rendering the techniques applicable to planar systems, as evidenced by
the examples in [27], [28], [10].

In a series of publications, Polański has described an algorithm to construct a common piecewise
linear Lyapunov function (43) with a given number of generators for the LTI systems ΣA1

, . . . ,ΣAm

[133, 134, 135]. Here the algebraic stability condition (45) and a scaling idea are used to formulate
the search for PLLFs as a linear program. Similar numerical difficulties with high complexity arise
and the technique is applicable to planar systems. In [135] an improved formulation using polytope
vertices and scaling makes the technique applicable to three-dimensional problems. Thus there are
cases, even in three dimensions, in which instability cannot be inferred even when a solution cannot
be found. Furthermore, the question of the number N generators required remains unsolved.

This problem is partially avoided in the ray-gridding method developed by Yfoulis and his
co-authors in [184, 186, 187]. The approach is based on uniform partitions of the state-space in
terms of ray directions which allow refinable families of polytopes of adjustable complexity. The
technique provides two important advantages. Firstly, the optimization problem can be solved
much more efficiently such that a complete treatment of the three-dimensional case is feasible;
and secondly, by applying a refinement technique there is no prior knowledge about the numbers
of generators required.
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Figure 6: Types of constraints on switching laws that arise in practical applications.

5 Restricted Switching

In earlier sections we dealt with the problem of determining conditions on the set of matrices
{A1, . . . , Am} such that the resulting switched system

ẋ = A(t)x, A(t) ∈ {A1, . . . , Am}, (46)

is exponentially stable for all switching sequences. While it is true that this problem has recei-
ved most of the recent attention in the switching systems literature, a number of other stability
problems stand out as being worthy of attention. Among these, the problem of determining the
stability of (46) in the case where the switching action is constrained in some manner is a problem
that arises in a number of important applications [90, 166].

Example 28 An example of how constrained switching can arise in practical situations is given
in [170], where the problem of designing a controller to deliver prescribed handling behaviour
for a four-wheel steering vehicle is considered. The controller described in [170] operates by
manipulating the front and rear steering angles of the vehicle to achieve the desired behaviour.
Due to physical considerations, the steering angle of the rear tyres is subject to a tight constraint,
and when the maximal allowed steering angle is reached, a change of control action is required
leading to an abrupt switch in the overall system dynamics.

Roughly speaking, research on systems in which switching is constrained has proceeded along
two distinct lines of enquiry. The first of these involves the study of systems in which constraints
on the switching action are induced by the evolution of the state vector x, as in the example above.
The second body of research is concerned with systems in which one seeks to impose constraints
on the rate at which switching takes place between the constituent subsystems so as to ensure the
stability of the overall system. It should be noted that the classical Lur’e system studied by Popov
[121] may be viewed as an example of the former system class, whereas classical Floquet theory
developed for the study of periodic systems may be viewed as an example of the latter [114].

One further important problem that arises in the context of this discussion is the following;
namely, given a set of non-Hurwitz matrices, determine whether or not it is possible to develop
a state dependent switching law such that the system (46) is globally uniformly asymptotically
stable [88]. We shall briefly discuss this problem later in the paper. The interested reader is
referred to [88] and the references therein for a discussion of some of the approaches that have
been employed in the study of this and the other problems concerned with constrained switching.

5.1 Constraints on the Rate of Switching

If all of the matrices in the switching set {A1, . . . , Am} are Hurwitz, then it is possible to ensure
the stability of the associated switched system by switching sufficiently slowly between the asym-
ptotically stable constituent LTI systems. This means that instability arises in (46) as a result of
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rapid switching between these vector fields. Given this basic fact, a natural and obvious method
to ensure the stability of (46) is to somehow constrain the rate at which switching takes place.

The basic idea of constraining the switching rate has appeared in many studies on time varying
systems over the past number of decades [59, 192, 73]. One of the best known and most informative
of these studies was given by Charles Desoer in 1969 in his study of slowly varying systems [44].
The basic problem considered by Desoer was to find conditions on the switching rate that would
ensure the stability of an unforced system of the form ẋ = A(t)x, where A(t) is a matrix valued
continuous function such that supt≥0 ‖ A(t) ‖< ∞, and A(t) is Hurwitz for all fixed t (here
‖ . ‖ can be any norm on R

n×n.) Using an argument based on quadratic Lyapunov functions,
Desoer demonstrated that there exists some constant K > 0 such that the solution x(t) satisfies
‖ x(t, t0) ‖< meλ(t−t0) ‖ x(t0) ‖ for some m > 0 and λ < 0 provided sup ‖ Ȧ(t) ‖= K. There
are two key points to emphasize here; firstly, the stability of the time-varying system can be
ensured by suitably constraining the rate of variation of A(t), and secondly the constraint on Ȧ(t)
is determined by a Lyapunov function associated with the system.

Recently, similar ideas have been exploited in the Hybrid and Switched Systems community
[90, 43, 87, 113, 182, 54]. However, when dealing with switched linear systems, one may approach
the problem of constraining the rate at which switching takes place in at least two ways. The
first, an indirect method, is close to the method suggested by Desoer; one constrains switching
indirectly by ensuring negative definiteness of the derivative of a certain Lyapunov function. An
alternative to this approach is to use knowledge of the form of the solutions to (46) to ensure
stability. While the latter approach is difficult for general time-varying linear systems, the explicit
form of the solution to (46) makes such an approach possible in the case of switched linear systems
and gives rise to the following basic problem in the study of switched linear systems.

