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1 IntrodutionIt is well-known that exponential deay of the solution of a linear autonomousordinary di�erential equation (ODE) _x(t) = Ax(t), t 2 R, or of an au-tonomous di�erene equation (O�E) xt+1 = Axt, t 2 Z, an be haraterizedby spetral properties of A. Namely, the solutions tend to 0 exponentiallyas t ! 1, if and only if all the eigenvalues of A 2 C d�d have negative realparts or a modulus smaller than 1, respetively (f. Hahn [6, p. 14℄, Agar-wal [1, p. 227℄). In the present paper we generalize this lassial result tolinear time-invariant dynami equations x� = Ax on arbitrary time sales.Here the problem is more subtle due to the possible inhomogeneity of thetime sale and so far only suÆient onditions for the exponential deay ofsolutions are available.The �rst result onerning the ase of general time sales was obtainedby Aulbah & Hilger [2, Theorem 13℄ and it ontains a ondition forthe boundedness of solutions on time sales with bounded graininess. Al-though it uni�es the time sales T = R or T = hZ, h > 0, its assumptionsare often too pessimisti, e.g. on asymptotially homogeneous time sales(f. Example 20), sine the maximal graininess is involved. More detailedresults are presented in Keller [10, p. 29, Satz 2.5.8℄, inluding riteriafor asymptoti stability or instability. A totally di�erent approah to theasymptoti stability of linear dynami equations using Lyapunov funtionsan be found in Hilger & Kloeden [9, Theorem 3℄ and P�otzshe [11,Abshnitt 2.1℄ provides suÆient onditions for the uniform exponential sta-bility in (in�nite-dimensional) Banah spaes, as well as spetral stabilityonditions for time-varying systems on time sales.As a thorough introdution into dynami equations on time sales werefer to the paper Hilger [8℄ or the monograph Bohner & Peterson [3℄.The paper Aulbah & Hilger [2℄ presents the theory with a fous on linearsystems.This paper is organized as follows. In Setion 2 we introdue the lassof systems we wish to study and de�ne the onepts of exponential, uniformexponential and robust exponential stability. In Setion 3 we ompletelyanalyze the ase of salar systems and use this haraterization to de�ne theset of exponential stability. We disuss some basi properties of this set andpresent several ases in whih this set is easily alulated. To make the step tohigher dimensions we onsider in Setion 4 the ase of Jordan reduible time-varying systems. We introdue the notion of monomials on a time sale andshow growth onditions for suh monomials under the ondition of uniformgraininess. These results are used in Setion 5 to study exponential stabilityfor regressive matries. The general ase is investigated in Setion 6.2



First, however, we �x some notation. In the following K denotes the real(K = R) or the omplex (K = C ) �eld. For a omplex number z 2 C wedenote by <z and =z the real and the imaginary part, respetively, and B"(z)is the open ball with enter z and radius " > 0 in the omplex plane. Asusual, K d�d is the spae of square matries with d rows, Id is the identitymapping on the d-dimensional spae K d over K and �(A) � C denotes theset of eigenvalues of a matrix A 2 K d�d .We also introdue some notions whih are spei� for the alulus ontime sales. A time sale T is a non-empty, losed subset of the reals R.If T has a left-sattered maximum m, then T� := T n fmg and otherwiseT� := T. If T is unbounded above then T� = T. On the subset T� thegraininess is de�ned as ��(t) := inf fs 2 T : t < sg� t. A time sale T whihis unbounded above is alled homogeneous if the graininess is onstant. Iflimt!1 ��(t) exists, then T is said to be asymptotially homogeneous. Thespae of rd-ontinuous, regressive mappings from T� to K d�d is denoted byCrdR(T�; K d�d). Furthermore, given a funtion � 2 CrdR(T�; C ), then(<̂�)(t) := lims&��(t) j1 + s�(t)j � 1s for t 2 T�is the Hilger real part of �, and we have the inlusion <̂� 2 C+rdR(T�;R),whereC+rdR(T�;R) := f� 2 CrdR(T�;R) : 1 + ��(t)�(t) > 0 for t 2 T�g :2 PreliminariesIn this setion we de�ne the lass of systems we onsider and several notionsof stability assoiated to these systems. We show by example that thesenotions do not oinide. To begin with we work with time-varying systemsas our �rst statements are also appliable in this ase.Let A : T� ! K d�d be rd-ontinuous and onsider the d-dimensionallinear system of dynami equationsx� = A(t)x: (1)Let �A : f(t; �) 2 T� � T� : t � �g ! K d�d denote the transition matrixorresponding to (1), that is, �A(t; �)� solves the initial value problem (1)with initial ondition x(�) = � for � 2 K d and t; � 2 T with t � � . Thelassial examples for this setup are the following.3



