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Abstract

We study families of time-varying linear systems, where time-variations have to satisfy
restrictions on the dwell time, that is, on the minimum distance between discontinuities,
as well as on the derivative in between discontinuities. For this class of systems we study
continuity properties of the growth rate as a function of the systems’ data. It is shown by
example, that a straightforward topology on the space of systems does not yield the desired
continuity result. A new natural metric is introduced and a continuity result is obtained.
Furthermore, local Lipschitz continuity may be shown for the (generic) case of irreducible
systems. The methods rely heavily on a recent converse Lyapunov theorem for the class
under consideration.
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1 Introduction

In this paper we study families of continuous time linear parameter-varying systems in K
n, K =

R, C. We consider systems of the form

ẋ(t) = A(θ(t))x(t) , t ∈ R , (1)

where θ(·) ∈ L∞(R,Θ) takes values in a nonempty compact set Θ ⊂ K
m and A : Θ → K

n×n is
Lipschitz continuous.

We impose restrictions on the parameter variations θ by requiring a certain dwell time h > 0,
that is, a minimal positive distance between discontinuities of θ. Furthermore, θ is assumed to be
absolutely continuous in between discontinuities, satisfying a constraint on the derivative given by
a compact convex set Θ1. This setup encompasses many of the systems which can be found under
the names of linear parameter-varying systems and linear switching systems in the literature. A
discussion of the relation of these systems to our class can be found in [19]. For a discussion of
the interest in these system classes and available results we refer to [1, 2, 8, 9, 11, 12, 13] and
references therein.

In this paper we study continuity properties of the growth rate of the family of systems (1) as
a function of the data (h,Θ,Θ1, A). It is shown, that it is in general not reasonable to look for
results with respect to the Hausdorff metric in the Θ and Θ1 spaces. We propose a suitable new
metric with respect to which a continuity result can be shown. For irreducible systems a local
Lipschitz continuity result is obtained. The results extend similar results contained in the papers
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[16, 17], where the same problem was studied for linear inclusions of the form ẋ ∈ {Ax | A ∈ M}
and for linear parameter-varying systems.

We proceed as follows. In the ensuing Section 2 we present a rigorous definition of the class of
systems that we are considering. Section 3 discusses some of the structure of the set of admissible
parameter variations. For the case of irreducible systems, that is, systems for which there is
no nontrivial invariant subspace, we review a construction of parameterized Lyapunov functions,
which has recently been presented in [19]. In Section 4 we first discuss the metric on the space
of systems that is seemingly the natural one in our case. Namely, the metric that is obtained
by using the Hausdorff metric in the space of parameter sets Θ and restrictions on the derivative
Θ1. It is shown by example, that with this choice the growth rate is not a continuous function
of the data. In Section 5 we introduce a new metric by considering the Hausdorff metric on the
space of parameter variations induced by (Θ,Θ1). With this topology the continuity and Lipschitz
results are shown in Section 6. A vital step in these proofs consists of obtaining bounds on the
eccentricity of the Lyapunov functions for irreducible systems. We conclude in Section 7.

2 Families of Linear Time-Varying Systems

Let K = R, C denote the real or the complex field. We consider families of time-varying systems
of the form

ẋ(t) = A(θ(t))x(t) , t ∈ R , (2)

where θ(·) ∈ L∞(R,Θ) is an admissible parameter variation taking values in a nonempty compact
set Θ ⊂ K

m and A : Θ → K
n×n is Lipschitz continuous. For fixed θ(·) the evolution operator

generated by (2) is denoted by Φθ (t, s) , t, s ∈ R.
We are interested in constraining the parameter variations under consideration to be piecewise

continuous and satisfying constraints given by the parameters h > 0, compact sets Θ,Θ1 and the
Lipschitz continuous map A. Before we precisely state the conditions on these four parameters
defining the system Σ = (h,Θ,Θ1, A), we will introduce the notion of admissible parameter varia-
tions. In order to denote the discontinuities of parameter variations, which for the purposes of this
paper are discrete sets, we consider (bounded or unbounded) index sets I ⊂ Z. In the following it
will always be tacitly assumed, that these index sets are given as the intersection of a real interval
with Z, i.e. of the form I := [a, b] ∩ Z, where a, b ∈ R ∪ {±∞}.

Definition 1. Let Σ = (h,Θ,Θ1, A) be given. If h ∈ (0,∞), a parameter variation θ : R → Θ is
called admissible (with respect to Σ), if there is a index set Iθ ⊂ Z and times tk, k ∈ Iθ such that

(i) h ≤ tk+1 − tk, for k ∈ Iθ, k < sup Iθ,

(ii) for k ∈ Iθ, k < sup Iθ the function θ is absolutely continuous on the interval [tk, tk+1),
and satisfies

θ̇(t) ∈ Θ1 , a.e. (3)

(This condition also applies to (−∞, inf Iθ), (sup Iθ,∞) if inf Iθ, resp. sup Iθ, is finite.)

If h = ∞, the admissible parameter variations are given as the set of absolutely continuous func-
tions θ : R → Θ satisfying (3) almost everywhere on R.

The set of admissible parameter variations is denoted by U or U(Σ), if dependence on the data
needs to be emphasized. For simplicity it will always be assumed, that the time t0 appearing in
(i) satisfies t0 > 0. By t0(u) we denote the smallest positive discontinuity of a parameter variation
u.

We need the following notation. The spaces of nonempty compact subsets, respectively
nonempty convex compact subsets of K

m are denoted by K (Km), respectively Co (Km). Both
these spaces are complete metric spaces with respect to the Hausdorff metric, which we denote
by H(·, ·). Recall that the relative interior of a convex set M ⊂ K

m, denoted by riM, is the
interior of M in the relative topology of the affine space space generated by M. Or to put it
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another way, the interior of M with respect to the smallest affine space containing M. With this
we formulate the following conditions that are assumed throughout the paper. We note that the
following conditions are more restrictive than the ones used in [19].

(A1) h ∈ (0,∞],

(A2) Θ ⊂ K
m is a finite disjoint union of sets Ωj ∈ Co (Km), j ∈ {1, . . . , k}; if h = ∞ then k = 1,

i.e. Θ is compact and convex,

(A3) Θ1 ∈ Co (Km),

(A4) 0 ∈ riΘ1,

(A5) span Θ1 ⊃ span (Ωj − ηj), j = 1, . . . , k where ηj ∈ Ωj is arbitrary.

(A6) A : Θ → K
n×n is a Lipschitz continuous map from the parameter space to the space of

matrices.