Given the system (46), let στ (t) denote any switching signal with the property that
tk+1 − tk > τ for all k > 0. Let S[τ ] denote the class of all such signals. One may
then pose the following question: find the minimum τ for which (46) is uniformly ex-
ponentially stable for all στ ∈ S[τ ].

The above problem, often referred to in the literature as the Dwell-time Problem, poses a
fundamental question in the study of switched systems. However, rather surprisingly, very little
progress has been made on this and related problems, and to the best of our knowledge few papers
have appeared in the recent literature that deal with this topic; the most notable of those to
have appeared are [43, 87, 113, 182]. For convenience we report here on the work developed by
Hespanha and his coauthors in [68] as this appears at the present time to be the most complete
treatment of the Dwell-time problem to have appeared.

Definition 29 (Dwell-time) [68] Given a positive constant τD then S[τD] ⊂ S denotes the set
of all switching signals σ(t) ∈ S where the intervals between consecutive discontinuities are no
shorter than τD. The constant τD is called the (fixed) dwell-time.

For switched linear systems all of whose subsystems, ΣAi
, are Hurwitz stable, Morse [118]

established the (unsurprising) fact that the switching system (1) is asymptotically stable provided
the dwell-time τD is chosen to be sufficiently large. This result was extended by Hespanha in [68],
where the notion of average dwell-time τ̄D was introduced. This concept allows some switching
intervals to be of length less than τ̄D provided that, in a sense to be made precise below, the
average dwell-time is at least τ̄D.

Formally, for a switching signal σ, and real numbers t1, t2 with t2 > t1 > 0, let Nσ(t1, t2) denote
the number of discontinuities of σ in the interval (t1, t2). Then given a positive real number τ̄D > 0
and a positive integer N0 > 0, define S[τ̄D, N0] to be the set of switching signals σ ∈ S such that

Nσ(t1, t2) ≤ N0 +
t2 − t1

τ̄D

(47)
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for all t2 > t1 > 0. The parameter N0 is referred to as the chatter bound and τ̄D is known as the
average dwell-time. Note that for τ̄D > 0, S[τ̄D] = S[τ̄D, 1]. Using these concepts, Hespanha and
Morse derived the following sufficient condition for stability in [68].

Theorem 30 Consider the switching system (1) and suppose that Ai ∈ A is Hurwitz for 1 ≤ i ≤
m. Further, let λ0 > 0 be such that Ai + λ0I is Hurwitz for 1 ≤ i ≤ m. Then, for any chosen
λ ∈ [0, λ0), there is a finite constant τ̄∗

D such that (1) is exponentially stable, with decay rate λ,
for all switching signals σ(t) ∈ S[τ̄D, N0] for τ̄D ≥ τ̄∗

D and any chatter bound N0 > 0.

In other words, the system is stable if we switch on average more slowly than the rate cor-
responding to τ̄∗

D. A conservative estimate (upper bound) for the average dwell-time τ̄∗
D can be

calculated by first selecting λ0 > 0 such that Ai + λ0I is Hurwitz for all i ∈ {1, . . . ,m}. We
then calculate a quadratic Lyapunov function, Vi(x) = xT Pix, for each subsystem by solving the
Lyapunov equations

Pi(Ai + λ0I) + (Ai + λ0I)T Pi = −I

for i = 1, . . . ,m and calculate

µ = sup
1≤i,j≤m

ρmax[Pi]

ρmin[Pj ]
.

Finally, one chooses a stability margin λ for the switched system and obtain the average dwell-time
by

τ̄∗
D =

log µ

2(λ0 − λ)

Note that the results on average dwell-time in [68] were derived for a compact (not necessarily
finite) set of Hurwitz matrices A and that a version of Theorem 30 was also derived for certain
classes of switched nonlinear systems. A number of authors have further extended this work
and derived analogous results for other classes of switched nonlinear systems [128, 41]. Further
developments have also included the work of Zhai et al. [190] in which the authors modify this
result so that the lowest average dwell-time τ̄∗

D ensures that the switched system achieves a chosen
L2 gain, while several other authors have extended the results to allow for switching between
stable and unstable subsystems, e.g. [191], [183].

Remark 31 The principal difficulty associated with the dwell-time problem is to obtain a tight
lower bound on τD. It is quite remarkable that a nonconservative estimate of τD, even for simple
classes of switching systems, has to-date eluded the research community. Morse [118] has provided
an upper bound for the dwell time of switched linear systems by considering the explicit solution
in the time domain (3), and requiring that the norm of the state transition matrix between
consecutive switches be at most one in value. This is equivalent to the requirement that once the
system switches into the state with matrix dynamics ẋ = Apx, it must remain in the same state
for at least time τp where

τp = sup{t : ||eApt|| ≥ 1}

Morse’s upper bound is then τD ≤ supp{τp}. Because this selects the worst case among the τp, the
upper bound is generally not sharp, and so it gives a conservative estimate for τD. For example,
if {Ap} is any set of matrices with a common Lyapunov function, then τD = 0, however in general
some of the values τp may be positive.

Remark 32 A basic tool used to analyse systems with smooth dynamics is the invariance principle
of LaSalle [86]. Recently, a number of authors have explored the use of this theorem for analysing
linear and nonlinear switching systems. Examples given in each of these papers indicate that
application of the principle to switched systems is not straightforward (essentially, due to the effects
of fast switching) but that these complications may be overcome by imposing mild restrictions on
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the switching signal. In this context the notion of dwell-time arises in several recent papers on the
application of LaSalle’s results to switched systems [6, 100, 66]. Briefly summarised these papers
prove that the trajectories of a switched system approach an invariant set under the assumption of
a common Lyapunov function or multiple Lyapunov functions which decrease along all trajectories,
together with a bound on the rate at which switching takes place.