Example 1. If T = R we onsider linear time-varying systems of the form_x(t) = A(t)x(t). If T = hZ then (1) redues to (x(t+h)�x(t))=h = A(t)x(t)or equivalently x(t+ h) = [Id + hA(t)℄x(t).We are interested in the stability of the equilibrium position x� = 0 ofsystem (1) and introdue the following de�nitions.De�nition 2 (Exponential stability). Let T be a time sale whih is un-bounded above. We all system (1)(i) exponentially stable if there exists a onstant � > 0 suh that for everyt0 2 T there exists a K = K(t0) � 1 withk�A(t; t0)k � Ke��(t�t0) for t � t0 ; (2)(ii) uniformly exponentially stable if K an be hosen independently of t0in the de�nition of exponential stability,(iii) robustly exponentially stable if there is an " > 0 suh that the expo-nential stability of (1) implies the exponential stability of x� = B(t)xfor any rd-ontinuous B : T ! K d�d with supt2TkB(t)� A(t)k � ". Inpartiular, if A is onstant we all (1) robustly exponentially stable iffor all matries B in a suitable neighborhood of A the orrespondingsystem is exponentially stable.Remark 3. (i) To the purist it may seem inadequate to de�ne exponentialstability for system (1) via the standard real exponential funtion instead ofthe exponential funtion e�(t; t0) on time sales, sine the real exponentialfuntion has no intrinsi meaning on a general time sale. Although this maybe the ase we argue that our haraterization gives a strong desription ofthe asymptoti behavior of a solution whih we believe to be of interest.The methods we employ are losely tied to our de�nition, whih also makesus believe that the de�nition is right, as it is fruitful. Also the use of thereal exponential funtion makes our result aessible to readers, who are notfamiliar with the \time sale alulus." Finally, let us point out that wededue a riterion for exponential stability in Theorem 18 involving e�(t; t0).(ii) The notion of exponential stability for linear time-varying systems isde�ned in di�erent ways aording to di�erent authors. For example our no-tion of uniform exponential stability is alled exponential asymptoti stabilityin Agarwal [1, p. 240, De�nition 5.4.1(xi)℄, whereas our exponential stabil-ity is not de�ned in that book. Cesari [4℄ avoids the onept of exponen-tial stability but introdues the di�erene between uniform and nonuniformasymptoti stability of linear time-varying systems, whih is the distintion4



that we want to emphasize. In the terminology of Dalekii & Krein [5℄exponential stability means negativity of the maximal Lyapunov exponent,whereas uniform exponential stability means negativity of the maximal Bohlexponent.(iii) It is well-known that the three notions of stability from De�nition 2oinide in the autonomous ase for ODEs and O�Es. As Example 4 belowdemonstrates, this fails to be true on inhomogeneous time sales. Conse-quently, it is advantageous to distinguish between uniformly exponentiallystable and only exponentially stable time-invariant dynami equations, whihare our main topi in Setion 5. Indeed the main result of this paper (Theo-rem 21) is based on an estimate of the type (2), where K is allowed to dependon t0.(iv) It an be shown that uniform exponential stability of a linear systemimplies robust exponential stability [11, Abshnitt 1.3℄. Thus there was noall for the de�nition of "robust uniform exponential stability".Before we proeed with our analysis of properties haraterizing expo-nential stability we will �rst present some examples showing that even fortime-invariant systems the di�erent notions need not oinide. Furthermore,we present a negative example pertaining to the question of linearizationtheory. In partiular, we show by example that in the time-invariant ase(i) exponential stability does not imply uniform exponential stability,(ii) exponential stability does not imply robust exponential stability,(iii) exponential stability of a linearization is not suÆient for loal asymp-toti stability of a nonlinear system linearized at a �xed point.The examples are given in the order of the list above.Example 4. Let K = R and d = 1. We de�ne a sequene sk reursively bys0 := 0 ; sk+1 := sk + 3k + 1 ; k 2 N0 ;and the time sale T by the disrete setT := f0; 1; 4; 5; 8; 11; 12; : : : ; sk; sk + 3; : : : ; sk + 3k; sk+1; : : : g :Consider on T the salar system x� = �x : (3)For k � 1 elementary alulations yield for t 2 T; x0 2 R that'(t; sk � 1; x0) = 0; t > sk � 1 ; and '(sk + 3k; sk; x0) = (�2)kx0 :5



This shows that the system (3) is exponentially stable, as all trajetoriesreah 0 in �nite time. On the other hand the system is not uniformly ex-ponentially stable, as a solution starting in x0 = 1 may beome arbitrarilylarge depending on the initial time t0. This ompletes the example showinglaim (i) from above.We now show that the system is also not robustly exponentially stable. Tothis end let j�j < 1=4 and onsider the systemx� = (�1 + �)x :Then we have '(sk+1; sk; x0) = (�2 + 3�)k�x0 :Now for every j�j < 1=4; � 6= 0 there exists a k0 suh that for all k > k0we have j(�2 + 3�)k�j > 2. Hene all nonzero trajetories start to growafter time sk. As no nonzero trajetory reahes 0 in �nite time this showsexponential instability.To show that a linearization priniple does not hold we onsider a slightmodi�ation of the previous example.Example 5. Let fbkgk2N be a sequene of positive integers suh that1Xk=0 bk3k =1 :Now de�ne the sequene sk reursively bys0 := 0 ; sk+1 := sk + 3bk + 1 ; k 2 N0 ;and the time sale T byT := f: : : ; sk; sk + 3; : : : ; sk + 3bk; sk+1; : : : g :Finally, onsider the system x� = �x � x3 :Here, we have x(sk) = �x(sk�1)3 and x(t + 3) = �2x(t) � 3x(t)3, for t 2T; t 6= sk; k 2 N . This shows that all transitions are di�eomorphisms, heneno trajetory reahes 0 in �nite time. Also we havej'(sk+1 � 1; sk; x0)j > 2bk jx0j ; hene j'(sk+1; sk; x0)j > 23bk jx0j3 ;6



and indutively j'(sk+l; sk; x0)j > jx0j3l l�1Yj=0 23(l�j)bk+j :It suÆes that j'(sk+l; sk; x0)j > 1 so that the trajetories remain boundedaway from 0 for all t > sk+l. Thus we have to onsider the onditionjx0j3l l�1Yj=0 23(l�j)bk+j > 1 ;or equivalently log2(jx0j) > � lXj=k bj3j :As the sum on the right diverges this shows that for all initial onditions(sk; x0); x0 6= 0, the trajetory remains bounded away from 0 for all t largeenough, so that the system is not asymptotially stable. It is immediate fromExample 4 that the linearized system x� = �x is exponentially stable.3 The Set of Exponential StabilityFrom now on let T be a time sale whih is unbounded above. In this setionwe de�ne the subset of the omplex plane whih is relevant for a spetralharaterization of exponential stability for linear time-invariant systemsx� = Ax; (4)where A 2 K d�d . To motivate this de�nition we begin with the analysis ofsalar systems.Proposition 6. Let T be a time sale whih is unbounded above and let� 2 C . The salar system x� = �x ; x 2 C (5)is exponentially stable if and only if one of the following onditions is satis�edfor arbitrary t0 2 T(i) (�) := lim supT!1 1T�t0 R Tt0 lims&��(t) log j1+s�js �t < 0,7