Using methods from [6] it is shown in Corollary 4.5 of [19], that under the above assumptions
system (2) may be interpreted as a linear flow on a vector bundle. To be precise, U(Σ) is a
compact metric space as a compact subset of L∞(R, conv Θ) (endowed with the weak-∗-topology).
The shift u(·) 7→ u(t + ·) is continuous on that space. Now consider the trivial vector bundle
π : U × K

n → U , then the dynamical system given by

(u, x) 7→ (u(t + ·),Φu(t, 0)x) (4)

is a continuous dynamical system. Note, in particular, that it is linear in the second component.
We now define the object of interest in this paper, which is the top Lyapunov exponent or the

(uniform) exponential growth rate associated to system (2), or (4). Given the map A : Θ → K
n×n

and the set of admissible parameter variations U(Σ) ⊂ L∞(R,Θ), define for t ≥ 0 the sets of finite
time evolution operators

St(Σ) := {Φu(t, 0) |u ∈ U(Σ)} , S(Σ) :=
⋃

t≥0

St(Σ).

Throughout the paper ‖ · ‖ denotes a fixed norm on K
n and the corresponding operator norm

on K
n×n. We now introduce for t > 0 finite time growth constants given by

ρ̂t(Σ) := sup

{
1

t
log ‖S‖ |S ∈ St(Σ)

}
.

It is easy to see, that because of the shift-invariance of U the function t 7−→ tρ̂t(Σ) is subadditive.
This implies by a folklore result (see e.g. p. 27/28 of [10]), that the following limit exists (and is
independent of ‖ · ‖)

ρ̂(Σ) := lim
t→∞

ρ̂t(Σ) = inf
t≥0

ρ̂t(Σ). (5)

It is well known, that an alternative way to describe ρ is given by

ρ̂(Σ) = inf{β ∈ R | ∃M ≥ 1 such that ‖Φu(t, 0)‖ ≤ Meβt for all u ∈ U , t ≥ 0} . (6)

For this reason the quantity ρ(Σ) is called uniform exponential growth rate of the family of linear
time-varying systems of the form (2) given by Σ. Another way to define exponential growth is to
employ a trajectory-wise definition. In this case we define the Lyapunov exponent corresponding
to an initial condition x0 ∈ K

n \ {0} and u ∈ U by

λ(x0, u) := lim sup
t→∞

1

t
log ‖Φu(t, 0)x0‖ , (7)

and define as exponential growth rate κ(Σ) := sup{λ(x, u) | 0 6= x ∈ K
n , u ∈ U}. As our system

may be interpreted as a linear flow on a vector bundle, we have that ρ(Σ) = κ(Σ), see [6].
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3 Concatenation, Irreducibility and Lyapunov norms

In this section we briefly describe the main results from [19], which are essential in order to obtain
the desired Lipschitz continuity results. We assume the system Σ = (h,Θ,Θ1, A) to be given. For
ease of notation we will therefore suppress the dependence on these data of ρ(Σ), St(Σ) and other
objects we intend to define. The problem with our system class is, that simple concatenation of
admissible parameter variations does in general not result in an admissible parameter variation.
In contrast for every admissible parameter variation u ∈ U and t ≥ 0 there is a certain subset of
U of admissible parameter variations w for which the following concatenation is also admissible

(u ⋄t w)(s) :=

{
u(s) , s < t
w(s − t) , t ≤ s

. (8)

It is easy to see that this subset depends on the continuous extension of u at t from the left
and on the difference between the time instance t and the largest discontinuity of u smaller than
t. To denote these quantities we define

u(t−) := lim
sրt

u (s) (9)

and
τ− (u, t) := min{h, t − max{tk | tk < t where tk is a discontinuity of u}} . (10)

We first treat the case h ∈ (0,∞) and define for (θ, τ) =: ω ∈ Θ× [0, h) the set of concatenable
parameter variations by

U (ω) := U (θ, τ) := {u ∈ U |u (0) = θ and h ≤ t0 (u) + τ} ,

and for τ = h and ω = (θ, h)

U (ω) := U (θ, h) := {u ∈ U |u (0) = θ or h ≤ t0 (u)} .

Note that with this definition we clearly have U = ∪ω∈Θ×[0,h]U(ω) as by definition every
admissible parameter variation is continuous on some interval of the form [0, τ ].

The interpretation of the set U (θ, τ) is the following. If a parameter variation u is defined
on the interval (−∞, t), then for w ∈ U the concatenation (8) defines an admissible parameter
variation if and only if

w ∈ U(u(t−), τ− (u, t)) .

In the case h = ∞ there is no need to account for discontinuities. We thus define for θ ∈ Θ
the set

U(θ) := {u ∈ U | u(0) = θ} .

For the sake of a unified notation, we define

Π(Θ, h) :=

{
Θ × [0, h] , if h ∈ (0,∞) ,

Θ , if h = ∞ .

For each ω ∈ Π(Θ, h) and t ≥ 0 we consider the set of evolution operators ”starting in ω” given
by

St(ω) := {Φu(t, 0) | u ∈ U (ω)}. (11)

Similarly, we define for ω, ζ ∈ Π(Θ, h) and for t ≥ 0 the sets of evolution operators ”starting in ω
and ending at ζ” by

Rt(ω, ζ) := {Φu(t, 0) |u ∈ U (ω) and u ⋄t w ∈ U(ω) ,∀w ∈ U(ζ)} . (12)
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Thus by definition if R ∈ Rs(ω, ζ) and S ∈ St(ζ), then SR ∈ St+s (ω). We now define

S≤T (ω) : =
⋃

0≤t≤T

St(ω) and S(ω) :=
⋃

t≥0

St(ω) , respectively

R≤T (ω, ζ) : =
⋃

0≤t≤T

Rt(ω, ζ) and R(ω, ζ) :=
⋃

t≥0

Rt(ω, ζ) .

Note that the definition entails, that for every ω ∈ Π(Θ, h) the set R(ω, ω) is a semigroup.

Remark 2. It is useful to keep in mind the following remark on parameter variations connecting
two points ω, ζ ∈ Π(Θ, h). If h ∈ (0,∞), then for all ω, ζ ∈ Π(Θ, h) the set R2h(ω, ζ) is not empty.
For if ω = (θ, τ), ζ = (η, σ), then it suffices to define u(s) = θ, 0 ≤ s < h and u(s) = η, h ≤ s ≤ 2h,
which defines an admissible parameter variation with Φu(2h, 0) ∈ R(ω, ζ). Similarly, if h = ∞
then using (A5) there exists a constant c̄ such that Rc̄(ω, ζ) 6= ∅ for all ω, ζ ∈ Θ.

If we want to describe the exponential growth rate within the subsets of evolution operators
with given initial and end condition, this leads to the definitions

ρ̂t(ω) := max

{
1

t
log ‖S‖ |S ∈ St(ω)

}
, ρ̂t(ω, ζ) := max

{
1

t
log ‖S‖ |S ∈ Rt(ω, ζ)

}
.

