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1 Introdu
tionIt is well-known that exponential de
ay of the solution of a linear autonomousordinary di�erential equation (ODE) _x(t) = Ax(t), t 2 R, or of an au-tonomous di�eren
e equation (O�E) xt+1 = Axt, t 2 Z, 
an be 
hara
terizedby spe
tral properties of A. Namely, the solutions tend to 0 exponentiallyas t ! 1, if and only if all the eigenvalues of A 2 C d�d have negative realparts or a modulus smaller than 1, respe
tively (
f. Hahn [6, p. 14℄, Agar-wal [1, p. 227℄). In the present paper we generalize this 
lassi
al result tolinear time-invariant dynami
 equations x� = Ax on arbitrary time s
ales.Here the problem is more subtle due to the possible inhomogeneity of thetime s
ale and so far only suÆ
ient 
onditions for the exponential de
ay ofsolutions are available.The �rst result 
on
erning the 
ase of general time s
ales was obtainedby Aulba
h & Hilger [2, Theorem 13℄ and it 
ontains a 
ondition forthe boundedness of solutions on time s
ales with bounded graininess. Al-though it uni�es the time s
ales T = R or T = hZ, h > 0, its assumptionsare often too pessimisti
, e.g. on asymptoti
ally homogeneous time s
ales(
f. Example 20), sin
e the maximal graininess is involved. More detailedresults are presented in Keller [10, p. 29, Satz 2.5.8℄, in
luding 
riteriafor asymptoti
 stability or instability. A totally di�erent approa
h to theasymptoti
 stability of linear dynami
 equations using Lyapunov fun
tions
an be found in Hilger & Kloeden [9, Theorem 3℄ and P�otzs
he [11,Abs
hnitt 2.1℄ provides suÆ
ient 
onditions for the uniform exponential sta-bility in (in�nite-dimensional) Bana
h spa
es, as well as spe
tral stability
onditions for time-varying systems on time s
ales.As a thorough introdu
tion into dynami
 equations on time s
ales werefer to the paper Hilger [8℄ or the monograph Bohner & Peterson [3℄.The paper Aulba
h & Hilger [2℄ presents the theory with a fo
us on linearsystems.This paper is organized as follows. In Se
tion 2 we introdu
e the 
lassof systems we wish to study and de�ne the 
on
epts of exponential, uniformexponential and robust exponential stability. In Se
tion 3 we 
ompletelyanalyze the 
ase of s
alar systems and use this 
hara
terization to de�ne theset of exponential stability. We dis
uss some basi
 properties of this set andpresent several 
ases in whi
h this set is easily 
al
ulated. To make the step tohigher dimensions we 
onsider in Se
tion 4 the 
ase of Jordan redu
ible time-varying systems. We introdu
e the notion of monomials on a time s
ale andshow growth 
onditions for su
h monomials under the 
ondition of uniformgraininess. These results are used in Se
tion 5 to study exponential stabilityfor regressive matri
es. The general 
ase is investigated in Se
tion 6.2



First, however, we �x some notation. In the following K denotes the real(K = R) or the 
omplex (K = C ) �eld. For a 
omplex number z 2 C wedenote by <z and =z the real and the imaginary part, respe
tively, and B"(z)is the open ball with 
enter z and radius " > 0 in the 
omplex plane. Asusual, K d�d is the spa
e of square matri
es with d rows, Id is the identitymapping on the d-dimensional spa
e K d over K and �(A) � C denotes theset of eigenvalues of a matrix A 2 K d�d .We also introdu
e some notions whi
h are spe
i�
 for the 
al
ulus ontime s
ales. A time s
ale T is a non-empty, 
losed subset of the reals R.If T has a left-s
attered maximum m, then T� := T n fmg and otherwiseT� := T. If T is unbounded above then T� = T. On the subset T� thegraininess is de�ned as ��(t) := inf fs 2 T : t < sg� t. A time s
ale T whi
his unbounded above is 
alled homogeneous if the graininess is 
onstant. Iflimt!1 ��(t) exists, then T is said to be asymptoti
ally homogeneous. Thespa
e of rd-
ontinuous, regressive mappings from T� to K d�d is denoted byCrdR(T�; K d�d). Furthermore, given a fun
tion � 2 CrdR(T�; C ), then(<̂�)(t) := lims&��(t) j1 + s�(t)j � 1s for t 2 T�is the Hilger real part of �, and we have the in
lusion <̂� 2 C+rdR(T�;R),whereC+rdR(T�;R) := f� 2 CrdR(T�;R) : 1 + ��(t)�(t) > 0 for t 2 T�g :2 PreliminariesIn this se
tion we de�ne the 
lass of systems we 
onsider and several notionsof stability asso
iated to these systems. We show by example that thesenotions do not 
oin
ide. To begin with we work with time-varying systemsas our �rst statements are also appli
able in this 
ase.Let A : T� ! K d�d be rd-
ontinuous and 
onsider the d-dimensionallinear system of dynami
 equationsx� = A(t)x: (1)Let �A : f(t; �) 2 T� � T� : t � �g ! K d�d denote the transition matrix
orresponding to (1), that is, �A(t; �)� solves the initial value problem (1)with initial 
ondition x(�) = � for � 2 K d and t; � 2 T with t � � . The
lassi
al examples for this setup are the following.3