5.2 Converse Lyapunov Theorems for Systems with Dwell Time

In the present context, it is important to note that converse theorems for the existence of Lyapunov
functions also exist for switched systems with a restriction on the dwell time. Before we discuss
these results, we note that in general it is unreasonable to expect one Lyapunov function as a
function of the state to suffice for capturing stability. Consider again a set of matrices A =
{A1, . . . , Am} and assume we are given a dwell time restriction τD. If there exists a Lyapunov
function V such that t → V (x(t)) is strictly decreasing for all nonzero solutions of the switched
system (46), then this implies that the system (1) with arbitrary switching is also exponentially
stable. In general, there is of course a distinction between stability under arbitrary switching and
switching with a dwell time restriction.

A converse theorem for the case of dwell times is presented in [177, Cor. 6.5]. In the following
statement we tacitly use the same symbol v for a norm defined on R

n and the induced matrix
norm on R

n×n.

Theorem 33 The system (46) with fixed dwell time τD is exponentially stable, if and only if there
are norms v1, . . . , vm on R

n and a constant β > 0 such that

(i) for all i = 1, . . . ,m it holds that

vi(e
Ait) ≤ e−βt , for all t ≥ 0 ,

(ii) for all i, j = 1, . . . ,m it holds that

vj(e
Ajtx) ≤ e−βtvi(x) , for all x ∈ R

n, t ≥ τD .

Additionally, if the set of matricesA is irreducible7 then the norms in the previous theorem may
be chosen, such that β is equal to the exponential growth rate of (46) with fixed dwell time τD. In
this manner the result is an extension of the results of Molchanov and Pyatnitski, and Barabanov
on the existence of nonquadratic Lyapunov functions in the case of arbitrary switchings.

Finally for this subsection, we note that the work described in [42, 132] also contains results
relating dwell-time conditions for stability to the existence of Lyapunpov functions.

5.2.1 Indirectly Induced Constraints: Multiple Lyapunov Functions and Slowly Va-
rying Systems

An important paper in the recent evolution of stability theory of switched systems was published
in 1994 by Michael Branicky. Branicky made the observation, as Desoer had done in the 1960’s,
that Lyapunov functions could be used to derive laws to constrain the rate of switching in such
a way as to guarantee stability. Thus, the multiple Lyapunov function method, which we shall
describe here, is closely related to the dwell-time approach to stability described above. Rat-
her than use a single Lyapunov function to constrain the rate of switching as Desoer had done,
Branicky suggested the use of multiple Lyapunov functions (one for each mode of the system),
to guarantee exponential stability. It is interesting to note that such an approach is suggested
by the converse theorem for dwell time systems described in the previous subsection (Theorem 33).

7A set of matrices is called irreducible, if only the trivial subspaces {0} and Rn are invariant under all matrices
in the set.
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Branicky’s basic idea was to define a Lyapunov function for each mode i of the system
Σ. One then uses these functions to construct a stabilising switching signal σ(t) by only
allowing the system to switch into mode i if the value of the corresponding Lyapunov
function Vi(x) is less than it was when the system last left mode i.

It is important to note that the use of multiple Lyapunov functions to select a stable switching
sequence for switched systems had been suggested by a number of authors prior to Branicky’s
original paper in 1994; in particular Peleties & DeCarlo [127] deserve credit for promoting the
original idea for switched linear systems. However, Branicky’s paper, which extended the basic
idea to the nonlinear case, has had a great impact on the community and in the following discussion
we adopt the notation and arguments given in the original papers [26].

Branicky considers a general autonomous switched nonlinear system

ẋ(t) = f(x, t) f(x, t) ∈ {f1(x), . . . , fm(x)} t ≥ 0, (48)

where each mode, fi, is assumed to be globally Lipschitz continuous and exponentially stable;
and where the switching strategy is chosen in such a way that there are finite switches in finite
time. While there are several similar versions of Branicky’s result, we quote the following from
[25] which can be stated with a minimum of mathematical formalism.

Theorem 34 Suppose that we have a finite number of Lyapunov functions Vi(x) associated with
the continuous-time vector fields ẋ = fi(x). Let Sk = i0, i1, . . . , ik, . . . denote the switching se-
quence of the system, and Tk = t0, t1, . . . , tk, . . . denote the sequence of corresponding switching
instances for the system. If, for each instant tj when we switch into mode i, with corresponding
Lyapunov function Vi, we have that

Vi(x(tj)) ≤ Vi(x(tk)) (49)

where tk < tj and tk is the last time that we switched out of mode i, then the system is stable in
the sense of Lyapunov.

Theorem 34 gives a simple rule for the construction of a stable slowly varying switching system.
It states that when the system enters mode i, the value of the Lyapunov function associated with
this mode must be less than the value it attained when the system last left mode i. For the
purpose of illustration, consider a general nonlinear system with two modes, ẋ = fi(x), i ∈ {1, 2}.
The profile of typical Lyapunov functions associated with modes 1 and 2, for a switching strategy
constructed according to Theorem 34, is depicted in Figure 7.

The approach of multiple Lyapunov functions can be varied in several ways. For instance, we
can relax the requirement that the functions Vi, 1 ≤ i ≤ m, are proper Lyapunov functions in
the sense that V̇i(x) ≤ 0 along every entire trajectory x(t) of the ith subsystem. Clearly, we may
achieve less conservative results if we only demand that V̇i(x) is nonpositive during time-intervals
where the system actually is in mode i (in which case Vi is often referred to as a Lyapunov-
like function). Further improvement can be achieved if we compare the values of Vi in (49) at
consecutive starting points of mode i. For details see e.g. [26, 55].