It is shown in Lemma 4.9 of [19] that

ρ̂ = lim
t→∞

ρ̂t(ω, ζ) = lim
t→∞

ρ̂t(ω). (13)

In the following the most important assumption is that of irreducibility of A(Θ). Recall that
a set of matrices M ⊂ K

n×n is called irreducible, if only the trivial subspaces {0} and K
n are

invariant under all A ∈ M and reducible otherwise.
We cite the following simple lemma from [16]. It is crucial in the following construction of

norms that are Lyapunov functions for our system and will be used in the sequel.

Lemma 3. Let K = R, C and let S ⊂ K
n×n be an irreducible semigroup. For any family of sets

St, t ∈ R+ such that

S =
⋃

t≥0

St ,

there are ε > 0 and T ∈ R+ such that for all z ∈ K
n, A ∈ K

n×n there is an S ∈ ⋃
0≤t≤T St with

‖ASz‖ ≥ ε‖A‖‖z‖ .

We note the following immediate corollary for further reference.

Corollary 4. Let K = R, C. Let R ⊂ K
n×n be an irreducible set of matrices and let S ⊂ K

n×n

be an irreducible semigroup. For arbitrary families of sets Rt,St, t ∈ R+, such that

R =
⋃

t≥0

Rt , S =
⋃

t≥0

St ,

and with the property that

SR ∈ Rs+t , for all S ∈ Ss, R ∈ Rt , s, t ≥ 0 ,

there are ε > 0 and τ ≥ 0 such that for all z ∈ K
n, A ∈ K

n×n there is an R ∈ ⋃
0≤t≤τ Rt with

‖ARz‖ ≥ ε‖A‖‖z‖ .
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Proof. By irreducibility for each 0 6= z ∈ K
n there is an R ∈ R such that Rz 6= 0. Using a

standard compactness argument for the unit sphere in K
n, it follows, that there are an ε1 > 0 and

finitely many R1, . . . , Rm ∈ R, such that for every z ∈ K
n there is a 1 ≤ j ≤ m with

‖Rjz‖ ≥ ε1‖z‖ .

Choose τ1 such that Rj ∈ ⋃
0≤t≤τ1

Rt, j = 1, . . . ,m. Now let ε2 > 0, τ2 ≥ 0 be the constants

guaranteed for S by Lemma 3. Then for every z ∈ K
n, A ∈ K

n×n, there exists a 1 ≤ j ≤ m and
S ∈ ⋃

0≤t≤τ2
St such that

‖ASRjz‖ ≥ ε2‖A‖‖Rjz‖ ≥ ε1ε2‖A‖‖z‖ .

The assertion follows by setting ε := ε1ε2 and τ := τ1 + τ2.

By Proposition 5.3 in [19], if A(Θ) is irreducible and our standing assumptions hold, then the
sets R(ω, ζ),S(ω) are irreducible for all ω, ζ ∈ Π(Θ, h). We define limit sets of the form

S∞(ω) : = {S ∈ K
n×n | ∃ tk → ∞ , Sk ∈ Stk

(ω) : e−ρtkSk → S }, (14)

R∞(ω, ζ) : = {S ∈ K
n×n | ∃ tk → ∞ , Sk ∈ Rtk

(ω, ζ) : e−ρtkSk → S }. (15)

By Lemma 6.1 in [19] the set ∪ω∈Π(Θ,h)S∞(ω) is bounded, the sets R∞(ω, ζ),S∞(ω) are each a
compact, nonempty set not equal to {0}, and the sets R∞(ω, ω), S∞(ω) are irreducible.

Thus the functions vω : K
n → R+ defined for ω ∈ Π(Θ, h) by setting

vω(x) := max { ‖Sx‖ |S ∈ S∞(ω)} , (16)

can easily seen to be norms on K
n. They form a family of parameterized Lyapunov functions for

our system in the sense described in the following result, which recalls Theorem 6.4 of [19].

Theorem 5. Consider system (2) with (A1)-(A6). Assume that A(Θ) is irreducible and let ω ∈
Π(Θ, h) be arbitrary. Then

(i) For all u ∈ U(ω), t ≥ 0 and all x ∈ K
n it holds that

vζ(Φu(t, 0)x) ≤ eρt vω(x) , (17)

whenever Φu(t, 0) ∈ Rt(ω, ζ) for ζ ∈ Π(Θ, h). In particular, for all t ≥ s ≥ 0 it holds that

vu(t−),τ−(u,t)(Φu(t, 0)x) ≤ eρ(t−s) vu(s−),τ−(u,s)(Φ(s, 0)x) . (18)

(ii) For every x ∈ K
n, ω ∈ Π(Θ, h), and every t ≥ 0,, there exist u ∈ U(ω) and a piecewise

continuous map ζ : [0, t] → Π(Θ, h), with ζ(0) = ω, and such that for all s ∈ [0, t] we have

vζ(s)(Φu(s, 0)x) = eρs vω(x) .

If h = ∞, then ζ may be chosen to be continuous. If h < ∞ and ω = (θ, τ) ∈ Θ × [0, h),
the function ζ may be chosen, so that its discontinuities on [0, t) coincide with those of u.
Otherwise, ζ may have one further discontinuity at 0.

Finally, we will use a continuity result for the norms vω, which is contained in Proposition 6.6
and Corollary 6.7 of [19]. To state the result, we introduce the space of continuous, positively
homogeneous functions on K

n defined by

Hom (Kn, R) := {f : K
n → R | ∀α ≥ 0 : f(αx) = αf(x) and f is continuous on K

n} .

Clearly, all norms on K
n are elements of Hom (Kn, R). This space becomes a Banach space if

equipped with the norm

‖f‖
∞,hom := max {|f (x)| | ‖x‖2 = 1} .
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Proposition 6. Consider system (2) with (A1)-(A6). Assume that A(Θ) is irreducible. Then the
map

ω 7−→ vω , (19)

is Lipschitz continuous from Π(Θ, h) to Hom (Kn, R).
Furthermore, there exists a constant 1 ≤ C ∈ R, such that for all ω, ζ ∈ Π(Θ, h) and all x ∈ K

n

we have
C−1vω(x) ≤ vζ(x) ≤ Cvω(x) . (20)

4 Counterexamples to Continuity

In this section we give some examples showing that the assumptions on the data made thus far do
not guarantee continuity of the growth rate. In the first example we show that an amalgamation
of several of the sets Ωj may lead to a discontinuity. The ensuing example shows that convergence
of the sets Θ1 may also be a problem.