Example 1. If T = R we 
onsider linear time-varying systems of the form_x(t) = A(t)x(t). If T = hZ then (1) redu
es to (x(t+h)�x(t))=h = A(t)x(t)or equivalently x(t+ h) = [Id + hA(t)℄x(t).We are interested in the stability of the equilibrium position x� = 0 ofsystem (1) and introdu
e the following de�nitions.De�nition 2 (Exponential stability). Let T be a time s
ale whi
h is un-bounded above. We 
all system (1)(i) exponentially stable if there exists a 
onstant � > 0 su
h that for everyt0 2 T there exists a K = K(t0) � 1 withk�A(t; t0)k � Ke��(t�t0) for t � t0 ; (2)(ii) uniformly exponentially stable if K 
an be 
hosen independently of t0in the de�nition of exponential stability,(iii) robustly exponentially stable if there is an " > 0 su
h that the expo-nential stability of (1) implies the exponential stability of x� = B(t)xfor any rd-
ontinuous B : T ! K d�d with supt2TkB(t)� A(t)k � ". Inparti
ular, if A is 
onstant we 
all (1) robustly exponentially stable iffor all matri
es B in a suitable neighborhood of A the 
orrespondingsystem is exponentially stable.Remark 3. (i) To the purist it may seem inadequate to de�ne exponentialstability for system (1) via the standard real exponential fun
tion instead ofthe exponential fun
tion e�(t; t0) on time s
ales, sin
e the real exponentialfun
tion has no intrinsi
 meaning on a general time s
ale. Although this maybe the 
ase we argue that our 
hara
terization gives a strong des
ription ofthe asymptoti
 behavior of a solution whi
h we believe to be of interest.The methods we employ are 
losely tied to our de�nition, whi
h also makesus believe that the de�nition is right, as it is fruitful. Also the use of thereal exponential fun
tion makes our result a

essible to readers, who are notfamiliar with the \time s
ale 
al
ulus." Finally, let us point out that wededu
e a 
riterion for exponential stability in Theorem 18 involving e�(t; t0).(ii) The notion of exponential stability for linear time-varying systems isde�ned in di�erent ways a

ording to di�erent authors. For example our no-tion of uniform exponential stability is 
alled exponential asymptoti
 stabilityin Agarwal [1, p. 240, De�nition 5.4.1(xi)℄, whereas our exponential stabil-ity is not de�ned in that book. Cesari [4℄ avoids the 
on
ept of exponen-tial stability but introdu
es the di�eren
e between uniform and nonuniformasymptoti
 stability of linear time-varying systems, whi
h is the distin
tion4



that we want to emphasize. In the terminology of Dale
kii & Krein [5℄exponential stability means negativity of the maximal Lyapunov exponent,whereas uniform exponential stability means negativity of the maximal Bohlexponent.(iii) It is well-known that the three notions of stability from De�nition 2
oin
ide in the autonomous 
ase for ODEs and O�Es. As Example 4 belowdemonstrates, this fails to be true on inhomogeneous time s
ales. Conse-quently, it is advantageous to distinguish between uniformly exponentiallystable and only exponentially stable time-invariant dynami
 equations, whi
hare our main topi
 in Se
tion 5. Indeed the main result of this paper (Theo-rem 21) is based on an estimate of the type (2), where K is allowed to dependon t0.(iv) It 
an be shown that uniform exponential stability of a linear systemimplies robust exponential stability [11, Abs
hnitt 1.3℄. Thus there was no
all for the de�nition of "robust uniform exponential stability".Before we pro
eed with our analysis of properties 
hara
terizing expo-nential stability we will �rst present some examples showing that even fortime-invariant systems the di�erent notions need not 
oin
ide. Furthermore,we present a negative example pertaining to the question of linearizationtheory. In parti
ular, we show by example that in the time-invariant 
ase(i) exponential stability does not imply uniform exponential stability,(ii) exponential stability does not imply robust exponential stability,(iii) exponential stability of a linearization is not suÆ
ient for lo
al asymp-toti
 stability of a nonlinear system linearized at a �xed point.The examples are given in the order of the list above.Example 4. Let K = R and d = 1. We de�ne a sequen
e sk re
ursively bys0 := 0 ; sk+1 := sk + 3k + 1 ; k 2 N0 ;and the time s
ale T by the dis
rete setT := f0; 1; 4; 5; 8; 11; 12; : : : ; sk; sk + 3; : : : ; sk + 3k; sk+1; : : : g :Consider on T the s
alar system x� = �x : (3)For k � 1 elementary 
al
ulations yield for t 2 T; x0 2 R that'(t; sk � 1; x0) = 0; t > sk � 1 ; and '(sk + 3k; sk; x0) = (�2)kx0 :5



This shows that the system (3) is exponentially stable, as all traje
toriesrea
h 0 in �nite time. On the other hand the system is not uniformly ex-ponentially stable, as a solution starting in x0 = 1 may be
ome arbitrarilylarge depending on the initial time t0. This 
ompletes the example showing
laim (i) from above.We now show that the system is also not robustly exponentially stable. Tothis end let j�j < 1=4 and 
onsider the systemx� = (�1 + �)x :Then we have '(sk+1; sk; x0) = (�2 + 3�)k�x0 :Now for every j�j < 1=4; � 6= 0 there exists a k0 su
h that for all k > k0we have j(�2 + 3�)k�j > 2. Hen
e all nonzero traje
tories start to growafter time sk. As no nonzero traje
tory rea
hes 0 in �nite time this showsexponential instability.To show that a linearization prin
iple does not hold we 
onsider a slightmodi�
ation of the previous example.Example 5. Let fbkgk2N be a sequen
e of positive integers su
h that1Xk=0 bk3k =1 :Now de�ne the sequen
e sk re
ursively bys0 := 0 ; sk+1 := sk + 3bk + 1 ; k 2 N0 ;and the time s
ale T byT := f: : : ; sk; sk + 3; : : : ; sk + 3bk; sk+1; : : : g :Finally, 
onsider the system x� = �x � x3 :Here, we have x(sk) = �x(sk�1)3 and x(t + 3) = �2x(t) � 3x(t)3, for t 2T; t 6= sk; k 2 N . This shows that all transitions are di�eomorphisms, hen
eno traje
tory rea
hes 0 in �nite time. Also we havej'(sk+1 � 1; sk; x0)j > 2bk jx0j ; hen
e j'(sk+1; sk; x0)j > 23bk jx0j3 ;6