(ii) 8T 2 T : 9t 2 T with t > T suh that 1 + ��(t)� = 0,where we use the onvention log 0 = �1 in (i).Proof. ()) Assume that (5) is exponentially stable and that 1 + ��(t)� 6= 0for all t > t0 and some t0 2 T. Then Hilger [8, Theorem 7.4(iii)℄ impliesthe following expliit presentation of the modulus of the (possibly omplex)evolution operator of (5)je�(T; t0)j = exp�Z Tt0 lims&��(t) log j1 + s�js �t� for T � t0and the estimate je�(T; t0)j � Ke��(T�t0) for T � t0 with K = K(t0) � 1yields Z Tt0 lims&��(t) log j1 + s�js �t � ��(T � t0) + logK for T � t0 :We therefore havelim supT!1 1T � t0 Z Tt0 lims&��(t) log j1 + s�js �t � �� < 0and the laim follows.(() To prove the onverse diretion let � 2 T be �xed. If 1 + ��(t)� = 0for some t � � , t 2 T, then trivially ��(t) > 0 and[x(t + ��(t))� x(t)℄=��(t) = �x(t)or equivalently x(t + ��(t)) = 0 and thus (5) is exponentially stable if forevery � 2 T there is a � < t 2 T with this property. Now assume this is notthe ase so that 1 + ��(T )� 6= 0 for all T � � and some � 2 T large enough,then je�(T; �)j = exp�Z T� lims&��(t) log j1 + s�js �t� for T � �and with � := � lim supT!1 1T � � Z T� lims&��(t) log j1 + s�js �t > 0we obtain for any " > 0 that there exists a onstant K = K(�) � 1 suh thatje�(t; �)j � Ke�(��")(t��) for t � � :In partiular, if we hoose " < � we obtain exponential stability of (5).8



In view of the previous de�nition the following notion appears to be ap-propriate.De�nition 7 (Set of exponential stability). Given a time sale T whihis unbounded above we de�ne for arbitrary t0 2 TSC (T) := f� 2 C : lim supT!1 1T � t0 Z Tt0 lims&��(t) log j1 + s�js �t < 0gandSR(T) := f� 2 Rj 8T 2 T : 9t 2 T with t > T suh that 1 + ��(t)� = 0g :The set of exponential stability for the time sale T is then de�ned byS(T) := SC (T) [ SR(T) :Remark 8. (i) Note that the de�nition of SC (T) is indipendent of t0.(ii) For any time sale T we have SC (T) � f� 2 C j <� < 0g beause<� � 0 implies that j1 + s�j � 1 for all nonnegative s 2 R. Thus, if<� � 0 the funtion appearing under the integral is nonnegative. Likewise,it is easy to see that SR(T) � (�1; 0). Furthermore SC (T) is symmetriwith respet to the real axis, as j1 + s�j = j1 + s��j for real s. As s isnot only real but also positive, this implies that j1 + s�1j < j1 + s�2j if<�1 = <�2 and 0 � =�1 < =�2. This shows that if � 2 SC (T) then thesegment f<� + i�=� j � 2 [�1; 1℄g � SC (T). In partiular, the onnetedomponents of SC (T) are simply onneted.(iii) It is evident from the de�nition that SC (T) is an open subset of C . Onthe other hand, given a time sale T the set SR(T) is at most ountable,beause the ondition � 2 SR(T) implies that the time sale T has in�nitelymany \gaps" of length j�j�1. In every suh gap there exists a rational numberq�. If there were unountable many � 2 SR(T), then there would exist anunountable number of distint rational numbers q�. This is impossible.(iv) For regressive � 2 C , we havelims&��(t) log j1 + s�js = ( logj1+��(t)�j��(t) for ��(t) > 0<� for ��(t) = 0 :In general, the set SC is awkward to alulate beause of the limit superiorinvolved in the de�nition. We therefore present some riteria whih allow foran easier alulation of (�).Lemma 9. Let T be a time sale whih is unbounded above and let � 2 C .9



(i) If a := limt!1 lims&��(t) logj1+s�js exists then (�) = a.(ii) If there are t0 2 T, p > 0 suh that for all k 2 N0 we have t0+kp 2 Tand ap := 1p limk!1Z t0+(k+1)pt0+kp lims&��(t) log j1 + s�js �texists, then (�) = ap.(iii) Let X be a ompat metri spae and T : X ! X be a mappingthat is uniformly ergodi with ergodi measure �. Let �1 : X ! (0;1)be ontinuous with image [a; b℄ and �2 : X ! [0;1) be ontinuous. Forevery x0 2 X de�ne a time sale T(x0) by[m�0" mXk=0 �1(T kx0) + m�1Xk=0 �2(T kx0); mXk=0(�1(T kx0) + �2(T kx0))# :Then for every � 2 C n [�a�1;�b�1℄ we have(�) = ae := RX �2(x)<�+ log j1 + �1(x)�jd�(x)RX �1(x) + �2(x)d�(x) : (6)Remark 10. An illustrative interpretation of the time sale de�ned in (iii)is that there are ontinuous intervals of length �2(T kx0) alternating with"gaps" of length �1(T kx0). In partiular, we an onstrut purely disretetime sales in this manner by hoosing �2 � 0.Proof. (i) and (ii) follow from easy alulations. To show (iii) we appeal to[13, Theorem 6.19℄ whih shows in partiular that unique ergodiity impliesthat for every initial ondition x0 2 X and every ontinuous funtion f :X ! R we have that 1m m�1Xk=0 f(T kx0)! ZX f(x)d�(x) :Now the funtion x 7! �2(x)<� is learly ontinuous for all � 2 C andx 7! log j1 + �1(x)�j is ontinuous for those � 2 C suh that 1 + �1(x)� 6= 0for all x 2 X, that is in partiular for � =2 [�a�1;�b�1℄. Then for Tm =Pm�1k=0 (�1(T kx0) + �2(T kx0)) we have1Tm Z Tm0 lims&��(t) log j1 + s�js �t =10