Remark 35 The multiple Lyapunov function approach to stability analysis offers several advan-
tages over other more conventional methods: (i) the underlying idea of the paradigm is easy to
understand and is suitable for use in industry; (ii) the approach can be used for the stability
analysis of heterogeneous systems; and (iii) the analysis can be based upon the existence of any
type of Lyapunov function (not just quadratic functions).

Remark 36 There are several disadvantages associated with the approach: (i) no constructive
procedure for choosing the best Lyapunov functions is currently known; (ii) a poor choice of
Lyapunov functions Vi may lead to very conservative switching rules; (iii) in order to choose
a Lyapunov function for each subsystem, the subsystems must be individually stable; (iv) the
technique places conditions on all of the candidate Lyapunov functions.
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Figure 7: Multiple Lyapunov functions.

Remark 37 A number of interesting research questions in the multiple Lyapunov function frame-
work remain unanswered. In our context, namely for switched linear systems, the most important
of these pertains to developing a constructive method of choosing the candidate Lyapunov func-
tions that minimise the dwell-time for each mode.

5.3 State Dependent Switching and Stability

In the previous subsection, we considered a variety of results concerned with switched systems for
which the rate of switching is constrained in some way. An alternative type of constraint that
arises in the study of switched systems is where the switching action is constrained by the state
vector of the system. Internet congestion control is an example of one such system. If the rule
for switching between the constituent subsystems of a switched system is determined by the state
vector of the system, we say that the switching is state dependent. Loosely speaking, the stability
problems associated with this type of switching regime can be divided into two classes. In the first
of these, the state space is partitioned by a number of hyper-surfaces that determine the mode
switches in the system dynamics, and the problem is to analyse the stability of the time-varying
system defined in this way. On the other hand, in the second class of problem we are concerned
with finding state-dependent rules for switching between a family of unstable systems that result
in stability. Thus, in the former case, a partition of state space is specified and the problem is
to determine the stability of the piecewise linear system defined by that partition, while in the
latter case the aim is to find stabilizing state-dependent rules for switching between individually
unstable systems.

5.3.1 Switched Systems and State-Dependent Constraints

We shall now consider switched systems that are constrained in the sense that a mode switch
occurs in the systems dynamics when its state vector crosses certain threshold surfaces in state
space. We first turn our attention to the class of piecewise affine systems.
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Piecewise Affine Systems

A piecewise affine system is a dynamical system of the form

ẋ = Aix + ai for x ∈ Ωi (50)

where Ω1, . . . ,Ωm are closed sets with pairwise disjoint interiors such that ∪iΩi = R
n, A1, . . . , Am

are in R
n×n, and a1, . . . , am are in R

n. It is usual to assume that ai = 0 for any region Ωi that
contains the origin. (If ai = 0 for all i, the system is piecewise linear.)

Note that in general, there can be an issue with the definition of solutions to (50) on common
boundaries of the closed regions Ωi. In particular, so-called sliding motions can arise if the vector
fields corresponding to two adjacent sets Ωi, Ωj both point towards their common boundary. In the
interests of simplicity, we shall not explicitly discuss the stability of systems with sliding motions
in this subsection. However, it should be noted that the piecewise quadratic methods described
below can be adapted to deal with sliding-mode dynamics. The interested reader should consult
[75] for details.

For such systems, requiring the existence of a common Lyapunov function can be an unduly
restrictive criterion for asymptotic stability of the origin. For instance, in order for the quadratic
form V (x) = xT Px to define a CQLF for Σi : ẋ = Aix + ai, for each i ∈ {1, . . . ,m}, V (x) must
decrease along all trajectories of Σi everywhere in the state space. However, it is clear that this
may well lead to unnecessarily conservative stability conditions as it fails to take into account that
the system Σi is only active within the region Ωi.

The S-procedure [24, 75] is a numerical techniques that seeks to exploit the structure of (50)
to obtain less conservative stability conditions. The key idea of the S-procedure is to only require
that the function V decreases along trajectories of Σi in the corresponding region Ωi. This can
lead to less restrictive conditions for stability than are obtained through requiring the existence
of a common Lyapunov function.

Piecewise Quadratic Lyapunov Functions

Extending the ideas of the S-Procedure, a number of authors have studied piecewise quadratic
Lyapunov functions [75, 130, 129, 62] in order to find less conservative stability criteria for piecewise
linear systems. Here, rather than looking for a single quadratic Lyapunov function, V (x) = xT Px,
for the system (50), the idea is to search for a family of such functions satisfying certain local
conditions, and then to piece these together appropriately to form a Lyapunov function for the
overall system.

For convenience, and to illustrate the main ideas behind the use of piecewise quadratic Lyapu-
nov functions, we shall focus mainly on the results of [75]. In this paper, under the assumption
that the regions Ωi are polyhedral, a numerical procedure is described for searching for a piecewise
quadratic Lyapunov function of the form 8

V (x) = xT Pix for x ∈ Ωi, (51)

where Pi = PT
i ∈ R

n×n for i = 1, 2, . . . ,m. Extending the basic idea of the S-procedure, the
authors of [75] relax the conditions for stability given by CQLF existence in a number of ways.

(i) The use of different quadratic forms for the different operating regions Ωi can lead to greater
flexibility in the definition of the Lyapunov function V .