In order to investigate continuity properties of ρ we first have to define a suitable topology. As
all the maps A are Lipschitz continuous functions on a compact set, each A may be extended to
a globally bounded, globally Lipschitz continuous function on K

m. We denote by Lip (Km, Kn×n)
the space of such functions. This is a Banach space, if considered with the norm

‖A‖Lip := ‖A‖∞ + L(A) , A ∈ Lip (Km, Kn×n) ,

where ‖A‖∞ denotes the standard supremum norm of A and L(A) ≥ 0 is the smallest global
Lipschitz constant for A.

We consider two spaces of systems

L := {Σ := (h,Θ,Θ1, A) | h ∈ (0,∞),Σ satisfies (A1) – (A6)} ,

L(∞) := {Σ := (∞,Θ,Θ1, A) | Σ satisfies (A1) – (A6)} .

These may be endowed with the metric inherited from (0,∞)×K(Kn×n)×Co(Kn×n)×Lip (Km, Kn×n),
resp. K(Kn×n)×Co(Kn×n)×Lip (Km, Kn×n), which may be defined as the sum of the metrics in
the individual components. The following examples show in a sense, that these “natural” metrics
are not the appropriate ones when considering the exponential growth rate. First however, we
recall the following result from [19]. To this end we introduce a topology on L ∪ L(∞) by using
the standard interpretation of the symbol hk → ∞.

Proposition 7. The map
(h,Θ,Θ1, A) 7→ ρ(h,Θ,Θ1, A)

is upper semicontinuous on L ∪ L(∞).

The following examples are modifications of an example given in [19] showing discontinuity
of the growth rate as a function of the data. However, the example in [19] does not satisfy the
assumptions (A1)-(A6), so that we prefer to present different examples here.

Example 8. Let 0 < h < ∞, Θ1 := [−1, 1] ⊂ R and Θ(0) = [0, 2π]. Define furthermore

A1(θ) =

[
−1 + 3/2 cos2 θ 1 − 3/2 sin θ cos θ

−1 − 3/2 sin θ cos θ −1 + 3/2 sin2 θ

]
.

We recall the well known fact that the characteristic polynomial of A1(θ) is equal to p(z) = z2 +
1/2z + 1/2 with zeros −1/4 ± i

√
7/4 independent of θ, [7, 15].
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We begin by giving a lower bound for the exponential growth rate of (h,Θ(0),Θ1, A1). Define
the admissible parameter variation

θ(t) =

{
t, t ∈ [0, 2π] ,
4π − t, t ∈ [2π, 4π] ,

and continue this function periodically. Then on the interval [0, 2π] we are in the situation of the
classical example and it is well known that

Φθ(2π, 0) =

[
eπ 0
0 e−2π

]
.

For the calculation of Φθ(4π, 2π) numerical evaluation yields

Φθ(4π, 2π) ≈
[

0.0597 −0.178
0.178 0.1932

]
.

And by calculating the spectral radius r(Φθ(4π, 0)) = r(Φθ(4π, 2π)Φθ(2π, 0)) ≈ 1.3799, we see, that
the exponential growth rate corresponding to (h,Θ(0),Θ1, A1) is approximately lower bounded by
log 1.3799/4π ≈ 0.0256.

On the other hand, as all matrices in A1(Θ(0)) are Hurwitz, with spectral abscissa equal to
−1/4, there exists a δ > 0, such that for any y ∈ [0, 2π] the differential inclusion

ẋ ∈ {Bx | B ∈ A1([y, y + δ])} (21)

is exponentially stable. (This uses the fact that the exponential growth rate of linear differential
inclusions is a continuous function of the set of matrices with respect to the Hausdorff metric, see
e.g. [4]). In particular, any solution of (21) satisfies a bound of the type ‖x(t)‖ ≤ My‖x(0)‖, with
My possibly depending on the point y defining the inclusion.

Partition the interval [0, 2π] in the form

t0 = 0 < t1 = t0 + δ < . . . < tj = tj−1 + δ < . . . < tk = 2π ,

where k is the smallest integer bigger or equal to 2π/δ.
For 0 < ε < δ define Θ(ε) as the finite union of sets Ωj(ε), j = 0, . . . , k − 1 given by

Ωj(ε) = [tj , tj+1 − ε] .

Now the exponential growth rates given by (21) yield an upper bounds for the growth rates of
solutions of (h,Θ(ε),Θ1, A1). In particular, defining M := maxj=0,...,k−1 Mtj

we have for any
solution of the system defined by Θ(ε) the (very rough) bound

‖x(t)‖ ≤ M t/h+1‖x(0)‖ . (22)

This shows, that for all ε > 0 the exponential growth rate is at most h−1 log M . Hence for
h > 50 log M we have

lim sup
ε→0

ρ(h,Θ(ε),Θ1, A1) < 0.02 ≤ ρ(h,Θ(0),Θ1, A1) ,

whereas on the other hand H(Θ(ε),Θ(0)) = ε. This shows that the growth rate is not a continuous
function of the parameter set Θ.

The following example is a modification of the previous one.

Example 9. We embed the data of the previous example into R
2 by setting Θ := [0, 2π] × {0},

Θ1(0) := [−1, 1] × {0} and defining A2(θ1, θ2) := A1(θ1).
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For ε, δ > 0 define

Θ1,δ(ε) := conv

{[
0 ε

]T
,
[

0 −ε
]T

,
[

1 ε(1−δ)
δ

]T

,
[
−1 − ε(1−δ)

δ

]T
}

.

In the following δ will be a fixed parameter and we investigate the behavior of the growth rate as
ε → 0. Note that for fixed δ > 0 and all ε > 0 the sets Θ1,δ(ε) intersect the horizontal axis exactly
in the interval [−δ, δ].

We will keep the set Θ fixed in the following argument. At first glance, this appears to be
implausible, as then there is not point in introducing a two-dimensional set Θ1(ε). It is, however,
straightforward though a bit more cumbersome to apply the same arguments to the sets Θ(ε) :=
[0, 2π] × [−ε, ε].

By Proposition 7 ρ is upper semicontinuous, and therefore we have for all h ∈ (0,∞] that

lim sup
δ→0

ρ(h,Θ,Θ1,δ(ε), A2) ≤ ρ(h,Θ, {0}, A2) .

For the previous inequality we have used that the set of derivative constraints that can be effectively
used is equal to [−δ, δ]. Applying the same argument as in (22), it may be seen, that the quantity
on the right is nonpositive, if we fix an h large enough. Thus by choosing δ > 0 small enough and
h > 0 large enough, we can ensure, that for all ε > 0

ρ(h,Θ,Θ1,δ(ε), A2) < 0.01 .

Now for fixed δ > 0 it holds that limε→0 Θ1,δ(ε) = Θ1(0). On the other hand

lim sup
ε→0

ρ(h,Θ,Θ1,δ(ε), A2) < 0.01 < 0.02 ≤ ρ(h,Θ,Θ1(0), A2) .

