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Abstract

Controllability properties of the inverse power method on projective space are
investigated. For complex eigenvalue shifts a simple characterization of the reach-
able sets in terms of invariant subspaces can be obtained. The real case is more
complicated and is investigated in this paper. Necessary and sufficient conditions for
complete controllability are obtained in terms of the solvability of a matrix equation.
Partial results on conditions for the solvability of this matrix equation are given.
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1 Introduction

Numerical matrix eigenvalue methods such as the QR algorithm or inverse power iterations
provide interesting examples of nonlinear discrete dynamical systems defined on Lie groups
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or homogeneous spaces. A typical approach from numerical linear algebra to improve
convergence properties of such algorithms is to introduce suitable shift strategies for the
eigenvalues. We refer to [2, 3, 5] for papers studying the shifted inverse iteration. In
particular, the case of complex shifts is studied in [8].

Such eigenvalue shifts can be viewed as control variables and the resulting algorithms can
therefore be analyzed using tools from nonlinear control theory. So far the analysis and
design of shift strategies in numerical eigenvalue algorithms has been more a kind of an
art rather than being guided by systematic design principles. The situation here is quite
similar to that of control theory in the 50’s before the introduction of state space methods.
The advance made during the past two decades in nonlinear control theory indicates that
the time may now be ripe for a more systematic investigation of control theoretic aspects
of numerical linear algebra.

In this paper we investigate the controllability properties of the well known inverse power
iterations for finding the dominant eigenvector of a matrix using real shifts. Shifted
versions of the inverse power method lead to nonlinear control systems on projective
space, or more generally on Grassmann manifolds. The complex case has been studied in
[4].

Let A denote a real n X n-matrix with spectrum o(A) C C. The shifted inverse iteration
in its controlled form is given by

(A —wu D) ta(t)
(A —uel )= 2 (t)]]

z(t+1) = teN, (1)
where u; ¢ o(A). This describes a nonlinear control system on the (n — 1)-sphere. The
trajectory corresponding to a normalized initial condition zy and a control sequence u =
(uog, uy,...) is denoted by ¢(t; zg,u). Via the choice u; = 2*(1)Az(t) we obtain from (1)
the Rayleigh quotient iteration studied in [2], [3]. Thus the Rayleigh iteration may be
interpreted as a feedback strateqy for the shifted inverse iteration. It is known that in some
cases this feedback strategy has undesirable properties, in particular if it is applied to non-
Hermitian matrices A [3]. It is the aim of this paper to start a systematic control theoretic
investigation of this system class in the hope that this leads to a better understanding of
the question when the Rayleigh iteration fails.

In Section 2 we will introduce the shifted inverse power iteration and the associated system
on projective space and discuss its forward accessibility properties. In particular there is
an easy characterization of the set of universally regular control sequences, that is those
sequences with the property, that they steer every point into the interior of its forward
orbit. This will be used in Section 3 to give a characterization of complete controllability
of the system on projective space in terms of solvability of a matrix equation. In Section 4
we investigate the obtained characterization and interpret it in terms of the characteristic
polynomial of A. Some concrete cases in which it is possible to decide based on spectral
information whether a matrix leads to complete controllable shifted inverse iteration are
presented in Section 5. In Section 6 we discuss the obtained result and present some open
problems.



2 The shifted inverse iteration on projective space

We will first motivate the state space on which the analysis will be performed. Given
A € R™™ it is easy to see that if the initial condition zg for system (1) lies in an invariant
subspace of A then the same holds true for the entire trajectory &(t; xg, u), regardless of
the control sequence u. In order to understand the controllability properties from zq it
would then suffice to study the system in the corresponding invariant subspace. Therefore
we may restrict our attention to those points not lying in a nontrivial invariant subspace
of A, i.e. those z € R” such that {z, Az,..., A" 'z} is a basis of R”. Vectors with this
property are called cyclic and a matrix A is called cyclic if it has a cyclic vector. In the
following we assume that A is cyclic. To keep notation short let us introduce the union
of A-invariant subspaces

V(A) = U V.