(ii) The matrices Pi are not required to be globally positive definite. In fact, by applying the
S-procedure, the inequality xT Pix > 0 is only required to hold when x ∈ Ωi for 1 ≤ i ≤ m.

(iii) Similarly, Vi(x) = xT Pix is only required to decrease along trajectories of ẋ = Aix + ai for
x ∈ Ωi.

8The function takes a slightly different form in regions Ωi that do not contain the origin. For details consult [75]
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A few specific points relating to the results described in [75] are worth noting.

(i) The matrices Pi are parameterized so as to ensure that the piecewise quadratic function V

is continuous.

(ii) The conditions for (51) to define a piecewise quadratic Lyapunov function for the system
(50) are expressed in the form of linear matrix inequalities (LMIs). Hence, modern convex
optimization algorithms can be used to search for piecewise quadratic Lyapunov functions.

(iii) It is possible to use a partition other than that dictated by the system dynamics to define the
piecewise quadratic function. Thus, if an initial search is unsuccessful, it may be possible to
find a piecewise quadratic Lyapunov function defined with respect to an alternative, possibly
finer, partition of the state space. However, the problem of selecting an initial partition, and
of devising automatic methods of successively refining the partition to systematically search
for piecewise quadratic Lyapunov functions is in general far from straightforward.

The ideas and techniques of [75] were subsequently developed and extended in [76, 145], and
similar LMI conditions for the stability of piecewise linear systems based on piecewise quadratic
Lyapunov functions have been presented in [62]. In this context, the work of [49] on applying
piecewise quadratic methods to the problem of controller design for uncertain piecewise affine
systems should also be noted.

The paper [185] describes closely related work on the stability of the class of orthogonal pie-
cewise linear systems. For such systems, the hyper-planes that partition the state space, R

n take
the general form xi = ci,j for i = 1, . . . n, j = 1, . . . ni, and divide the state space into a family
of hyper-rectangles. The conditions for stability derived in [185] are based on the existence of
piecewise linear Lyapunov functions as opposed to piecewise quadratic Lyapunov functions.

Switching Rules Specified by Switching Surfaces

Ideas similar to those used to analyse piecewise linear systems have also been used to study more
general state dependent switching rules. Typically, these rules are defined by specifying a set of
surfaces Sij , 1 ≤ i, j ≤ m, in the state space such that the system switches from mode i to mode
j if the ith subsystem is currently active and the state vector crosses the surface Sij [130, 75, 173].
For instance, in [75] piecewise quadratic Lyapunov functions are employed to obtain LMI-based
stability conditions for such systems under the assumption that the switching surfaces are given by
hyper-planes. The Lyapunov function used to derive the conditions in this paper is not required
to be continuous provided that the value of the function decreases whenever the system switches
from one mode to another. Similar results based on piecewise quadratic Lyapunov functions have
also been presented in [130]. The results of this last paper are based on a Lyapunov function
that need not be continuous and, moreover, is not required to decrease at each switching instant.
In fact, all that is needed for stability is that the values of the function are bounded by some
continuous function of its initial value. The conditions in [130] are again formulated as LMIs, and
can also be applied to systems with nonlinear constituent systems.

Piecewise Linear Systems and the Popov Criterion

The classical Popov criterion for the absolute stability of nonlinear systems [136, 169] can also be
used in the analysis of certain piecewise linear systems. An example illustrating this is described in
[75], where the stability of a two-dimensional piecewise linear system is established using the Popov
criterion. For the system considered in this example, the Popov criterion ensures the existence
of a Lyapunov function of Lur’e Postnikov form, meaning that it is the sum of an integral of a
nonlinear function and a quadratic form. For the system considered in [75], this function actually
reduces to a piecewise quadratic Lyapunov function of the form considered above. It should be
noted that the connection between Lyapunov functions of Lur’e Postnikov form and piecewise
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quadratic Lyapunov functions was earlier pointed out by Weissenberger in [171], and that the
idea of using piecewise quadratic Lyapunov functions for stability analysis had been suggested by
Power and Tsoi in [137].

Positive Switched Linear Systems

The classes of switched system considered above are constrained in the sense that the system
dynamics must undergo a mode switch when the state vector crosses some surface in state space.
The nature of these systems has led naturally to the consideration of both piecewise quadratic and
piecewise linear Lyapunov functions in their stability analysis. A different type of constraint arises
in the study of positive switched linear systems, where any trajectory starting from nonnegative
initial conditions must remain within the nonnegative orthant for all subsequent times [48, 95].
In view of the considerable restriction that this imposes on the possible trajectories of a positive
system, it is natural to consider so-called co-positive Lyapunov functions when analysing the
stability of such systems [14]. These functions are only required to satisfy the requirements of a
traditional Lyapunov function within the nonnegative orthant and may lead to less conservative
stability conditions for positive switched linear systems than can be obtained using traditional
Lyapunov functions. Some initial results on common copositive Lyapunov function existence can
be found in [61, 108, 107]

5.3.2 Stabilizing Switching Rules

The results discussed in the last subsection were concerned with establishing the stability of
systems subject to some specified state dependent switching rule. Another problem of interest in
this context is that of determining stabilizing switching rules for systems with unstable constituent
systems.

In [173], the following problem was addressed. Given two LTI systems ΣA1
, ΣA2

where both
A1 and A2 have some eigenvalues in the right half plane, determine if there exists some rule for
switching between these systems that results in stability. It has been established, [173], that if
some convex combination of the matrices A1 and A2 is Hurwitz, then such a stabilizing switching
rule does indeed exist. Formally, this amounts to testing for the existence of some α with 0 < α < 1
such that the matrix

A(α) = αA1 + (1− α)A2

is Hurwitz. Moreover, the authors of [173] describe how to construct a state-dependent stabilizing
switching rule when such a stable convex combination exists.