= mTm  1m m�1Xk=0 �2(T kx0)<�+ 1m m�1Xk=0 log j1 + �1(T kx0)�j! :By ontinuity of �1+ �2 the expression Tm=m onverges to RX �1+ �2 d� andthe limit is nonzero as �1 is stritly positive. Thus also m=Tm onverges andwe obtain that the expression to the right onverges to ae for m ! 1. Forthose T 2 T(x0) that are not of the form Tm we have at least that for somem 2 N0 it holds that 0 � T � Tm � maxx2X �2(x). Using this fat an easyalulation shows that indeed (�) = ae. This onludes the proof.We note the following examples in order to show the appliability of theprevious lemma.Example 11. (i) Consider the time sale T = hZ, h > 0, with SR(hZ) =f� 1hg. An appliation of Lemma 9 (i) shows S(hZ) = B 1h (� 1h), asexpeted.(ii) If T = R we obtain SR(R) = ; and from Lemma 9 (i) that S(R) =f� 2 C : <� < 0g.(iii) Consider the time sale T = ftngn2N of so-alled harmoni numberstn := Pnk=1 1k , n 2 N , whih is unbounded above. The graininess isgiven by ��(tn) = 1n+1 . Using methods from elementary alulus it anbe shown that limx!1 x log ��1 + �x �� = <� for � 2 C and onsequentlylimt!1 lims&��(t) log j1 + s�js = limn!1(n+ 1) log ����1 + �n + 1���� = <� for � 2 C :Now from Lemma 9 (i) we obtain f� 2 C : <� < 0g = SC (T) = S(T).Note that no gap ours an in�nite number of times, so that SR(T) = ;.(iv) Let T� = Sk2N0 [k; k + �℄, � 2 (0; 1), be a union of losed inter-vals. To alulate the set of exponential stability for this time sale weobserve thatZ k+1k lims&��(t) log j1 + s�js �t = Z k+�k <� dt+ log j1 + (1� �)�j == �<�+ log j1 + (1� �)�j for k 2 N0and onsequently by Lemma 9 (ii) with t0 = 0, p = 1 we haveSC (T�) = f� 2 C : �<�+ log j1 + (1� �)�j < 0g :Also it is lear that SR(T�) = f(� � 1)�1g � SC (T�). This represen-tation inludes the limit ases S(T0) = S(Z) and S(T1) = S(R). In11



Figure 1 we show the stability region for the examples. In eah piturethe set SC (T�) is given by the hathed area. Note in partiular that forthe value � = 0:21 the stability region is disonneted. Let us brieydisuss for whih values of � there are disonneted stability regionsin this example. By Remark 8 (ii) we have that � 2 SC (T�) implies<� 2 SC (T�) so that we only have to investigate the question for whih� 2 (0; 1) the set SC (T�) \ (�1; 0) is disonneted.
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Figure 1: Stability regions as desribed in Example 11 (iv) for di�erent valuesof � For � 2 (�1; 0) to be in the set SC (T�) it is neessary and suÆientthat j1+(1��)�j < e���. If � 2 [(��1)�1; 0)℄ it is easy to see that this isalways the ase. So that we now onsider the ase � 2 J� := (�1; (��1)�1℄. Here we have to satisfy the inequality (�� 1)�� 1 < e���. It islear that this is satis�ed for negative � with j�j large enough. However,by using standard alulus it is easy to see that for � 2 (0; 1=2) thereis a unique loal maximum of the funtion f�(�) := (� � 1)� � 1 �e��� at �� = ��1 log(�(1 � �)�1). The requirement that �� 2 J� orequivalently, �=(� � 1) > log(�=(1 � �)) implies that � 2 (0; a) with12



a onstant a � 0:361896. Now we are interested in the question forwhih � we have f�(��) � 0. This leads to the ondition (� � 1)�1 �log(�=(1 � �)) whih is true for � 2 (0; b℄ with b � 0:2178117. In allwe have shown that the stability region is disonneted if and only if� 2 (0; b℄.(v) It is known that for � 2 [0; 1℄ n Q the mapx 7! x + � mod 1is uniquely ergodi. As the ontinuous funtions �1; �2 we hoose �1(x) =1 + (x� 1=2)2; �2(x) = sin(�x) and by Lemma 9 (iii) we have thatSC (T) = (� 2 C : 2�<�+ Z 10 log �����1 + �+ �x� 12�2 ������ dx < 0) :If we hoose �2 � 0, then we obtainSC (T) = (� 2 C : Z 10 log �����1 + �+ �x� 12�2 ������ dx < 0) :In Figure 2 a sketh of the stability regions orresponding to the dif-ferent hoies of �2 is shown.
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Figure 2: Two stability regions as desribed in Example 11 (v) with ourwithout ontinuous intervalsIf we hoose � 2 Q the map x 7! x + � mod 1 is periodi. And soif we onsider the time sales desribed in Lemma 9 (iii) given by themaps �1 from above and �2 � 0 the stability region an be alulatedby virtue of Lemma 9 (ii). In priniple, this region now depends on13