AV CV,0<dimV <n

Using the fact that the interesting dynamics of (1) are on the unit sphere and identifying
opposite points (which give no further information) we then define our state space of
interest to be

M = RP™"\ V(A), 2)

where RP*™! denotes the real projective space of dimension n — 1. The natural projection
from R™\ {0} to RP"~! will be denoted by P. Thus M consists of the 1-dimensional linear
subspaces of R™, defined by the cyclic vectors of A. Since a cyclic matrix has only a finite
number of invariant subspaces, V(A) is a closed algebraic subset of R™. Moreover, M is
an open and dense subset of RFP"™'. The system on M is now given by

Et+1) = (A—wl)'¢(t), teN (3)
£(0> - 50 S M?

where u; € U := R\ 0(A) (the set of admissible control values). We denote the space of
finite and infinite admissible control sequences by U* and U", respectively. The solution
of (3) corresponding to the initial value & and a control sequence u € U™ is denoted by
©(t; &, u). The forward orbit of a point £ € M is then given by

Ot (&) :={ne M |3t eNuecU such that n = (¢;&,u)}.

Similarly, the set of points reachable exactly in time ¢ is denoted by OF (£). System (3)
is called forward accessible [1], if the forward orbit OF(€) of every point ¢ € RP*™' has
nonempty interior and uniformly forward accessible (in time t) if there is a t € N such
that int OF (€) # 0 for all £ € M. Note that int OF(¢) # @ holds iff there is a ¢ € N such
that int OFf (€) # (). Sard’s theorem implies then the existence of a control u € U’ such
that

do(t; €, u)
rk 78u

=n-—1.



A pair (€,u) € M x U is called regular if this rank condition holds. The control sequence
u € U'is called wuniversally regular if (£,u) is a regular pair for every £ € M. By
[7, Corollaries 3.2 & 3.3] forward accessibility is equivalent to the fact that the set of
universally regular control sequences Uy _, is open and dense in U’ for all ¢ large enough.
(For a precise statement we refer to [7].)

Remark 2.1 The following statements hold for arbitrary nonlinear discrete-time systems
z(t+ 1) = f(x(t),u(t)) having the property that the partial maps f(-,u) are diffeomor-
phisms of the state space.

a) If u' € U" is universally regular, the for any u” € U the concatenated sequence (u/,u")
is universally regular. This follows from an application of the chain rule, because

aﬂ‘o(t;maio _ d . " ’ d . "
T ou" ox (p(t;z,u"),u )au”tp(t,x,u ) (4)

and in particular that the ranks of the Jacobians with respect to u coincide, as f is a
diffeomorphism. This of course extends to the concatenation of further elements.
b) If u = (ug, ... ,us—1) is universally regular then the reversed sequence given by @ :=
(Wimiy ..y ug) is unlversaﬂy regular for the time-reversed system x(1+1) = f~'(z (1), u(t)).
This follows from

9, R 0 . 0 N,
0= Sop(=tip(tiz,u), @) = gop(=t2(t), @) + 5op(=t2(t), @) 5ol 7, ).

Thus (%go(—t; ;v(t), ﬂ))_] %gp(—t; ;v(t), ﬂ) = —%g@(t; T, u) and using the fact that go(t; . u)

is a diffeomorphism, we see that the ranks of the Jacobians with respect to u coincide.

The following result shows forward accessibility for (3).

Lemma 2.2 System (3) is uniformly forward accessible in time n—1. A control sequence
u € U is universally reqular if and only if there are n — 1 pairwise different values in the
SEQUENCE Ug,y .+« 5 Ut_1-

Proof. The first claim is a consequence of the second, as we will show the existence of
universally regular control sequences in U"~!. By Remark 2.1 (ii) it suffices to prove the
assertion for the time-reversed system

§+1) = (A —ud){(t), (5)

which we will examine from now on. Starting with the initial condition 2y € R” and
given u € U™~ we have that

2

3
|

O(n—1,u)zy = (A —usl) g (6)
s=0
n—2 n—2
= A" ZusA"_2 +.. 4+ (—1)”_1 H u5[> To
s=0 s=0



As in Proposition 3.6 of [9] we may see that (£, u) is a regular pair for (5) iff the following
rank condition is satisfied for z € R"™\ {0} projecting to ¢:

)
tk [O(n —1u)z: —®(n —Lu)z| =n. (7)
FO0u
As z is cyclic vector we may analyze the system with respect to the basis (eq,... ,€,) :=
(o, Azg,... , A" 'x¢). In these coordinates we have from (6) that

n—1
O(n—1,u)er = e, + Z(—l)jaj(uo, ey Up—2)€E;
7=1

where o;(ug, ... ,u,_3) denotes the j-th elementary symmetric polynomial of the matrix
diag(ug, ... ,Us—z). Inserting this expression into (7), we have to check the rank of the

following matrix for regularity of the pair (Pxzq, u)

(=)t H?I;EO Us e (=)t H?f;én—] i
Zi;ﬁo Uy Ei;ﬁl Uy v Zi;én—l Uy ’