The basic idea behind this construction is the following. As the matrix A(α) is Hurwitz, there
exists some positive definite matrix P = PT > 0 such that

A(α)T P + PA(α) < 0. (52)

It follows that the two cones Ω1, Ω2 defined by

Ωi = {x ∈ R
n : xT (AT

i P + PAi)x < 0} (53)

cover the space (meaning that Ω1 ∪ Ω2 = R
n). Using this fact, it is possible to define two

switching surfaces close to the boundaries of these cones such that the associated switching rule
asymptotically stabilizes the overall system. In fact, the quadratic function, V (x) = xT Px, where
P is a solution of (52), is a Lyapunov function for the system defined by this switching rule. For
this reason, we say that the switching rule defined in the above manner quadratically stabilizes
the system.

The switching rule described in the previous paragraph is constructed so as to ensure that
only a finite number of switches occur in any finite time interval. Two other switching rules for
stabilizing the system are also described in [173], but both of these allow for the possibility of
infinitely many switches occurring in a finite time interval and for practical reasons this may be
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Figure 8: Graphical depiction of the Lur’e system. For the present discussion we consider SISO
systems: A is a stable n× n matrix, b, c are appropriately dimensioned vectors, and d is a scalar.

undesirable. For second-order systems a characterization of the existence of stabilizing switching
rules is provided in [104].

The result that a stabilizing switching rule exists if some convex combination of the matrices
A1 and A2 is Hurwitz extends to the case of an arbitrary finite family of matrices. Formally,
given a family of unstable LTI systems ΣA1

, . . . ,ΣAm
, there is some rule for switching between

them that results in quadratic stability if there are nonnegative real numbers α1, . . . , αm with
α1 + · · ·+ αm = 1 such that the matrix α1A1 + · · ·+ αmAm is Hurwitz. In general this condition
is not known to be necessary for the existence of such a quadratically stabilizing switching rule.
However, for the case of switching between two unstable systems, the existence of a Hurwitz convex
combination of the system matrices is known to be equivalent to the existence of a quadratically
stabilizing switching rule [50].

The work of [173] has been extended in the paper [172] where conditions for the existence of
stabilizing switching rules were derived using piecewise quadratic Lyapunov functions as opposed
to quadratic Lyapunov functions. Note also the related work on piecewise quadratic Lyapunov
functions described in [181], and the recent paper [5] where it is shown that, under an additional
assumption, there exists a stabilizing rule for switching between a pair of unstable LTI systems
ΣA1

, ΣA2
, provided that there is some convex combination of the system matrices A1, A2 with

the property that all of its eigenvalues have nonpositive real parts and any eigenvalues on the
imaginary axis are simple.

6 The Lur’e problem

The study of stability reached a peak in the 1960s and early 1970s in the engineering community.
During this period a vast number of researchers studied the Lur’e problem. Consequently, it is
impossible to write a review on this topic without mentioning this work even briefly.

The SISO version of the Lur’e problem is depicted in Figure 8 (although our comments are
equally valid for MIMO versions of the Lur’e problem).

As can be seen the Lur’e system is composed of a feedback connection of a stable LTI system
and a nonlinear and possibly time-varying gain that is constrained to lie in some interval, say
k(y, t) ∈ [0, 1].

Remark 38 Note that the Lur’e system reduces to an example of a classical switched system when
k(y, t) ∈ {0, 1}. Evidently, tools developed for the study of Lur’e systems can therefore be applied
to the analysis of special classes of switched systems.

Three problems were widely studied in the context of the Lur’e system.

(i) When is the equilibrium solution of the Lur’e system globally uniformly exponentially stable
for arbitrary time-varying gains k(t)?
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(ii) Can one impose constraints on k(y, t) such that the equilibrium solution of the Lur’e system
is globally uniformly exponentially stable?

(iii) Can one impose conditions on the rate of change of k(y, t) so that the equilibrium solution
of the Lur’e system is globally uniformly exponentially stable?

Problems (i), (ii) and (iii) are clearly analogs of the Arbitrary switching, Restricted switching
and the Dwell-time problems respectively. Their study has led to many classical stability criteria:
the Kalman-Yacubovich-Popov-Meyer lemma; the Circle Criterion; the off-axis Circle criterion; the
Passivity theorem; and the Popov Criterion [1]. The main tool used in developing these results
was the Lur’e-Postnikov Lyapunov function. That is, one sought conditions on A, b, c, d, k(y, t) to
ensure existence of a Lyapunov function of the form:

V (x) = xT Px + λ

∫ y

0

k(δ, t)dδ (54)

where λ ∈ R
+ and where P = PT > 0. Note that V is rarely quadratic. Due mainly to the

remarkable results of Popov, and later of Kalman and Meyer, it was found that the existence of a
function V for the Lur’e system could be deduced by testing whether or not

1 + Re(H(jω)G(jω)) > 0, ∀ ω ∈ R (55)

where G(jω) = d + cT (jωI − A)−1b and H(jω) is some rational function of ω that is referred to
as a multiplier. Recently, a number of results have been obtained that relate results derived in
the context of the Lur’e problem to more general results derived in the context of switched linear
systems. In particular, the following result has proved to be a useful bridge between these areas.