Thus the growth rate does not depend continuously on Θ1.

Note that in this example there is a discontinuity hidden in the “effective” Θ1. While Θ1,δ(ε)
converges to Θ1(0) in the Hausdorff metric as ε → 0, the set of effectively usable derivatives are
equal to [−δ, δ] independently of ε. This set obviously does not converge to Θ1(0). This shows
that the Hausdorff metric does not provide the correct notion of distance for the problem treated
in this paper.

5 An alternative to the Hausdorff Topology

We have seen in the previous section, that using the product topology on K(Km) × Co (Km) the
growth rate ρ is not a continuous function. One way of resolving this problem is to list a number
of special cases in which continuity results can be obtained. A more satisfying approach, however,
is to introduce a new topology, for which a continuity result can be shown and to give special
subsets on which the topology induced by the classical Hausdorff topology coincides with the new
one. In this section we introduce the required new metric, which is defined in terms of the space
of parameter variations.

Our construction will be performed in two steps. We first consider the space Ñ defined by

Ñ := {(Θ,Θ1) ∈ K(Km) × Co (Km) | (Θ,Θ1) satisfy (A2)–(A5) } . (23)

On this space we have so far used the usual Hausdorff metric H inherited from the space
K(K2m). We introduce a pseudo-metric as follows. For (Θ,Θ1) ∈ Ñ define the set of admissible
parameter variations as

U(Θ,Θ1) := {u : R → Θ | u is absolutely continuous and u̇(t) ∈ Θ1 a.e. } . (24)
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Note that by the Arzela-Ascoli theorem U(Θ,Θ1) is a compact subset of L∞(R, Km) with
respect to the strong topology. We denote the Hausdorff metric in L∞(R, Km) by H∞ and define

a pseudo-metric (also called H∞) on Ñ by pulling this metric back, i.e. by setting

H∞((Θ,Θ1), (Θ
′,Θ′

1)) := H∞(U(Θ,Θ1),U(Θ′,Θ′
1)) . (25)

We collect some properties of this pseudo-metric in the following remark.

Remark 10. (i) On Ñ it always holds that

H(Θ,Θ′) ≤ H∞((Θ,Θ1), (Θ
′,Θ′

1)) ,

because by (A4) the constant functions uθ ≡ θ are contained in U(Θ,Θ1) and clearly it holds that
dist∞(uθ,U(Θ′,Θ′

1)) ≥ dist (θ,Θ′).
(ii) As we see from Example 9, it may happen that U(Θ,Θ1) = U(Θ′,Θ′

1) for (Θ,Θ1) 6= (Θ′,Θ′
1) ∈

Ñ .

By the previous remark, to obtain a metric we just have to introduce suitable equivalence
classes with respect to Θ1. Given Θ,Θ1 we define the set Θ1,min(Θ,Θ1) as the smallest convex set
with the property

U(Θ,Θ1,min) = U(Θ,Θ1) .

Note that Θ1,min(Θ,Θ1) is simply defined by

Θ1,min(Θ,Θ1) =
⋂

Θ′
1 ,

where the intersection is taken over all convex sets Θ′
1 with the property that

U(Θ,Θ1) = U(Θ,Θ′
1) .

We then define the space

N := {(Θ,Θ1) ∈ K(Km) × Co (Km) | (Θ,Θ1) satisfy (A2)–(A5)

and Θ1 = Θ1,min(Θ,Θ1)} .

On N it holds that H∞ is a metric. However, the convergence (Θk,Θ1k) → (Θ′,Θ′
1) with respect

to H∞ is neither necessary nor sufficient for the convergence (Θk,Θ1k) → (Θ,Θ1) with respect to
the Hausdorff metric.

In the following we restrict the spaces L and L(∞) to subsets of (0,∞)×N ×Lip (Km, Kn×n),
resp. N × Lip (Km, Kn×n) and use the metric

d(Σ,Σ′) := |h − h′| + H∞((Θ,Θ1), (Θ
′,Θ′

1)) + ‖A − A′‖Lip , (26)

on L and the same expression omitting the |h − h′| on L(∞).
We note the following two subsets of N on which the topologies induced by the standard

Hausdorff metric and H∞ coincide locally. This is only a simple example and certainly more
elaborate cases where this property holds may be constructed.

Lemma 11. Let K = R, C, Θ,Θ′ ∈ Co(Kn×n) and let Θ1 be the unit ball of a strictly convex
norm w on K

m. Denote by C a constant such that C−1w(·) ≤ ‖ · ‖ ≤ Cw(·). Then

(i) H∞((Θ,Θ1), (Θ
′,Θ1)) ≤ CH(Θ,Θ′),

(ii) For 0 < α, β ∈ R we have

H∞((Θ, αΘ1), (Θ, βΘ1)) ≤ (min{α, β})−1diam (Θ)|α − β| .
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Proof. (i) We denote by πΘ the projection from K
n×n onto Θ with respect to the norm w.

That is, πΘ(η) is the unique θ ∈ Θ with w(η − θ) = distw(η,Θ). It is well known that by
convexity of Θ the map πΘ is globally Lipschitz continuous with respect to the norm w with
constant L = 1. Thus for any u ∈ U(Θ′,Θ1) we have that πΘ ◦ u ∈ U(Θ,Θ1), where

max{w(u(t) − πΘ ◦ u(t)) | t ∈ R} ≤ max{distw(η,Θ) | η ∈ Θ′} ≤ CH(Θ,Θ′) .

The assertion follows by symmetry.

(ii) Fix θ0 ∈ Θ and assume α < β. For u ∈ U(Θ, βΘ1) we define a function w ∈ U(Θ, αΘ1)
by

w(t) := θ0 +
α

β
(u(t) − θ0) .

It is easy to see that ‖u−w‖∞ ≤ diam (Θ)(min{α, β})−1|α−β|. As U(Θ, αΘ1) ⊂ U(Θ, βΘ1)
this shows the assertion.

A consequence of the previous lemma is that if we have compact sets P ⊂ Co (Km) and
[a, b] ⊂ (0,∞) and a strictly convex norm w with unit ball Θ1, then the metrics H and H∞ are
equivalent on the set {(Θ, αΘ1) | Θ ∈ P, α ∈ [a, b]}. Consequently, the continuity results of the
next section with respect to the metric d also apply to the more classical metric. We repeat that
one might think of further special cases for which this is true, but we choose not to dwell on this.

6 Continuity of the Exponential Growth Rate

One of the basic questions in stability theory concerns the continuity of the exponential growth
rate as a function of the data. We now study this question with respect to the metric d on L and
on L(∞), which we defined in (26). In [19] it has been shown that the Gelfand formula allows
for an easy criterion of continuity. Our first aim is to prove that this approach yields a continuity
statement in our setup. Before doing so, however, we introduce a small technical trick, that will
allow us to assume that the dwell time h is fixed.