and indu
tively j'(sk+l; sk; x0)j > jx0j3l l�1Yj=0 23(l�j)bk+j :It suÆ
es that j'(sk+l; sk; x0)j > 1 so that the traje
tories remain boundedaway from 0 for all t > sk+l. Thus we have to 
onsider the 
onditionjx0j3l l�1Yj=0 23(l�j)bk+j > 1 ;or equivalently log2(jx0j) > � lXj=k bj3j :As the sum on the right diverges this shows that for all initial 
onditions(sk; x0); x0 6= 0, the traje
tory remains bounded away from 0 for all t largeenough, so that the system is not asymptoti
ally stable. It is immediate fromExample 4 that the linearized system x� = �x is exponentially stable.3 The Set of Exponential StabilityFrom now on let T be a time s
ale whi
h is unbounded above. In this se
tionwe de�ne the subset of the 
omplex plane whi
h is relevant for a spe
tral
hara
terization of exponential stability for linear time-invariant systemsx� = Ax; (4)where A 2 K d�d . To motivate this de�nition we begin with the analysis ofs
alar systems.Proposition 6. Let T be a time s
ale whi
h is unbounded above and let� 2 C . The s
alar system x� = �x ; x 2 C (5)is exponentially stable if and only if one of the following 
onditions is satis�edfor arbitrary t0 2 T(i) 
(�) := lim supT!1 1T�t0 R Tt0 lims&��(t) log j1+s�js �t < 0,7



(ii) 8T 2 T : 9t 2 T with t > T su
h that 1 + ��(t)� = 0,where we use the 
onvention log 0 = �1 in (i).Proof. ()) Assume that (5) is exponentially stable and that 1 + ��(t)� 6= 0for all t > t0 and some t0 2 T. Then Hilger [8, Theorem 7.4(iii)℄ impliesthe following expli
it presentation of the modulus of the (possibly 
omplex)evolution operator of (5)je�(T; t0)j = exp�Z Tt0 lims&��(t) log j1 + s�js �t� for T � t0and the estimate je�(T; t0)j � Ke��(T�t0) for T � t0 with K = K(t0) � 1yields Z Tt0 lims&��(t) log j1 + s�js �t � ��(T � t0) + logK for T � t0 :We therefore havelim supT!1 1T � t0 Z Tt0 lims&��(t) log j1 + s�js �t � �� < 0and the 
laim follows.(() To prove the 
onverse dire
tion let � 2 T be �xed. If 1 + ��(t)� = 0for some t � � , t 2 T, then trivially ��(t) > 0 and[x(t + ��(t))� x(t)℄=��(t) = �x(t)or equivalently x(t + ��(t)) = 0 and thus (5) is exponentially stable if forevery � 2 T there is a � < t 2 T with this property. Now assume this is notthe 
ase so that 1 + ��(T )� 6= 0 for all T � � and some � 2 T large enough,then je�(T; �)j = exp�Z T� lims&��(t) log j1 + s�js �t� for T � �and with � := � lim supT!1 1T � � Z T� lims&��(t) log j1 + s�js �t > 0we obtain for any " > 0 that there exists a 
onstant K = K(�) � 1 su
h thatje�(t; �)j � Ke�(��")(t��) for t � � :In parti
ular, if we 
hoose " < � we obtain exponential stability of (5).8



In view of the previous de�nition the following notion appears to be ap-propriate.De�nition 7 (Set of exponential stability). Given a time s
ale T whi
his unbounded above we de�ne for arbitrary t0 2 TSC (T) := f� 2 C : lim supT!1 1T � t0 Z Tt0 lims&��(t) log j1 + s�js �t < 0gandSR(T) := f� 2 Rj 8T 2 T : 9t 2 T with t > T su
h that 1 + ��(t)� = 0g :The set of exponential stability for the time s
ale T is then de�ned byS(T) := SC (T) [ SR(T) :Remark 8. (i) Note that the de�nition of SC (T) is indipendent of t0.(ii) For any time s
ale T we have SC (T) � f� 2 C j <� < 0g be
ause<� � 0 implies that j1 + s�j � 1 for all nonnegative s 2 R. Thus, if<� � 0 the fun
tion appearing under the integral is nonnegative. Likewise,it is easy to see that SR(T) � (�1; 0). Furthermore SC (T) is symmetri
with respe
t to the real axis, as j1 + s�j = j1 + s��j for real s. As s isnot only real but also positive, this implies that j1 + s�1j < j1 + s�2j if<�1 = <�2 and 0 � =�1 < =�2. This shows that if � 2 SC (T) then thesegment f<� + i�=� j � 2 [�1; 1℄g � SC (T). In parti
ular, the 
onne
ted
omponents of SC (T) are simply 
onne
ted.(iii) It is evident from the de�nition that SC (T) is an open subset of C . Onthe other hand, given a time s
ale T the set SR(T) is at most 
ountable,be
ause the 
ondition � 2 SR(T) implies that the time s
ale T has in�nitelymany \gaps" of length j�j�1. In every su
h gap there exists a rational numberq�. If there were un
ountable many � 2 SR(T), then there would exist anun
ountable number of distin
t rational numbers q�. This is impossible.(iv) For regressive � 2 C , we havelims&��(t) log j1 + s�js = ( logj1+��(t)�j��(t) for ��(t) > 0<� for ��(t) = 0 :In general, the set SC is awkward to 
al
ulate be
ause of the limit superiorinvolved in the de�nition. We therefore present some 
riteria whi
h allow foran easier 
al
ulation of 
(�).Lemma 9. Let T be a time s
ale whi
h is unbounded above and let � 2 C .9