Theorem 39 Let G(jω) = N(jω)
D(jω) be a proper real rational transfer function and K ∈ R+. Let

{A, b, c, d} be a realization of G(jω) so that G(jω) = cT (jωI − A)−1b + d. Assume that A and(
A− 1

K+d
bcT
)

are Hurwitz. Then, a necessary and sufficient condition for

K + Re {G(jω)} > 0, ∀ ω ∈ R ∪ {∞}, (56)

is that the matrix-product A
(
A− bcT

K+d

)
has no negative real eigenvalues.

Theorem 39 has a number of implications for classical frequency domain stability criteria.

(i) The Kalman-Yacubovich-Popov (KYP) Lemma. The single-input single-output (SISO) ver-
sion of the Kalman-Yacubovich-Popov lemma [77] is expressed in the form of a strictly
positive real (SPR) condition: namely, A and A− 1

γ
bcT are Hurwitz and

γ + Re
{
cT (jωIn −A)−1b

}
> 0 ∀ ω ∈ R,

for some γ ∈ R+. Hence it follows from Theorem 39 that a time-domain version of the
SPR condition for SISO systems is that the matrices A and

(
A − 1

γ
bcT
)

are Hurwitz and

A(A− 1
γ
bcT ) does not have any negative real eigenvalues.

(ii) The Circle Criterion [159]. The SISO version of the Circle Criterion is derived directly from
the SISO KYP lemma. Here, conditions are derived for the existence of a Lyapunov function
V (x) = xT Px, P = PT ∈ R

n×n for the nonlinear Lur’e type system. In this case a necessary
and sufficient condition for the existence of a quadratic Lyapunov function V is that [120]
A and A− bcT are Hurwitz and that

1 + Re
{
cT (jωIn −A)−1b

}
> 0 ∀ ω ∈ R.

It follows from Theorem 39 that a time-domain version of the Circle Criterion with 0 ≤
k(y, t) ≤ 1 is that matrices A and A− bcT are Hurwitz and that matrix A(A− bcT ) does not
have any negative real eigenvalues.
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(iii) The Popov Criterion. The SISO Popov criterion [164] considers the stability of the Lur’e
system where the function k is nonlinear but time-invariant. A sufficient condition for the
absolute stability of this system is that A and A − 1

γ
bcT are Hurwitz and there exists a

strictly positive α ∈ R such that

1

k
+ Re

{
(1 + jαω)cT (jωIn −A)−1b

}
> 0 ∀ ω ∈ R.

It follows from Theorem 39 that a time-domain version of the Popov criterion is that A

and A − 1
γ
bcT are Hurwitz and there exists a positive α ∈ R such that the matrix Ā(Ā −

1
d̄+ 1

k

b̄c̄) does not have any negative real eigenvalues, where {Ā, b̄, c̄, d̄} is a realization of

(1 + αs)cT (sIn −A)−1b.

Remark 40 The most interesting observation arising from this theorem is that all stability pro-
blems have been reduced to a CQLF existence problem. For example, the Popov criterion, which
searches for the existence of a nonquadratic Lyapunov function for the original nonlinear system,
has been reduced to a CQLF existence problem for ẋ = Āx, and ẋ = (Ā− 1

d̄+ 1

k

b̄c̄)x. This appears

to be an unexplored (and perhaps important) observation.

6.1 Passivity

Apart from the Circle Criterion, one of the big successes of this period was the derivation of the
Passivity theorem [169]. The Passivity Theorem gives a sufficient condition for stability of the
following time-varying, nonlinear system:

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),

u(t) = −Φ(t, y(t)) (57)

where x ∈ R
n, u, y, z ∈ R

m,m < n, Φ : R × R
m → R

m, and A,B,C,D are matrices with the
appropriate dimensions. These equations describe the dynamics of a control system where x(t) is
the state variable, y(t) is the output variable and u(t) is the feedback. The dynamics of x(t) is
separated into a linear part Ax and a nonlinear part Bu, and it is assumed that the matrix A is
Hurwitz so that the linear part is stable. The question of finding conditions on the nonlinearity
Φ which are sufficient to guarantee stability of the system is known as the Lur’e problem. The
Passivity Theorem provides the following solution: the system (57) is gobally exponentially stable
if Φ(t, 0) = 0, yT Φ(t, y) ≥ 0 for all t ∈ R, all y ∈ R

m, and if H(jω) + H∗(jω) is positive definite
for every real ω, where the transfer matrix H(s) is defined by

H(s) = C(sI −A)−1B + D, s ∈ C. (58)

When these conditions are satisfied the Kalman-Yacubovitch Lemma guarantees the existence of
a quadratic Lyapunov function xT Px for the system (57) [169].

This problem is relevant to the study of switching systems because in many cases the dynamics
of a switching system has the following form:

ẋ(t) = Ax(t)− z(t, x(t)) (59)

where x ∈ R
n, A ∈ R

n×n is Hurwitz and z : R × R
n → R

n is a time-varying, nonlinear vector
field. The Lur’e system (57) can be rewritten in the form (59) with z = Φ(t, y(t)), where y(t)
depends on the state x(t) through the implicit relation y(t) = Cx(t) −DΦ(t, y(t)). Thus (59) is
more general than the Lur’e system, because z is allowed to depend on x in an arbitrary way.

One example of such a system arises in state-dependent switching where R
n is partitioned into

disjoint sets {Ωi}, and the dynamics switches between different linear systems as the state crosses
from one region to another. So the dynamics is given by

ẋ(t) = A(x)x(t), A(x) = Ai ∀ x ∈ Ωi (60)
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This system can be presented in the form (59) by defining z(t, x) = (A − A(x))x(t) for some
Hurwitz matrix A.