the initial ondition. For the hoie � = 1=2 this di�erene is easilynotieable and the stability regions for x0 = 0:0099 and x0 = 0:7382are shown in Figure 3. For the hoie � = 1=20 however, we were notable to produe pitures that give any notieable di�erene (althoughit exists of ourse).
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Figure 3: Two stability regions as desribed in Example 11 (v) with rational�. (vi) Finally, let T be obtained by gluing together idential Cantor sets.That is, if MC denotes the standard Cantor set obtained as the limit(in the Hausdor� topology) of the ompat sets Mk reursively de�nedby M0 := [0; 1℄ ; Mk := Mk�1 n 2k�1�1[j=0 �6j + 13k ; 6j + 23k � ;then we de�ne T by t 2 T , t � n 2 MC for some n 2 N0 . This timesale is learly periodi so that we may apply Lemma 9 (ii) to obtainthat SC (T) = (� 2 C : 1Xk=1 2k�1 log ����1 + 13k����� < 0) ;beause there are always 2k�1 gaps of length 3�k for k = 1; 2; : : : . Anapproximation of this set is shown in Figure 4. As the Cantor setitself has measure 0 the points t 2 T with ��(t) = 0 do not ontributeto the de�nition of the set of exponential stability. Moreover, sine(�1; 0) � SC (T), Remark 8 (ii) yields SR(T) � SC (T) = S(T).In the remainder of the artile we disuss higher dimensional systems.14
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Figure 4: The stability region for repeated Cantor sets4 Jordan Reduible SystemsLet A : T� ! K d�d be an rd-ontinuous mapping. In this setion we onsiderd-dimensional time-varying linear systems (1), whih are Jordan reduible,i.e. there exist (onstant) invertible matries S 2 C d�d suh thatS�1A(t)S = 0B�J1(t) . . . Jn(t)1CA =: J(t) for t 2 T�; (7)where eah Ji(t) 2 C di�di, d1+ : : :+dn = d, 1 � i � n � d, is a Jordan blokJi(t) := 0BBB��i(t) 1 0 : : : 0�i(t) 1 : : : 0. . . ...�i(t)
1CCCA for t 2 T�:Evidently time-invariant systems (1) are Jordan reduible and in this ase �iis a onstant eigenvalue of A. We �rst note that Jordan reduibility allowsfor a blok deomposition of the transition matrix.Theorem 12. Suppose A 2 CrdR(T�; K d�d) is suh that (1) is Jordan re-duible. Then the transition matrix of x� = A(t)x is given by�A(t; �) = S0B��J1(t; �) . . . �Jn(t; �)1CAS�1 for t; � 2 T�; (8)15



where we have used the notation introdued in (7). If A is not regressivethen the representation (8) holds for t � � 2 T.Proof. For the matrix funtion 	(t) := S�J(t; �)S�1 the identity	�(t) = SJ(t)�J(t; �)S�1 (7)= SS�1A(t)S�J(t; �)S�1 = A(t)	(t)for t 2 T� holds and beause of 	(�) = Id we obtain the assertion. Thisalulation an be performed without further assumptions on A if t � � , sothat �J(t; �) is well de�ned. This proves the seond statement.It is our goal to give an expression for the transition matrix of Jordanreduible equations. This, however, needs some preparation.De�nition 13 (Monomials). For eah n 2 N0 and � 2 CrdR(T�; C ) themappings mn� : T � T� ! C , reursively de�ned bym0�(t; �) :� 1; mn+1� (t; �) := Z t� mn�(s; �)1 + ��(s)�(s) �s for n 2 N0 ; (9)are alled monomials of degree n.Example 14. On homogeneous time sales with graininess ��(t) � h � 0 andfor regressive onstants � 2 C we obtain mn�(t; �) = (t��)nn!(1+h�)n for t; � 2 T.Lemma 15. Consider a mapping � 2 CrdR(T�; C ) whih is uniformly re-gressive, i.e. there exists a  > 0 suh that�1 � j1 + ��(t)�(t)j for t 2 T�: (10)Then the estimate jmn�(t; �)j � n(t� �)n holds for t � � and n 2 N0 .Proof. The proof is obtained using an easy indution argument. Triviallythe desired estimate holds for n = 0. The indution step n ! n + 1 followsfrom��mn+1� (t; �)�� (9)� Z t� ���� mn�(s; �)1 + ��(s)�(s)���� �s � Z t� n(s� �)nj1 + ��(s)�(s)j�s �(10)� n+1 Z t� (s� �)n�s � n+1 Z t� (t� �)n�s == n+1(t� �)n+1 for t � � ;as desired. 16



Lemma 16. If � 2 CrdR(T�; C ) and if J� : T� ! C d�d ,J�(t) := 0BBB��(t) 1 0 : : : 0�(t) 1 : : : 0. . . ...�(t)1CCCAdenotes a mapping with values in (omplex) Jordan anonial form, then thetransition matrix of x� = J�(t)x is given by�J�(t; �) = e�(t; �)0BBB�1 m1�(t; �) : : : md�1� (t; �)1 : : : md�2� (t; �). . . ...1 1CCCA for t; � 2 T�:Proof. Obviously �J�(�; �) = Id by De�nition 13, and for arbitrary � 2 T�an elementary alulation using the produt rule (f. Hilger [8, Theorem2.6(ii)℄) yields the identity �J�(�; �)�(t) = J(t)�J�(t; �) for t 2 T�.Lemma 17. Consider mappings � 2 C+rdR(T;R), � 2 CrdR(T; C ) on a timesale T with bounded graininess and whih is unbounded above. Under theassumption 9T 2 T : 0 < inft2[T;1)��(t)� (<̂�)(t)�it holds that limt!1mn�(t; �)e�	�(t; �) = 0 for � 2 T; n 2 N0 :Proof. Using the deomposition from Hilger [8, Theorem 7.4(ii)℄ it suÆesto show limt!1mn�(t; �)e<̂�	�(t; �) = 0. To do this we proeed by mathe-matial indution over n 2 N0 . For n = 0 we have m0�(t; �) = 1 (f. (9)) andthe assertion follows by Hilger [7, p. 59, Satz 9.2℄, namelylimt!1 e<̂�	�(t; �) = 0 for � 2 T:Now keeping n 2 N0 �xed, by assumption the relation0 � ����� mn�(t; �)e<̂�	�(t; �)(�	 <̂�)(t) (1 + ��(t)�(t)) ����� = �����mn�(t; �)e<̂�	�(t; �)�(t)� (<̂�)(t) ����� �� ����� mn�(t; �)e<̂�	�(t; �)inft2[T;1)��(t)� (<̂�)(t)������ ���!t!1 0 for � 2 T17