(i) If a := limt!1 lims&��(t) logj1+s�js exists then 
(�) = a.(ii) If there are t0 2 T, p > 0 su
h that for all k 2 N0 we have t0+kp 2 Tand ap := 1p limk!1Z t0+(k+1)pt0+kp lims&��(t) log j1 + s�js �texists, then 
(�) = ap.(iii) Let X be a 
ompa
t metri
 spa
e and T : X ! X be a mappingthat is uniformly ergodi
 with ergodi
 measure �. Let �1 : X ! (0;1)be 
ontinuous with image [a; b℄ and �2 : X ! [0;1) be 
ontinuous. Forevery x0 2 X de�ne a time s
ale T(x0) by[m�0" mXk=0 �1(T kx0) + m�1Xk=0 �2(T kx0); mXk=0(�1(T kx0) + �2(T kx0))# :Then for every � 2 C n [�a�1;�b�1℄ we have
(�) = ae := RX �2(x)<�+ log j1 + �1(x)�jd�(x)RX �1(x) + �2(x)d�(x) : (6)Remark 10. An illustrative interpretation of the time s
ale de�ned in (iii)is that there are 
ontinuous intervals of length �2(T kx0) alternating with"gaps" of length �1(T kx0). In parti
ular, we 
an 
onstru
t purely dis
retetime s
ales in this manner by 
hoosing �2 � 0.Proof. (i) and (ii) follow from easy 
al
ulations. To show (iii) we appeal to[13, Theorem 6.19℄ whi
h shows in parti
ular that unique ergodi
ity impliesthat for every initial 
ondition x0 2 X and every 
ontinuous fun
tion f :X ! R we have that 1m m�1Xk=0 f(T kx0)! ZX f(x)d�(x) :Now the fun
tion x 7! �2(x)<� is 
learly 
ontinuous for all � 2 C andx 7! log j1 + �1(x)�j is 
ontinuous for those � 2 C su
h that 1 + �1(x)� 6= 0for all x 2 X, that is in parti
ular for � =2 [�a�1;�b�1℄. Then for Tm =Pm�1k=0 (�1(T kx0) + �2(T kx0)) we have1Tm Z Tm0 lims&��(t) log j1 + s�js �t =10



= mTm  1m m�1Xk=0 �2(T kx0)<�+ 1m m�1Xk=0 log j1 + �1(T kx0)�j! :By 
ontinuity of �1+ �2 the expression Tm=m 
onverges to RX �1+ �2 d� andthe limit is nonzero as �1 is stri
tly positive. Thus also m=Tm 
onverges andwe obtain that the expression to the right 
onverges to ae for m ! 1. Forthose T 2 T(x0) that are not of the form Tm we have at least that for somem 2 N0 it holds that 0 � T � Tm � maxx2X �2(x). Using this fa
t an easy
al
ulation shows that indeed 
(�) = ae. This 
on
ludes the proof.We note the following examples in order to show the appli
ability of theprevious lemma.Example 11. (i) Consider the time s
ale T = hZ, h > 0, with SR(hZ) =f� 1hg. An appli
ation of Lemma 9 (i) shows S(hZ) = B 1h (� 1h), asexpe
ted.(ii) If T = R we obtain SR(R) = ; and from Lemma 9 (i) that S(R) =f� 2 C : <� < 0g.(iii) Consider the time s
ale T = ftngn2N of so-
alled harmoni
 numberstn := Pnk=1 1k , n 2 N , whi
h is unbounded above. The graininess isgiven by ��(tn) = 1n+1 . Using methods from elementary 
al
ulus it 
anbe shown that limx!1 x log ��1 + �x �� = <� for � 2 C and 
onsequentlylimt!1 lims&��(t) log j1 + s�js = limn!1(n+ 1) log ����1 + �n + 1���� = <� for � 2 C :Now from Lemma 9 (i) we obtain f� 2 C : <� < 0g = SC (T) = S(T).Note that no gap o

urs an in�nite number of times, so that SR(T) = ;.(iv) Let T� = Sk2N0 [k; k + �℄, � 2 (0; 1), be a union of 
losed inter-vals. To 
al
ulate the set of exponential stability for this time s
ale weobserve thatZ k+1k lims&��(t) log j1 + s�js �t = Z k+�k <� dt+ log j1 + (1� �)�j == �<�+ log j1 + (1� �)�j for k 2 N0and 
onsequently by Lemma 9 (ii) with t0 = 0, p = 1 we haveSC (T�) = f� 2 C : �<�+ log j1 + (1� �)�j < 0g :Also it is 
lear that SR(T�) = f(� � 1)�1g � SC (T�). This represen-tation in
ludes the limit 
ases S(T0) = S(Z) and S(T1) = S(R). In11



Figure 1 we show the stability region for the examples. In ea
h pi
turethe set SC (T�) is given by the hat
hed area. Note in parti
ular that forthe value � = 0:21 the stability region is dis
onne
ted. Let us brie
ydis
uss for whi
h values of � there are dis
onne
ted stability regionsin this example. By Remark 8 (ii) we have that � 2 SC (T�) implies<� 2 SC (T�) so that we only have to investigate the question for whi
h� 2 (0; 1) the set SC (T�) \ (�1; 0) is dis
onne
ted.
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Figure 1: Stability regions as des
ribed in Example 11 (iv) for di�erent valuesof � For � 2 (�1; 0) to be in the set SC (T�) it is ne
essary and suÆ
ientthat j1+(1��)�j < e���. If � 2 [(��1)�1; 0)℄ it is easy to see that this isalways the 
ase. So that we now 
onsider the 
ase � 2 J� := (�1; (��1)�1℄. Here we have to satisfy the inequality (�� 1)�� 1 < e���. It is
lear that this is satis�ed for negative � with j�j large enough. However,by using standard 
al
ulus it is easy to see that for � 2 (0; 1=2) thereis a unique lo
al maximum of the fun
tion f�(�) := (� � 1)� � 1 �e��� at �� = ��1 log(�(1 � �)�1). The requirement that �� 2 J� orequivalently, �=(� � 1) > log(�=(1 � �)) implies that � 2 (0; a) with12