The Passivity Theorem provides a method to analyse the stability of systems of the form
(59). The crucial ingredient is the existence of a quadratic Lyapunov function xT Px for the
system. Instead of using the Kalman-Yacubovitch Lemma to provide the matrix P , one can instead
postulate the existence of such a function and use it to derive conditions which must be satisfied by
the nonlinearity Φ. To see how this might be achieved consider the following construction (which
closely resembles the result of [173]. Let {A1, . . . , Am} be a collection of real matrices such that the
convex combination Ã =

∑m
i=1 αiAi is Hurwitz for some α1, . . . αm satisfying αi ≥ 0,

∑
αi = 1.

Choose P = PT > 0 such that ÃT P + PÃ < 0 and define Ki = {x : xT P (Ã−Ai)x ≥ 0}. Then

m⋃

i=1

Ki = R
n.

For i = 1, . . . ,m let Ωi ⊂ Ki such that the Ωi are disjoint and their union is R
n. Then the system

(60) is globally exponentially stable. The statement follows by choosing z(t, x) = (Ã− A(x))x(t)
in (60) where A(x) = Ai for all x ∈ Ωi. Then the definition of Ki implies that xT Pz(t, x) ≥ 0
for all x ∈ R

n, and this is sufficient to guarantee that xT Px is a Lyapunov function for (60).
This observation can be used to design stable switching systems of the form (60). In particular,
given a collection of real matrices {A1, . . . , Am} for which some convex combination is Hurwitz,
one would like to determine all matrices P = PT > 0 which satisfy ÃT P + PÃ < 0, as these
would describe possible stable state-dependent switching rules for this collection. In general it is
difficult to find a compact parametrization of these matrices. However the procedure simplifies
when the matrices Ai have the special form Ai = Ã − BDT

i , where Ã is Hurwitz and B is some
fixed matrix. In this case, if there is a matrix C such that H(jω) + H∗(jω) is positive definite for
all real ω, where now H(s) = CT (sI −A)−1B, then the cones Ki are given as {x : xT CDT

i x ≥ 0}.
Therefore the search for matrices P can be replaced by a simpler search for matrices C that satisfy
this positivity condition. In the case m = 1 where B,C are vectors in R

n, the set of all possible
vectors C can be described in the following compact and useful way [80]: a vector C satisfies the
positivity condition above if and only if CT AB < 0 and CT (A2 + ω2)−1AB < 0 for all ω ∈ R.
This allows a constructive procedure to find the vectors [80].

7 Some Open Problems and Future Directions

In this section, we shall briefly review and summarise some of the open questions arising from the
results and issues discussed throughout the paper. Broadly speaking, the major open problems in
the stability theory of switched linear systems can be divided into three categories, corresponding
to the first three problems discussed at the end of Section 1; namely, the problem of stability under
arbitrary switching, the dwell-time problem, and the problem of determining stabilising switching
signals.

(i) In the context of stability under arbitrary switching, Theorem 8 and Theorem 9 provide
simple conditions for CQLF existence that are related to the dynamics of switched linear
systems via Theorem 23. While Theorem 12 gives necessary and sufficient conditions for a
general family of stable LTI systems to have a CQLF, the conditions described by this result
are extremely complicated and difficult to check, even for the case of a pair of third order
systems. Hence, an open problem of some interest is to determine system classes, such as the
class of second order systems or pairs of systems with system matrices differing by a rank one
matrix, for which simple conditions for CQLF existence can be given. In this context, the
work reported in [154] should be noted. In this paper, it was shown that the system classes
covered by Theorem 8 and Theorem 9 can be treated within a common framework provided
by the main result of [160]. This may provide some insights as to how to obtain further
system classes for which similarly simple conditions for CQLF existence can be derived.
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(ii) A closely related problem to that described above is that of determining classes of switched
linear systems for which CQLF existence is equivalent to exponential stability under arbitrary
switching. Two examples of such system classes have been described in Section 4 above, and
for such systems, the problem of determining stability under arbitrary switching is simplified
considerably.

(iii) Theorem 27 gives a simple spectral condition for the existence of a common piecewise linear
Lyapunov function (PLLF) for a pair of stable second order LTI systems, and to date there
are very few results of this kind available in the literature. This gives rise to the question of
whether or not it is possible to extend this result to higher dimensional systems.

(iv) For the class of positive switched linear systems, as mentioned in Section 5, it is natural to
consider co-positive Lyapunov functions. In particular, given that the trajectories of positive
systems are constrained to remain within the nonnegative orthant, such Lyapunov functions
may lead to less conservative stability criteria than those obtained through requiring CQLF
existence. This raises the problem of determining verifiable conditions for common co-
positive Lyapunov function existence for families of positive LTI systems.

(v) Apart from the above problems on stability for arbitrary switching signals, the important
issue of determining nonconservative estimates of the dwell-time for constrained switching
regimes is still unresolved.

(vi) On the question of determining stabilising switching signals for unstable constituent systems,
the work of Feron, Peleties, de Carlo and others discussed in Section 5 provides sufficient con-
ditions for quadratic stabilization laws. Also, it is known that for the case of two constituent
systems, the conditions discussed above are both necessary and sufficient for the existence of
a quadratically stabilising switching rule. To the best of the authors’ knowledge, necessary
and sufficient conditions for the existence of a general (not necessarily quadratic) stabilising
switching law are not known. Some results related to this topic were previously mentioned
in Section 5, where appropriate references were also given.
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