Lemma 12. For Σ = (h,Θ,Θ1, A) ∈ L and h̃ > 0 define Σ̃ := (h̃,Θ, h/h̃Θ1, h/h̃A). Then for all
t ≥ 0 by setting τ = h̃t/h we have

Sτ (Σ̃) = St(Σ) , (27)

and it holds that

ρ(Σ̃) =
h

h̃
ρ(Σ) . (28)

Proof. Introduce the time-transformation t(τ) = (h/h̃)τ . Then given any admissible parameter
variation (t 7→ u(t)) ∈ U(Σ) we see that the discontinuities of τ 7→ u(t(τ)) have a minimal distance
of h̃ and

du(t(τ))

dτ
∈ h

h̃
Θ1 , a.e.

Furthermore for the evolution operator Φu(t, 0) we obtain that

dΦu(t(·))(t(τ), 0)

dτ
=

h

h̃
A(u(t(τ)))Φu(t(·))(t(τ), 0) .

This means that every S ∈ St(Σ) is transformed into an S̃ ∈ Sτ(t)(Σ̃) = Sh̃t/h(Σ̃), and vice versa.

This implies in particular the equality tρt(Σ) = (h̃t/h)ρ(h̃t/h)(Σ̃) and thus

ρ(Σ̃) =
h

h̃
ρ(Σ) ,

as desired.
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Lemma 13. The maps R+ × L → K(Kn×n), R+ × L(∞) → K(Kn×n) defined by

(t, h,Θ,Θ1, A) 7→ St(h,Θ,Θ1, A)

are locally Lipschitz continuous.

Proof. Fix t1 > 0 and compact sets [h0, h1] ⊂ (0,∞), P ⊂ N and Q ⊂ Lip (Km, Kn×n). It is
sufficient to prove the claim for compact sets of the type [0, t1] × [h0, h1] × P × Q. The proof is
based on the bound

H(St(h,Θ,Θ1, A),Sτ (h′,Θ′,Θ′
1, A

′)) ≤
H(St(h,Θ,Θ1, A),Sτ (h,Θ,Θ1, A)) + (29)

H(Sτ (h,Θ,Θ1, A),Sτ (h,Θ′,Θ′
1, A

′)) + H(Sτ (h,Θ′,Θ′
1, A

′),Sτ (h′,Θ′,Θ′
1, A

′)) .

If we can for each term on the right find a Lipschitz constant in the variable that is uniform with
respect to remaining data over our compact set, then we are done.

In order to obtain a simple upper bound on the evolution operators consider any measurable
function

B : [0, t1] →
⋃

(Θ,Θ1)∈P,A∈Q

A(Θ) .

By compactness the set on the right is bounded. Thus there is a constant C such that for any
measurable function B the evolution operator of ẋ(t) = B(t)x(t) is bounded by

‖ΦB(t, 0)‖ ≤ eCt , for all t ∈ [0, t1] , (30)

and so that we also have

‖ΦB(t, 0) − I‖ ≤ (eCt − 1) , for all t ∈ [0, t1] .

With this we obtain an easy uniform bound for the first term in (29), because for any Σ in the
compact set we have

H(St(Σ),Sτ (Σ)) ≤ (eC|τ−t| − 1) .

We now derive the Lipschitz continuity result for the second term in (29). i.e. with the
assumption that h is fixed. Define LQ := max{L(A) | A ∈ Q} and fix t ∈ [0, t1] and Σ =
(h,Θ,Θ1, A),Σ′ = (h,Θ′,Θ′

1, A
′) ∈ [h0, h1]×P×Q. For u ∈ U(Θ,Θ1) we may choose v ∈ U(Θ′,Θ′

1)
such that ‖u(s) − v(s)‖ ≤ H∞((Θ,Θ1), (Θ

′,Θ′
1)) for all s ∈ [0, t], because we may choose v, such

that its discontinuities coincide with those of u. Then using the variation of constants formula we
obtain

‖ΦA◦u(t, 0) − ΦA′◦v(t, 0)‖

=

∥∥∥∥
∫ t

0

ΦA◦u(t, s)[A(u(s)) − A′(v(s))]ΦA′◦v(s, 0)ds

∥∥∥∥

≤ eCt

∫ t

0

‖A(u(s)) − A′(u(s))‖ + ‖A′(u(s)) − A′(v(s))‖ds (31)

≤ teCt(‖A − A′‖∞ + L(A′)H∞((Θ,Θ1), (Θ
′,Θ′

1)))

≤ t1e
Ct1 max{1, LQ}(‖A − A′‖∞ + H∞((Θ,Θ1), (Θ

′,Θ′
1))) .

With this we have found the desired uniform Lipschitz constant. To treat the third expression
in (29), note that by Lemma 12 we have

H(St(h,Θ,Θ1, A),St(h
′,Θ,Θ1, A)) = (32)

H(St(h,Θ,Θ1, A),Sτ (h,Θ, h/h′Θ1, h/h′A)) ,

where τ = h′/ht.
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Assume without loss of generality, that h′ < h, then U(Θ,Θ1) ⊂ U(Θ, h/h′Θ1). To obtain a
converse estimate fix θ0 ∈ Θ and for u ∈ U(Θ, h/h′Θ1) define

v(t) := θ0 +
h′

h
(u(t) − θ0) ,

from which it is obvious that v ∈ U(Θ,Θ1) and

‖u − v‖∞ =

∥∥∥∥
(

1 − h′

h

)
(θ0 − u(·))

∥∥∥∥
∞

≤ diam Θ

h0
|h − h′| .

This implies

H∞((Θ,Θ1), (Θ, h/h′Θ1)) ≤
diam Θ

h0
|h − h′| .

Furthermore, ‖A − h/h′A‖Lip ≤ 1
h0

max{‖A‖Lip | A ∈ Q}|h − h′|.
By the compactness of [h0, h1] and P × Q the previous considerations show that the set

{(Θ, h/h′Θ1, h/h′A) | h, h′ ∈ [h0, h1], (Θ,Θ1) ∈ P,A ∈ Q}
is also compact. Thus from the first steps of this proof, we see that the Hausdorff distance on the
right of (32) may be bounded by C(|t − τ | + H∞((Θ,Θ1), (Θ, h/h′Θ1)) + ‖A − h/h′A‖Lip ), for a
suitable constant C. As we have seen, all the distances in this expression are linearly bounded in
|h − h′| with constants only depending on our compact set. This completes the proof.

Corollary 14. The maps
ρ : L 7→ R , ρ : L(∞) 7→ R ,

are continuous.

Proof. This follows from an application of Corollary 8.1 in [19] using Lemma 13.