a 
onstant a � 0:361896. Now we are interested in the question forwhi
h � we have f�(��) � 0. This leads to the 
ondition (� � 1)�1 �log(�=(1 � �)) whi
h is true for � 2 (0; b℄ with b � 0:2178117. In allwe have shown that the stability region is dis
onne
ted if and only if� 2 (0; b℄.(v) It is known that for � 2 [0; 1℄ n Q the mapx 7! x + � mod 1is uniquely ergodi
. As the 
ontinuous fun
tions �1; �2 we 
hoose �1(x) =1 + (x� 1=2)2; �2(x) = sin(�x) and by Lemma 9 (iii) we have thatSC (T) = (� 2 C : 2�<�+ Z 10 log �����1 + �+ �x� 12�2 ������ dx < 0) :If we 
hoose �2 � 0, then we obtainSC (T) = (� 2 C : Z 10 log �����1 + �+ �x� 12�2 ������ dx < 0) :In Figure 2 a sket
h of the stability regions 
orresponding to the dif-ferent 
hoi
es of �2 is shown.
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Figure 2: Two stability regions as des
ribed in Example 11 (v) with ourwithout 
ontinuous intervalsIf we 
hoose � 2 Q the map x 7! x + � mod 1 is periodi
. And soif we 
onsider the time s
ales des
ribed in Lemma 9 (iii) given by themaps �1 from above and �2 � 0 the stability region 
an be 
al
ulatedby virtue of Lemma 9 (ii). In prin
iple, this region now depends on13



the initial 
ondition. For the 
hoi
e � = 1=2 this di�eren
e is easilynoti
eable and the stability regions for x0 = 0:0099 and x0 = 0:7382are shown in Figure 3. For the 
hoi
e � = 1=20 however, we were notable to produ
e pi
tures that give any noti
eable di�eren
e (althoughit exists of 
ourse).
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Figure 3: Two stability regions as des
ribed in Example 11 (v) with rational�. (vi) Finally, let T be obtained by gluing together identi
al Cantor sets.That is, if MC denotes the standard Cantor set obtained as the limit(in the Hausdor� topology) of the 
ompa
t sets Mk re
ursively de�nedby M0 := [0; 1℄ ; Mk := Mk�1 n 2k�1�1[j=0 �6j + 13k ; 6j + 23k � ;then we de�ne T by t 2 T , t � n 2 MC for some n 2 N0 . This times
ale is 
learly periodi
 so that we may apply Lemma 9 (ii) to obtainthat SC (T) = (� 2 C : 1Xk=1 2k�1 log ����1 + 13k����� < 0) ;be
ause there are always 2k�1 gaps of length 3�k for k = 1; 2; : : : . Anapproximation of this set is shown in Figure 4. As the Cantor setitself has measure 0 the points t 2 T with ��(t) = 0 do not 
ontributeto the de�nition of the set of exponential stability. Moreover, sin
e(�1; 0) � SC (T), Remark 8 (ii) yields SR(T) � SC (T) = S(T).In the remainder of the arti
le we dis
uss higher dimensional systems.14
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Figure 4: The stability region for repeated Cantor sets4 Jordan Redu
ible SystemsLet A : T� ! K d�d be an rd-
ontinuous mapping. In this se
tion we 
onsiderd-dimensional time-varying linear systems (1), whi
h are Jordan redu
ible,i.e. there exist (
onstant) invertible matri
es S 2 C d�d su
h thatS�1A(t)S = 0B�J1(t) . . . Jn(t)1CA =: J(t) for t 2 T�; (7)where ea
h Ji(t) 2 C di�di, d1+ : : :+dn = d, 1 � i � n � d, is a Jordan blo
kJi(t) := 0BBB��i(t) 1 0 : : : 0�i(t) 1 : : : 0. . . ...�i(t)
1CCCA for t 2 T�:Evidently time-invariant systems (1) are Jordan redu
ible and in this 
ase �iis a 
onstant eigenvalue of A. We �rst note that Jordan redu
ibility allowsfor a blo
k de
omposition of the transition matrix.Theorem 12. Suppose A 2 CrdR(T�; K d�d) is su
h that (1) is Jordan re-du
ible. Then the transition matrix of x� = A(t)x is given by�A(t; �) = S0B��J1(t; �) . . . �Jn(t; �)1CAS�1 for t; � 2 T�; (8)15



where we have used the notation introdu
ed in (7). If A is not regressivethen the representation (8) holds for t � � 2 T.Proof. For the matrix fun
tion 	(t) := S�J(t; �)S�1 the identity	�(t) = SJ(t)�J(t; �)S�1 (7)= SS�1A(t)S�J(t; �)S�1 = A(t)	(t)for t 2 T� holds and be
ause of 	(�) = Id we obtain the assertion. This
al
ulation 
an be performed without further assumptions on A if t � � , sothat �J(t; �) is well de�ned. This proves the se
ond statement.It is our goal to give an expression for the transition matrix of Jordanredu
ible equations. This, however, needs some preparation.De�nition 13 (Monomials). For ea
h n 2 N0 and � 2 CrdR(T�; C ) themappings mn� : T � T� ! C , re
ursively de�ned bym0�(t; �) :� 1; mn+1� (t; �) := Z t� mn�(s; �)1 + ��(s)�(s) �s for n 2 N0 ; (9)are 
alled monomials of degree n.Example 14. On homogeneous time s
ales with graininess ��(t) � h � 0 andfor regressive 
onstants � 2 C we obtain mn�(t; �) = (t��)nn!(1+h�)n for t; � 2 T.Lemma 15. Consider a mapping � 2 CrdR(T�; C ) whi
h is uniformly re-gressive, i.e. there exists a 
 > 0 su
h that
�1 � j1 + ��(t)�(t)j for t 2 T�: (10)Then the estimate jmn�(t; �)j � 
n(t� �)n holds for t � � and n 2 N0 .Proof. The proof is obtained using an easy indu
tion argument. Triviallythe desired estimate holds for n = 0. The indu
tion step n ! n + 1 followsfrom��mn+1� (t; �)�� (9)� Z t� ���� mn�(s; �)1 + ��(s)�(s)���� �s � Z t� 
n(s� �)nj1 + ��(s)�(s)j�s �(10)� 
n+1 Z t� (s� �)n�s � 
n+1 Z t� (t� �)n�s == 
n+1(t� �)n+1 for t � � ;as desired. 16