holds. Therefore the Theorem of de l'Hospital (f. Bohner & Peterson[3, p. 48, Theorem 1.120℄), applied separately to the real and imaginary part,leads tolimt!1mn+1� (t; �)e<̂�	�(t; �) =(9)= limt!1 �Z t� < mn�(s; �)1 + ��(s)�(s) �s +Z t� = mn�(s; �)1 + ��(s)�(s) �s� e�	<̂�(t; �)�1 == limt!1 �< mn�(t; �)1 + ��(t)�(t) + = mn�(t; �)1 + ��(t)�(t)� e<̂�	�(t; �)(�	 <̂�)(t) == limt!1 mn�(t; �)e<̂�	�(t;�)(�	 <̂�)(t)(1 + ��(t)�(t)) = 0 for � 2 T;whih proves our lemma.Theorem 18. Suppose A 2 CrdR(T; K d�d) and that (1) is Jordan reduibleon a time sale T with bounded graininess and whih is bounded above. Ifthere exists an � 2 C+rdR(T;R) suh that9T 2 T : 8i 2 f1; : : : ; ng : 0 < inft2[T;1)��(t)� (<̂�i)(t)� (11)holds, then the transition matrix of (1) satis�eslimt!1 e�(t; �)�A(t; �) = 0 for � 2 T:Proof. By Theorem 12 and in partiular by the representation (8) we onlyhave to show limt!1 e�(t; �)�Ji(t; �) = 0 for i 2 f1; : : : ; ng. This is immedi-ate from Lemma 16, sine the assumption (11) allows for the appliation ofLemma 17.Remark 19. Theorem 18 an be used to show the stability of linear time-varying systems using time-dependent eigenvalues. Here the assumption of aJordan reduible mapping A is essential as lassial examples for ODEs show(f. Hahn [6, p. 307℄).Example 20. Consider an asymptotially homogeneous time sale T withh := limt!1 ��(t) > 0 and assume that A 2 K d�d is a regressive matrixsuh that �(A) � B 1h �� 1h�. Then for the time-invariant system x� = Axthe inequality j1+h�j�1h < 0 holds for � 2 �(A) and there exists a T 2 Tsuh that 0 < inft2[T;1)��(<̂�)(t)�. Therefore �A(t; t0), t0 2 T, tends to 0 ast!1. 18



5 The Regressive CaseIn this setion we assume that A 2 K d�d is regressive, so that we may freelyuse all the results obtained in Setion 4. Moreover the eigenvalues � 2 �(A)are regressive (see Bohner & Peterson [3, Exerise 5.6, p. 190℄).Theorem 21 (Charaterization of exponential stability). Let T be atime sale whih is unbounded above and let A 2 K d�d be regressive. Thenthe following holds:(a) If the system (4) is exponentially stable, then �(A) � SC (T).(b) If (10) holds for all eigenvalues � of A and if �(A) � SC (T), then (4)is exponentially stable.Proof. To begin with, we hoose an invertible matrix S 2 C d�d suh thatJ := S�1AS is in Jordan anonial form and let the matrix A have theeigenvalues �1; : : : ; �n 2 C , n � d. Throughout this proof we use the induedmatrix norm kAk := maxi2f1;:::;dg dXj=1 jaijj (12)of A = (aij)i;j2f1;:::;dg; sine all norms on K d�d are equivalent, this is suÆientfor our purpose. Now suppose t0 2 T is �xed.(a) Assume that (4) is exponentially stable. Then if v is an eigenvetororresponding to � 2 �(A), by Bohner & Peterson [3, p. 198, Theorem5.30℄ we have thatje�(t; �)jkvk = k�A(t; �)vk � K�e��(t��)kvk ; t � � ;for suitable onstants K� ; � > 0. This shows that je�(t; �)j � K�e��(t��)and Proposition 6 implies that � 2 SC (T). As � 2 �(A) was arbitrary, thisompletes the proof.(b) Sine the eigenvalues of A 2 K d�d are assumed to be uniformly re-gressive, there exists a  > 0 suh that�1 � j1 + ��(t)�ij for t 2 T; i 2 f1; : : : ; ng :Then for arbitrary i 2 f1; : : : ; ng it follows as aboveje�i(T; t0)j = exp�Z Tt0 lims&��(t) log j1 + s�ijs �t� for T � t019