We will now study cases in which the growth rate ρ is even a locally Lipschitz continuous
function of the data. This result will be obtained for compact subsets P of L or L(∞), with the
property that each Σ ∈ P satisfies (A1)-(A6) and that furthermore for each Σ ∈ P the set A(Θ)
is irreducible.

Remark 15. (i) Note that the set of systems Σ for which A(Θ) is irreducible is open and dense
in L and in L(∞).

(ii) If A(Θ) is reducible we can find a similarity transformation T such that for all θ ∈ Θ the
tranformed matrix TA (θ) T−1 is of the form




A11 (θ) A12 (θ) . . . A1d (θ)
0 A22 (θ) . . . A2d (θ)

. . .
. . .

...
0 0 Add (θ)


 , (33)

where the sets Aii(Θ) are irreducible or {0}. It is an easy exercise to show, that in this case
ρ (A,U) = maxi=1,...,d ρ (Ai,U), where Ai : θ → K

ni×ni is the map θ 7→ Aii (θ).

Assuming irreducibility we define for the system Σ = (h,Θ,Θ1, A) the norms vω as in (16). We
denote by vω,η the operator norm on K

n×n induced on the linear maps from (Kn, vη) to (Kn, vω).
Given a fixed norm ‖ · ‖ define the constants

c+(ω,Σ) : = max {vω(x) | ‖x‖ = 1} ,

c−(ω,Σ) : = min {vω(x) | ‖x‖ = 1} .

Note that with respect to the operator norms vω,η introduced above we have for arbitrary
B ∈ K

n×n that
c−(ω,Σ)

c+(η,Σ)
vω,η(B) ≤ ‖B‖ ≤ c+(ω,Σ)

c−(η,Σ)
vω,η(B) . (34)
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Lemma 16. Let P ⊂ L (or P ⊂ L(∞)) be a compact set of systems, such that (A1)-(A6) hold
and A(Θ) is irreducible for all Σ ∈ P. Consider a sequence {Σk = (hk,Θk,Θ1k, Ak)}k∈N ⊂ P
with Σk → Σ ∈ P. Let ωk, ζk ∈ Π(Θk, hk) be such that the sequences ωk → ω ∈ Π(Θ, h), ζk → ζ ∈
Π(Θ, h) are convergent. Then for all T > 0 and all ε > 0 it holds that

R≤T (ω, ζ,Σ) ⊂ lim inf
k→∞

R≤T+ε(ωk, ζk,Σk) , (35)

where as usual lim inf of a sequence of sets Ck denotes the set of all existing limits of sequences
{ck ∈ Ck}k∈N, see [3, Chapter 1].

Proof. Consider the limit system (h,Θ,Θ1, A) and let u ∈ U(ω,Σ) generate the transition matrix
S ∈ Rt(ω, ζ,Σ), 0 ≤ t ≤ T . Fix ε > 0 and let k be large enough. By the convergence of Σk → Σ
we may by Lemma 13 construct uk ∈ U(Σk) defined on the interval [0, t+ εk], such that εk → 0 as
k → ∞ and Φuk

(t + εk, 0) → S. As u ∈ U(ω,Σ), it is an easy exercise to see that we may assume
there are ω̃k, ζ̃k such that Φuk

(t + ∃k, 0) ∈ R(ω̃k, ζ̃k,Σk), where ω̃k → ω, ζ̃k → ζ.
Now by construction ‖ω̃k − ωk‖ → 0. By assumption (A4) there are thus times σk → 0 and

Rk ∈ Rσk
(ωk, ω̃k,Σk) generated by parameter variations that are continuous on [0, σk]. By the

same argument there are times τk → 0 and Tk ∈ Rτk
(ζ̃k, ζk,Σk). In all we have TkSkRk ∈

Rt+εk+σk+τk
(ωk, ζk,Σk). By construction Rk, Tk → I and thus TkSkRk → S as desired.

The following property is essential for our results. The point is that a uniform bound for the
constants occurring in (34) can be obtained over P.

Theorem 17. Let P ⊂ L (or P ⊂ L(∞)) be a compact set of systems, such that (A1)-(A6) hold
and A(Θ) is irreducible for all Σ ∈ P. Then there exist constants C−, C+ > 0 such that

C− ≤ c+(ω,Σ)

c−(ζ,Σ)
≤ C+ , for all Σ = (h,Θ,Θ1, A) ∈ P, ω, ζ ∈ Π(Θ, h) .

Proof. We begin by showing the existence of C+. Assume that there exist sequences of the form
{Σk = (hk,Θk,Θ1k, Ak)}k∈N

⊂ P, {ωk, ζk ∈ Π(Θk, hk)}k∈N
, such that

c+(ωk,Σk)

c−(ζk,Σk)
→ ∞ .

Without loss of generality we may assume that Σk → Σ = (h,Θ,Θ1, A) ∈ P, ωk → ω ∈ Π(Θ, h)
and ζk → ζ ∈ Π(Θ, h). For all k ∈ N choose Sk ∈ S∞(ωk,Σk) such that ‖Sk‖ = c+(ωk,Σk) and

define S̃k := Sk/ ‖Sk‖. Then we may assume that S̃k → S̃,
∥∥∥S̃

∥∥∥ = 1. Let ε > 0 and T > 0 be the

constants for R(ζ, ω,Σ) guaranteed by Corollary 4 (with respect to the semigroup R(ω, ω,Σ)).
Fix an arbitrary x0 ∈ K

n, ‖x0‖ = 1. Then by convergence and Lemma 16 for all k large enough
there exists an Rk ∈ Rtk

(ζk, ωk,Σk) with tk ≤ T + ε such that
∥∥∥S̃Rkx0

∥∥∥ ≥ ε

2
.

Define Tk := exp(−ρ(Σk)tk)SkRk ∈ S∞(ζk,Σk). Then we obtain

vζk
(x0) ≥ ‖Tkx0‖ =

‖Sk‖
exp(ρ(Σk)tk)

∥∥∥S̃kRkx0

∥∥∥ ≥

‖Sk‖
exp(ρ(Σk)tk)

(∥∥∥S̃Rkx0

∥∥∥ −
∥∥∥S̃ − S̃k

∥∥∥ ‖Rkx0‖
)

.

Thus for all k large enough we have

c+(ωk,Σk)

vζk
(x0)

≤ exp(ρ(Σk)tk)
(∥∥∥S̃Rkx0

∥∥∥ −
∥∥∥S̃ − S̃k

∥∥∥ ‖Rkx0‖
)−1

≤ exp(ρ(Σk)tk)
4

ε
.
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Where we have used that the sequence {Rk}k∈N
is bounded, so that the last term on the right

converges to zero by construction. This completes the proof, because tk ≤ T + ε and ρ(Σk) is
bounded by compactness of P.