Lemma 16. If � 2 CrdR(T�; C ) and if J� : T� ! C d�d ,J�(t) := 0BBB��(t) 1 0 : : : 0�(t) 1 : : : 0. . . ...�(t)1CCCAdenotes a mapping with values in (
omplex) Jordan 
anoni
al form, then thetransition matrix of x� = J�(t)x is given by�J�(t; �) = e�(t; �)0BBB�1 m1�(t; �) : : : md�1� (t; �)1 : : : md�2� (t; �). . . ...1 1CCCA for t; � 2 T�:Proof. Obviously �J�(�; �) = Id by De�nition 13, and for arbitrary � 2 T�an elementary 
al
ulation using the produ
t rule (
f. Hilger [8, Theorem2.6(ii)℄) yields the identity �J�(�; �)�(t) = J(t)�J�(t; �) for t 2 T�.Lemma 17. Consider mappings � 2 C+rdR(T;R), � 2 CrdR(T; C ) on a times
ale T with bounded graininess and whi
h is unbounded above. Under theassumption 9T 2 T : 0 < inft2[T;1)��(t)� (<̂�)(t)�it holds that limt!1mn�(t; �)e�	�(t; �) = 0 for � 2 T; n 2 N0 :Proof. Using the de
omposition from Hilger [8, Theorem 7.4(ii)℄ it suÆ
esto show limt!1mn�(t; �)e<̂�	�(t; �) = 0. To do this we pro
eed by mathe-mati
al indu
tion over n 2 N0 . For n = 0 we have m0�(t; �) = 1 (
f. (9)) andthe assertion follows by Hilger [7, p. 59, Satz 9.2℄, namelylimt!1 e<̂�	�(t; �) = 0 for � 2 T:Now keeping n 2 N0 �xed, by assumption the relation0 � ����� mn�(t; �)e<̂�	�(t; �)(�	 <̂�)(t) (1 + ��(t)�(t)) ����� = �����mn�(t; �)e<̂�	�(t; �)�(t)� (<̂�)(t) ����� �� ����� mn�(t; �)e<̂�	�(t; �)inft2[T;1)��(t)� (<̂�)(t)������ ���!t!1 0 for � 2 T17



holds. Therefore the Theorem of de l'Hospital (
f. Bohner & Peterson[3, p. 48, Theorem 1.120℄), applied separately to the real and imaginary part,leads tolimt!1mn+1� (t; �)e<̂�	�(t; �) =(9)= limt!1 �Z t� < mn�(s; �)1 + ��(s)�(s) �s +Z t� = mn�(s; �)1 + ��(s)�(s) �s� e�	<̂�(t; �)�1 == limt!1 �< mn�(t; �)1 + ��(t)�(t) + = mn�(t; �)1 + ��(t)�(t)� e<̂�	�(t; �)(�	 <̂�)(t) == limt!1 mn�(t; �)e<̂�	�(t;�)(�	 <̂�)(t)(1 + ��(t)�(t)) = 0 for � 2 T;whi
h proves our lemma.Theorem 18. Suppose A 2 CrdR(T; K d�d) and that (1) is Jordan redu
ibleon a time s
ale T with bounded graininess and whi
h is bounded above. Ifthere exists an � 2 C+rdR(T;R) su
h that9T 2 T : 8i 2 f1; : : : ; ng : 0 < inft2[T;1)��(t)� (<̂�i)(t)� (11)holds, then the transition matrix of (1) satis�eslimt!1 e�(t; �)�A(t; �) = 0 for � 2 T:Proof. By Theorem 12 and in parti
ular by the representation (8) we onlyhave to show limt!1 e�(t; �)�Ji(t; �) = 0 for i 2 f1; : : : ; ng. This is immedi-ate from Lemma 16, sin
e the assumption (11) allows for the appli
ation ofLemma 17.Remark 19. Theorem 18 
an be used to show the stability of linear time-varying systems using time-dependent eigenvalues. Here the assumption of aJordan redu
ible mapping A is essential as 
lassi
al examples for ODEs show(
f. Hahn [6, p. 307℄).Example 20. Consider an asymptoti
ally homogeneous time s
ale T withh := limt!1 ��(t) > 0 and assume that A 2 K d�d is a regressive matrixsu
h that �(A) � B 1h �� 1h�. Then for the time-invariant system x� = Axthe inequality j1+h�j�1h < 0 holds for � 2 �(A) and there exists a T 2 Tsu
h that 0 < inft2[T;1)��(<̂�)(t)�. Therefore �A(t; t0), t0 2 T, tends to 0 ast!1. 18



5 The Regressive CaseIn this se
tion we assume that A 2 K d�d is regressive, so that we may freelyuse all the results obtained in Se
tion 4. Moreover the eigenvalues � 2 �(A)are regressive (see Bohner & Peterson [3, Exer
ise 5.6, p. 190℄).Theorem 21 (Chara
terization of exponential stability). Let T be atime s
ale whi
h is unbounded above and let A 2 K d�d be regressive. Thenthe following holds:(a) If the system (4) is exponentially stable, then �(A) � SC (T).(b) If (10) holds for all eigenvalues � of A and if �(A) � SC (T), then (4)is exponentially stable.Proof. To begin with, we 
hoose an invertible matrix S 2 C d�d su
h thatJ := S�1AS is in Jordan 
anoni
al form and let the matrix A have theeigenvalues �1; : : : ; �n 2 C , n � d. Throughout this proof we use the indu
edmatrix norm kAk := maxi2f1;:::;dg dXj=1 jaijj (12)of A = (aij)i;j2f1;:::;dg; sin
e all norms on K d�d are equivalent, this is suÆ
ientfor our purpose. Now suppose t0 2 T is �xed.(a) Assume that (4) is exponentially stable. Then if v is an eigenve
tor
orresponding to � 2 �(A), by Bohner & Peterson [3, p. 198, Theorem5.30℄ we have thatje�(t; �)jkvk = k�A(t; �)vk � K�e��(t��)kvk ; t � � ;for suitable 
onstants K� ; � > 0. This shows that je�(t; �)j � K�e��(t��)and Proposition 6 implies that � 2 SC (T). As � 2 �(A) was arbitrary, this
ompletes the proof.(b) Sin
e the eigenvalues of A 2 K d�d are assumed to be uniformly re-gressive, there exists a 
 > 0 su
h that
�1 � j1 + ��(t)�ij for t 2 T; i 2 f1; : : : ; ng :Then for arbitrary i 2 f1; : : : ; ng it follows as aboveje�i(T; t0)j = exp�Z Tt0 lims&��(t) log j1 + s�ijs �t� for T � t019