and with � := 12 min f�1; : : : ; �ng, where�i := � lim supT!1 1T � t0 Z Tt0 lims&��(t) log j1 + s�ijs �t > 0;we obtain the estimateje�i(t; t0)j � K1e��(t�t0) for t � t0with some real K1 = K1(t0) � 1. On the other hand our Theorem 12implies k�A(t; t0)k � kSk kS�1k k�J(t; t0)k and sine all the non-zero entriesof the matrix �J(t; t0) are of the type mji�i(t; t0)e�i(t; t0) for some integerji 2 f0; : : : ; di � 1g, Lemma 15 implies��mji�i(t; t0)e�i(t; t0)�� � K1ji(t� t0)jie��(t�t0) for t � t0:Elementary alulus leads to the existene of some K2 = K2(K1; �; t0; ji) � 1suh that ��mji�i(t; t0)e�i(t; t0)�� � K2e��2 (t�t0) for t � t0 :As eah non-zero entry of the matrix �J(t; t0) satis�es suh an estimate, wehave also that �J(t; t0) is norm-wise exponentially bounded, i.e., we havek�J(t; t0)k � K3e��2 (t�t0) for all t � t0 and some K3 � 1 depending inpartiular on d.An immediate onsequene of the previous result is the following harater-ization of robust exponential stability.Corollary 22. Let A 2 K d�d be regressive. Then the following holds:(a) If the system (4) is robustly exponentially stable, then �(A) � SC (T),(b) if (10) holds for all eigenvalues � of A on a time sale with boundedgraininess, and if �(A) � SC (T), then (4) is robustly exponentiallystable.Proof. (a) If (4) is robustly exponentially stable then it is in partiular ex-ponentially stable, hene �(A) � SC (T).(b) The set SC (T) is learly open and by the ontinuous dependene ofthe spetrum of a matrix on its entries (f. e.g. Stewart and Sun [12,Theorem IV.1.1℄), there is a neighborhood V � K d�d of A 2 K d�d suh that�(B) � SC (T) for B 2 V . It remains to show that eah � 2 �(B) satis�es(10). By assumption there exists a  > 0 suh that�1 � j1 + ��(t)�j for t 2 T; � 2 �(A)20



and we may hoose V small enough so that for eah � 2 �(B) there exists a� 2 �(A) with j�� �j < 12H , where we abbreviate H := supt2T��(t). Nowthe estimate�1 � j1 + ��(t)�j+ ��(t) j�� �j < j1 + ��(t)�j+ (2)�1 for t 2 Tleads to (2)�1 � j1 + ��(t)�j and therefore � 2 �(B) is uniformly regressive.As � was arbitrary, this ompletes the proof.6 The General CaseIn this setion we treat the ase of not neessarily regressive matries A 2K d�d . We are therefore not able to use the results of Setion 4. The followinglemma provides an alternative way to onlude for exponential stability ofJordan bloks. This will be used in the proof of the main result of this setion(Theorem 24).Lemma 23. Let T be a time sale whih is unbounded above and withbounded graininess. For � 2 C onsider the Jordan blok J� 2 C d�d givenby J� := 0BBB�� 1 0 : : : 0� 1 : : : 0. . . ...�1CCCAIf the salar system x� = �x (13)is uniformly exponentially stable then the systemx� = J�x (14)is exponentially stable.Proof. We show the assertion by onstruting expliit bounds for individualsolutions with initial ondition x(�) = � 2 K d , � 2 T. Again we will usewithout loss of generality the norm kxk := max fjx1j ; : : : ; jxdjg for x =(x1; : : : ; xd) 2 K d in our onsiderations.Assume that for the solutions of (13) we have bounds of the form kx(t)k �Ke��(t��) k�k for suitable onstants � > 0; K � 1 and all � 2 T. Fix � 2 T21



and �� < � < 0. Now hoose a sequene �� = �d < �d�1 < : : : < �2 < �1 =�. We will prove by indution on j = d; : : : ; 1 that there exists onstantsKj suh that the j-th omponent of the solution of (14) is exponentiallybounded by jxj(t)j � Kje�j(t��) k�k :For j = d the assertion follows from the assumption as the d-th entry of x(t)is a solution of (13) and henejxd(t)j � Ke��(t��)j�dj = Ke�d(t��)j�dj � Ke�d(t��) k�k :So assume the assertion is shown for some index d � (j + 1) � 2. Byonstrution the j-th omponent of the solution satis�es the equationx�j (t) = �xj(t) + xj+1(t) for t 2 T :Thus by the variation of onstants formula (whih is shown in the generalnon-regressive ase in [11, Abshnitt 1.3℄) we have the representationxj(t; �) = e�(t; �)�j + Z t� e�(t; s+ ��(s))xj+1(s)�s :Using the exponential bound on e�(t; �) and denoting by H the boundon the graininess of T we obtainjxj(t)j � je�(t; �)�jj+ Z t� je�(t; s+ ��(s))xj+1(s)j�s �� Ke��(t��)j�jj+ Z t� Ke��(t�s)e���(s)Kj+1e�j+1(s��)�s k�k �� Ke�j+1(t��)j�jj+ Z t� Ke�j+1(t�s)e�HKj+1e�j+1(s��)�s k�k == Ke�j+1(t��)j�jj+KKj+1e�H(t� �)e�j+1(t��) k�kand hoosing Kj large enough and using �j+1 < �j we obtainjxj(t)j � Kje�j(t��) k�k for t � � ;as desired. As we have exponential deay of all omponents of the solutionx(t) this implies the assertion.The main result of this setion is now the following. Reall that aneigenvalue is alled defetive if it is not semi-simple, i.e. if geometri andalgebrai multipliity do not oinide.22



Theorem 24. Let T be a time sale whih is unbounded above. Let A 2K d�d and onsider the linear system (4). Then the following assertions hold.(i) If (4) is exponentially stable then �(A) � S(T).(ii) If �(A) � S(T), the time sale T has bounded graininess and forall defetive � 2 �(A) the salar system (5) is uniformly exponentiallystable, then system (4) is exponentially stable.(iii) If A is diagonalizable then system (4) is exponentially stable if andonly if �(A) � S(T).Proof. (i) Let � 2 �(A) and hoose an assoiated eigenvetor v. Thenwe have for t � � 2 T that (f. Bohner & Peterson [3, p. 198,Theorem 5.30℄)je�(t; �)jkvk = k�A(t; �)vk � K�e��(t��)kvk for t � � ;for suitable onstantsK� ; � > 0. This shows that je�(t; �)j � K�e��(t��)and Proposition 6 implies that � 2 S(T). As � 2 �(A) was arbitrary,this ompletes the proof of (i).(ii) Let S 2 C d�d be suh that J := S�1AS is in Jordan anonialform with Jordan bloks Ji; i = 1; : : : ; n � d. If for some i the Jordanblok Ji is one dimensional the assumption on the spetrum of A andProposition 6 immediately imply exponential stability ofx� = Jix : (15)If dimJi > 1, that is, if the assoiated eigenvalue is defetive thenexponential stability of (15) is a onsequene of the assumptions andLemma 23. In total, we have exponential stability in eah of the Jordanbloks and the assertion easily follows using Theorem 12.(iii) This is immediate from (i) and (ii).Corollary 25. Let T be a time sale whih is unbounded above. Let A 2K d�d and onsider the linear system (4). Then the following assertions hold.(i) If (4) is robustly exponentially stable then �(A) � SC (T).(ii) If �(A) � SC (T), the time sale T has bounded graininess and forall multiple eigenvalues � 2 �(A) the salar system (5) is uniformlyexponentially stable, then system (4) is robustly exponentially stable.23