The proof for the existence of C− follows the same lines.

The previous statement allows for a conclusion on the Lipschitz continuity of ρ(Σ) as in the
case of linear inclusions studied in [16].

Theorem 18. Let P ⊂ L (or P ⊂ L(∞)) be a compact set of systems, such that (A1)-(A6) hold
and A(Θ) is irreducible for all Σ ∈ P. Then there exists a constant C such that

|ρ (Σ1) − ρ (Σ2)| ≤ Cd (Σ1,Σ2) , ∀ (Σ1,Σ2) ∈ P .

In particular, the map Σ → ρ(Σ) is locally Lipschitz continuous on the spaces of irreducible systems
given by {Σ ∈ L | A(Θ) is irreducible } and {Σ ∈ L(∞) | A(Θ) is irreducible }.

Proof. Let LP := max{L(A) | (h,Θ,Θ1, A) ∈ P}. Let Σ1,Σ2 ∈ P and pick u ∈ U(Σ1). Assume
for the moment that the dwell times h1, h2 of Σ1 and Σ2 coincide and let h := h1 = h2. By the
argument in (31) there exists a w ∈ U2 such that

‖A1 (u (·)) − A2 (w (·))‖∞ ≤ max{1, LP}d (Σ1,Σ2) .

Denote the evolution operator corresponding to A1 (u (·)) by Φ (t, s) and the one corresponding to
A2 (w (·)) by Ψ (t, s). For t ≥ 0 denote ζ(t) := (w(t−), τ−(w, t)) and let vζ(t) be the parameterized
Lyapunov function with respect to Σ2 defined in (18). Furthermore denote by vζ(t),ζ(s) the operator
norms induced by the parameterized Lyapunov functions vζ(t), vζ(s). Note that by a standard
property of induced norms it holds for 0 ≤ r ≤ s ≤ t that vζ(r),ζ(t)(TR) ≤ vζ(s),ζ(t)(T )vζ(r),ζ(s)(R).
Then we have for t = k ∈ N that

vζ(0),ζ(k)(Φ(k, 0)) ≤ vζ(0),ζ(k)(Ψ(k, k − 1)Φ(k − 1, 0))

+vζ(0),ζ(k) ((Φ(k, k − 1) − Ψ(k, k − 1))Φ(k − 1, 0))

≤
[
eρ(Σ2) + C ‖Φ(k, k − 1)−Ψ(k, k − 1)‖

]
vζ(0),ζ(k−1)(Φ(k − 1, 0))

where C is a constant independent of Σ ∈ P. Here we have used (18) to obtain the bound on the
first term. The constant C exists by (34) and Theorem 17. Furthermore, using (31) we obtain a
bound for the difference ‖Φ(k, k − 1) − Ψ(k, k − 1)‖ in terms of d (Σ1,Σ2) so that for a suitable
constant C2 we obtain the inequality

vζ(0),ζ(k)(Φ(k, 0)) ≤
[
eρ(Σ2) + CC2d (Σ1,Σ2)

]
vζ(0),ζ(k−1)(Φ(k − 1, 0)) ,

which implies by induction and another application of Theorem 17 that for all k ∈ N we have

‖Φ(k, 0)‖ ≤ C3vζ(0),ζ(k)(Φ(k, 0)) ≤ C3

[
eρ(Σ2) + CC2d (Σ1,Σ2)

]k

.

Now the operators Φ(t, 0), t 6= k are only small perturbations of some Φ(k, 0); the constants
C,C2, C3 were chosen independently of Σ1,Σ2 ∈ P and u ∈ U1 was arbitrary. This shows that for
all t ≥ 0 and suitable constants C4, C5 we have

ρt(Σ1) ≤
log C4

t
+ ρ(Σ2) + C5d (Σ1,Σ2) .

Hence
ρ(Σ1) ≤ ρ(Σ2) + C5d(Σ1,Σ2) .

By symmetry we obtain
|ρ(Σ1) − ρ(Σ2)| ≤ C5d(Σ1Σ2) .
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This completes the proof for the case of common dwell time h.
To consider arbitrary dwell time note that for Σ1 = (h,Θ,Θ1, A), Σ2 = (h′,Θ′,Θ′

1, A
′) we have

by Lemma 12 that

|ρ(Σ1) − ρ(Σ2)| =

∣∣∣∣ρ(Σ1) −
h

h′
ρ(h,Θ′, h′/hΘ′

1, h
′/hA′))

∣∣∣∣

≤ |ρ(Σ1) − ρ(h,Θ′, h′/hΘ′
1, h

′/hA′))| + max{ρ(Σ) | Σ ∈ P}
min{h | (h,Θ,Θ1, A) ∈ P}|h − h′| .

The desired Lipschitz constant now follows by applying the first part of the proof to the first term
on the right hand side.

Finally, let us point out that from Theorem 17 we can conclude locally uniform convergence
of ρt with a linear convergence rate on the set of irreducible systems.

Corollary 19. Let P ⊂ L (or P ⊂ L(∞)) be a compact set of systems, such that (A1)-(A6) hold
and A(Θ) is irreducible for all Σ ∈ P. Then there exists a constant C > 0 such that for all t ≥ 1
and all Σ ∈ P it holds that

|ρt(Σ) − ρ(Σ)| < Ct−1 .

Proof. Let Σ ∈ P and t ≥ 0 be arbitrary. Now choose ω, ζ ∈ Π(Θ, h) and St ∈ Rt(ω, ζ,Σ) such
that ‖St‖1/t = ρt(Σ). Then we have by Proposition 5 that vω,ζ(St) ≤ eρ(Σ)t. Let C > 0 be the
constant for P given by Theorem 17 and we obtain for t > 0 that

0 ≤ 1

t
log sup

S∈St(Σ)

‖S‖ − ρ(Σ) ≤ 1

t
log Cvω,ζ(St) − ρ(Σ) ≤ 1

t
log C . (36)

This proves the assertion.

7 Conclusions

In this paper we have shown some continuity properties of a fairly general class of families of time-
varying systems, that encompasses linear parameter-varying and linear switching systems. The
main results were that of global continuity of the exponential growth rate obtained in Corollary 14
on the one hand and Theorem 17 showing local Lipschitz continuity on the space of irreducible
systems; a set that is open and dense in the space of all systems.

A remaining open question concerns continuity properties of the exponential growth rate on
the set L ∪ L(∞), which has been avoided in this paper. In fact, this question is part of a larger
question dealing with the behavior of the growth rate, as h → 0, or h → ∞ and also as Θ1 → {0}
or Θ1 → K

m. This is a classical question in the area of linear time-varying systems. For the class
of systems presented here, this limiting question is the subject of ongoing investigations. Partial
results have been obtained in [17].
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