and with � := 12 min f�1; : : : ; �ng, where�i := � lim supT!1 1T � t0 Z Tt0 lims&��(t) log j1 + s�ijs �t > 0;we obtain the estimateje�i(t; t0)j � K1e��(t�t0) for t � t0with some real K1 = K1(t0) � 1. On the other hand our Theorem 12implies k�A(t; t0)k � kSk kS�1k k�J(t; t0)k and sin
e all the non-zero entriesof the matrix �J(t; t0) are of the type mji�i(t; t0)e�i(t; t0) for some integerji 2 f0; : : : ; di � 1g, Lemma 15 implies��mji�i(t; t0)e�i(t; t0)�� � K1
ji(t� t0)jie��(t�t0) for t � t0:Elementary 
al
ulus leads to the existen
e of some K2 = K2(K1; �; t0; ji) � 1su
h that ��mji�i(t; t0)e�i(t; t0)�� � K2e��2 (t�t0) for t � t0 :As ea
h non-zero entry of the matrix �J(t; t0) satis�es su
h an estimate, wehave also that �J(t; t0) is norm-wise exponentially bounded, i.e., we havek�J(t; t0)k � K3e��2 (t�t0) for all t � t0 and some K3 � 1 depending inparti
ular on d.An immediate 
onsequen
e of the previous result is the following 
hara
ter-ization of robust exponential stability.Corollary 22. Let A 2 K d�d be regressive. Then the following holds:(a) If the system (4) is robustly exponentially stable, then �(A) � SC (T),(b) if (10) holds for all eigenvalues � of A on a time s
ale with boundedgraininess, and if �(A) � SC (T), then (4) is robustly exponentiallystable.Proof. (a) If (4) is robustly exponentially stable then it is in parti
ular ex-ponentially stable, hen
e �(A) � SC (T).(b) The set SC (T) is 
learly open and by the 
ontinuous dependen
e ofthe spe
trum of a matrix on its entries (
f. e.g. Stewart and Sun [12,Theorem IV.1.1℄), there is a neighborhood V � K d�d of A 2 K d�d su
h that�(B) � SC (T) for B 2 V . It remains to show that ea
h � 2 �(B) satis�es(10). By assumption there exists a 
 > 0 su
h that
�1 � j1 + ��(t)�j for t 2 T; � 2 �(A)20



and we may 
hoose V small enough so that for ea
h � 2 �(B) there exists a� 2 �(A) with j�� �j < 12H
 , where we abbreviate H := supt2T��(t). Nowthe estimate
�1 � j1 + ��(t)�j+ ��(t) j�� �j < j1 + ��(t)�j+ (2
)�1 for t 2 Tleads to (2
)�1 � j1 + ��(t)�j and therefore � 2 �(B) is uniformly regressive.As � was arbitrary, this 
ompletes the proof.6 The General CaseIn this se
tion we treat the 
ase of not ne
essarily regressive matri
es A 2K d�d . We are therefore not able to use the results of Se
tion 4. The followinglemma provides an alternative way to 
on
lude for exponential stability ofJordan blo
ks. This will be used in the proof of the main result of this se
tion(Theorem 24).Lemma 23. Let T be a time s
ale whi
h is unbounded above and withbounded graininess. For � 2 C 
onsider the Jordan blo
k J� 2 C d�d givenby J� := 0BBB�� 1 0 : : : 0� 1 : : : 0. . . ...�1CCCAIf the s
alar system x� = �x (13)is uniformly exponentially stable then the systemx� = J�x (14)is exponentially stable.Proof. We show the assertion by 
onstru
ting expli
it bounds for individualsolutions with initial 
ondition x(�) = � 2 K d , � 2 T. Again we will usewithout loss of generality the norm kxk := max fjx1j ; : : : ; jxdjg for x =(x1; : : : ; xd) 2 K d in our 
onsiderations.Assume that for the solutions of (13) we have bounds of the form kx(t)k �Ke��(t��) k�k for suitable 
onstants � > 0; K � 1 and all � 2 T. Fix � 2 T21



and �� < � < 0. Now 
hoose a sequen
e �� = �d < �d�1 < : : : < �2 < �1 =�. We will prove by indu
tion on j = d; : : : ; 1 that there exists 
onstantsKj su
h that the j-th 
omponent of the solution of (14) is exponentiallybounded by jxj(t)j � Kje�j(t��) k�k :For j = d the assertion follows from the assumption as the d-th entry of x(t)is a solution of (13) and hen
ejxd(t)j � Ke��(t��)j�dj = Ke�d(t��)j�dj � Ke�d(t��) k�k :So assume the assertion is shown for some index d � (j + 1) � 2. By
onstru
tion the j-th 
omponent of the solution satis�es the equationx�j (t) = �xj(t) + xj+1(t) for t 2 T :Thus by the variation of 
onstants formula (whi
h is shown in the generalnon-regressive 
ase in [11, Abs
hnitt 1.3℄) we have the representationxj(t; �) = e�(t; �)�j + Z t� e�(t; s+ ��(s))xj+1(s)�s :Using the exponential bound on e�(t; �) and denoting by H the boundon the graininess of T we obtainjxj(t)j � je�(t; �)�jj+ Z t� je�(t; s+ ��(s))xj+1(s)j�s �� Ke��(t��)j�jj+ Z t� Ke��(t�s)e���(s)Kj+1e�j+1(s��)�s k�k �� Ke�j+1(t��)j�jj+ Z t� Ke�j+1(t�s)e�HKj+1e�j+1(s��)�s k�k == Ke�j+1(t��)j�jj+KKj+1e�H(t� �)e�j+1(t��) k�kand 
hoosing Kj large enough and using �j+1 < �j we obtainjxj(t)j � Kje�j(t��) k�k for t � � ;as desired. As we have exponential de
ay of all 
omponents of the solutionx(t) this implies the assertion.The main result of this se
tion is now the following. Re
all that aneigenvalue is 
alled defe
tive if it is not semi-simple, i.e. if geometri
 andalgebrai
 multipli
ity do not 
oin
ide.22