(iii) If A has d distint eigenvalues then system (4) is robustly exponen-tially stable if and only if �(A) � SC (T).Proof. (i) By Theorem 24 (i) the assumption implies �(B) � S(T) forall matries B in a neighborhood of A. Again using [12, TheoremIV.1.1℄ this is equivalent to the statement that for a suitable neigh-borhood U of �(A) we have U � S(T). This implies that �(A) �intS(T) = SC (T).(ii) As SC (T) is open and by ontinuous dependene of the eigenvalueson the entries of a matrix we have �(B) � SC (T) for all matries B ina neighborhood V of A. If � 2 �(A) has algebrai multipliity greaterthan 1 we have by assumption that the salar systems (5) is uniformlyexponentially stable. By arguments similar to [11, Abshnitt 1.3℄ thisimplies that the salar system x� = �x (16)is uniformly exponentially stable for all j� � �j < " for some " > 0small enough. Now [12, Theorem IV.1.4℄ guarantees that by hoosing asuÆiently small neighborhood U of A we an ensure that any defetiveeigenvalue of a matrix B 2 U has to satisfy j���j < " for some multipleeigenvalue � 2 �(A). Thus for all B 2 U \ V the assumptions ofTheorem 24 (ii) are satis�ed whih shows robust exponential stabilityof A.(iii) This is immediate from (i) and (ii).7 ConlusionWe have presented a domain of exponential stability whih ompletely har-aterizes exponential stability of salar systems. This immediately implies aharaterization of the (generi) ase of matries with distint eigenvalues.For the ase of (defetive) multiple eigenvalues we obtain some riteria in theregressive ase under a uniform regressivity assumption on the eigenvaluesof A. If the assumption of regressivity is dropped this an be replaed bya uniform exponential stability assumption on the salar systems de�ned bydefetive eigenvalues.The topi warrants further investigation. In partiular, it should be ex-amined if uniform exponential stability of ertain � 2 �(A) is really neessaryto prove Theorem 24 (ii). Also it would be interesting to know onditions for24



uniform exponential stability. Finally, the set of exponential stability is notompletely understood. It seems lear, that it an have many onneted om-ponents. It should be possible to onstrut examples of that type using somemodi�ation of Example 11 (iv) by introduing gaps of varying sizes. Whatis unlear is, if there are onditions that imply unboundedness of SC (T). Oneould onjeture that for this to happen suÆiently many times t 2 T with��(t) < " are needed for any " > 0. But a preise statement remains obsureto us for the moment.Conluding this paper we remark that all statements remain true withobvious modi�ations if one replaes the time sale T by an arbitrary measurehain (f. Hilger [7, 8℄).Referenes[1℄ R. P. Agarwal, Di�erene Equations and Inequalities, Marel DekkerIn., New York, 1992.[2℄ B. Aulbah and S. Hilger, Linear dynami proesses with inhomoge-neous time sale, in Nonlinear Dynamis and Quantum Dynamial Sys-tems, G. A. Leonov, V. Reitmann, W. Timmermann, ed., MathematialResearh Bd. 59, Akademie-Verlag, Berlin, 1990, pp. 9{20.[3℄ M. Bohner and A. Peterson, Dynami Equations on Time Sales,Birkh�auser, Boston, 2001.[4℄ L. Cesari, Asymptoti Behavior and Stability Problems in OrdinaryDi�erential Equations. Springer-Verlag, Berlin, 1971. 3rd edition.[5℄ J. L. Dalekii and M. G. Krein, Stability of Solutions of Di�erentialEquations in Banah Spaes. Number 43 in Translations of MathematialMonographs. Amerian Mathematial Soiety, Providene, Rhode Island,1974.[6℄ W. Hahn, Stability of Motion, Grundlehren der mathematishen Wis-senshaften, 138, Springer-Verlag, Berlin-Heidelberg-New York, 1967.[7℄ S. Hilger, Ein Ma�kettenkalk�ul mit Anwendung auf Zentrumsmannig-faltigkeiten, Dissertation, Universit�at W�urzburg, 1988.[8℄ , Analysis on measure hains | A uni�ed approah to ontinuousand disrete alulus, Results in Mathematis, 18 (1990), pp. 18{56.25



[9℄ S. Hilger and P. E. Kloeden, Comparative time grainyness andasymptoti stability of dynamial systems, Preprint, Shool of Computingand Mathematis, Deakin University, Australia, 1993.[10℄ S. Keller, Asymptotishes Verhalten invarianter Faserb�undel bei Dis-kretisierung und Mittelwertbildung im Rahmen der Analysis auf Zeit-skalen, Dissertation, Universit�at Augsburg, 1999.[11℄ C. P�otzshe, Langsame Faserb�undel dynamisher Gleihungen aufMa�ketten, Dissertation, Universit�at Augsburg, 2002.[12℄ G. W. Stewart and J. Sun, Matrix perturbation theory, ComputerSiene and Sienti� Computing. Aademi Press, Boston, 1990.[13℄ P. Walters, An Introdution to Ergodi Theory, Springer-Verlag, NewYork, 1982.

26