Theorem 24. Let T be a time s
ale whi
h is unbounded above. Let A 2K d�d and 
onsider the linear system (4). Then the following assertions hold.(i) If (4) is exponentially stable then �(A) � S(T).(ii) If �(A) � S(T), the time s
ale T has bounded graininess and forall defe
tive � 2 �(A) the s
alar system (5) is uniformly exponentiallystable, then system (4) is exponentially stable.(iii) If A is diagonalizable then system (4) is exponentially stable if andonly if �(A) � S(T).Proof. (i) Let � 2 �(A) and 
hoose an asso
iated eigenve
tor v. Thenwe have for t � � 2 T that (
f. Bohner & Peterson [3, p. 198,Theorem 5.30℄)je�(t; �)jkvk = k�A(t; �)vk � K�e��(t��)kvk for t � � ;for suitable 
onstantsK� ; � > 0. This shows that je�(t; �)j � K�e��(t��)and Proposition 6 implies that � 2 S(T). As � 2 �(A) was arbitrary,this 
ompletes the proof of (i).(ii) Let S 2 C d�d be su
h that J := S�1AS is in Jordan 
anoni
alform with Jordan blo
ks Ji; i = 1; : : : ; n � d. If for some i the Jordanblo
k Ji is one dimensional the assumption on the spe
trum of A andProposition 6 immediately imply exponential stability ofx� = Jix : (15)If dimJi > 1, that is, if the asso
iated eigenvalue is defe
tive thenexponential stability of (15) is a 
onsequen
e of the assumptions andLemma 23. In total, we have exponential stability in ea
h of the Jordanblo
ks and the assertion easily follows using Theorem 12.(iii) This is immediate from (i) and (ii).Corollary 25. Let T be a time s
ale whi
h is unbounded above. Let A 2K d�d and 
onsider the linear system (4). Then the following assertions hold.(i) If (4) is robustly exponentially stable then �(A) � SC (T).(ii) If �(A) � SC (T), the time s
ale T has bounded graininess and forall multiple eigenvalues � 2 �(A) the s
alar system (5) is uniformlyexponentially stable, then system (4) is robustly exponentially stable.23



(iii) If A has d distin
t eigenvalues then system (4) is robustly exponen-tially stable if and only if �(A) � SC (T).Proof. (i) By Theorem 24 (i) the assumption implies �(B) � S(T) forall matri
es B in a neighborhood of A. Again using [12, TheoremIV.1.1℄ this is equivalent to the statement that for a suitable neigh-borhood U of �(A) we have U � S(T). This implies that �(A) �intS(T) = SC (T).(ii) As SC (T) is open and by 
ontinuous dependen
e of the eigenvalueson the entries of a matrix we have �(B) � SC (T) for all matri
es B ina neighborhood V of A. If � 2 �(A) has algebrai
 multipli
ity greaterthan 1 we have by assumption that the s
alar systems (5) is uniformlyexponentially stable. By arguments similar to [11, Abs
hnitt 1.3℄ thisimplies that the s
alar system x� = �x (16)is uniformly exponentially stable for all j� � �j < " for some " > 0small enough. Now [12, Theorem IV.1.4℄ guarantees that by 
hoosing asuÆ
iently small neighborhood U of A we 
an ensure that any defe
tiveeigenvalue of a matrix B 2 U has to satisfy j���j < " for some multipleeigenvalue � 2 �(A). Thus for all B 2 U \ V the assumptions ofTheorem 24 (ii) are satis�ed whi
h shows robust exponential stabilityof A.(iii) This is immediate from (i) and (ii).7 Con
lusionWe have presented a domain of exponential stability whi
h 
ompletely 
har-a
terizes exponential stability of s
alar systems. This immediately implies a
hara
terization of the (generi
) 
ase of matri
es with distin
t eigenvalues.For the 
ase of (defe
tive) multiple eigenvalues we obtain some 
riteria in theregressive 
ase under a uniform regressivity assumption on the eigenvaluesof A. If the assumption of regressivity is dropped this 
an be repla
ed bya uniform exponential stability assumption on the s
alar systems de�ned bydefe
tive eigenvalues.The topi
 warrants further investigation. In parti
ular, it should be ex-amined if uniform exponential stability of 
ertain � 2 �(A) is really ne
essaryto prove Theorem 24 (ii). Also it would be interesting to know 
onditions for24



uniform exponential stability. Finally, the set of exponential stability is not
ompletely understood. It seems 
lear, that it 
an have many 
onne
ted 
om-ponents. It should be possible to 
onstru
t examples of that type using somemodi�
ation of Example 11 (iv) by introdu
ing gaps of varying sizes. Whatis un
lear is, if there are 
onditions that imply unboundedness of SC (T). One
ould 
onje
ture that for this to happen suÆ
iently many times t 2 T with��(t) < " are needed for any " > 0. But a pre
ise statement remains obs
ureto us for the moment.Con
luding this paper we remark that all statements remain true withobvious modi�
ations if one repla
es the time s
ale T by an arbitrary measure
hain (
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