-1 -1 -1
0 0 0

— % ¥ ¥

and therefore it suffices to calculate the determinant of the upper right (n — 1) x (n —
1)-block to check, whether the rank of this matrix is n. By a well-known property of
elementary polynomials, this block is known to be invertible, if and only if ug,... , u,_
are pairwise distinct. Alternatively, an induction argument shows that

(—=1)" " o wi e (=1 Loy wi

det : : = 1] [ —u;l #0,
Zi;ﬁo Ui Zi;ﬁl Ui -ee Zi;én—l Ui g

—1 —1 —1

if and only if ug, ... ,u,_, are pairwise distinct. Thus (§,u) € M x U™ is a regular pair
iff the entries u; are pairwise different and regardless of £. This shows the assertion for
sequences of length n — 1.

(Clearly for dimensionality reasons sequences of length less than n—1 cannot be universally
regular. Let u € U', ¢t > n—1, be a sequence with at least n—1 pairwise different elements.
By commutativity the rank of the Jacobian ;—uap(t; ¢, u) does not change if we reorder the
entries of u. Thus let v = (u',u") with v’ € U™ consisting of n — 1 distinct entries.
Since each ug is not an eigenvalue of A we see that A — us/ is an isomorphism of M and
therefore the result follows from Remark 2.1 (i).

To conclude the proof consider the case when u € U, ¢ > n—1 has less than n —1 distinct
elements. Using again the characterization (7), after an appropriate reordering, we have
to consider expressions of the form



where [ > 0,us € U and 0 < & < n — 1. It is easy to see that

rka%(A —ul)lz =1,
for all z € R™\ {0} and all [ > 0. Then the assertion follows from an application of the
chain rule. O

3 Controllability of the projected system

By the results of the previous section we know that every point in M has a forward
orbit with interior points and it is reasonable to wonder about controllability properties
of system (3). As usual, we will call a point £ € M controllable to n € M if n € O ().
System (3) is said to be completely controllable on a subset N C M if for all £ € N we
have N C O*(¢).

In order to analyze the controllability properties of (3) we introduce the following defi-
nition of what can be thought of as regions of approximate controllability in RP*™'. A
control set of system (3) is a set D C M satisfying

(i) D C clO*(¢) for all £ € D,
(i) For every ¢ € D there exists a u € U such that ¢(1;2,u) € D.
(iii) D is a maximal set (with respect to inclusion) satisfying (i).
An important subset of a control set D is its core defined by
core(D) == {6 €D | intO (§) N D £ 0 and int O (&) N D £ 0}

Here @_(f) denotes the points 7 € RP"™' such that there exist t € N, ug € int U* such
that ¢(t;n,u0) = € and (7, uo) is a regular pair. By this assumption it is evident that on
the core of a control set the system is completely controllable.

We are now in a position to state our first result characterizing controllability of (3).

Theorem 3.1 Let A € R™" be cyclic. Consider the system (3) on M. The following

statements are equivalent:
(i) There exists a € € M such that OF(£) is dense in M.
(it) There exists a control set D C M with int D # (.
(iit) M is a conlrol set of system (3).
(tv) System (3) is completely controllable on M.
(v) There exists a universally regular control sequence u € U such that

t—1

[[(A-uw.n)t erI. (8)

s=0



Proof. The implications (iv) = (iii), (iii) = (ii), (iii) = (i) are obvious.

“(v) = (iii)” As (8) is a representation of a multiple of the identity any £ € M satisfies
£ = ¢(t; €, u) and therefore £ is a periodic point under a universally regular control. This
implies that every £ € M is an element in the core of a control set, [10, Prop. 13]. Thus
by [10, Prop. 10] every connected component of M is contained in the core of a control
set and it remains to show that it is possible to steer from any connected component of
M into any other. Then it follows from maximality of control sets that M is a control
set.

We have to show that for every two connected components 7y, Zy C M there exist & €
Zi;1=1,2 and a control u € U’ such that & = ¢(¢; &1, u). Note that different connected
components of M are separated by the n — 1-dimensional A-invariant subspaces. Let the
(real) Jordan form of A be given by

» diag(J(M), ..., J(\g)) 0
rar= < (IO O0) 0

where the J();) are Jordan blocks to real eigenvalues Ay > Ay > ... > XAy and B has
only complex eigenvalues. For 1 = 1,... ,k let ¢, denote the unit cyclic vector of J(X;),
then the n — 1-dimensional A-invariant subspaces are given exactly by the sets T~z €
R™ | z;, = 0},i = 1,... ,k. The connected components of M can then be described by
index sets I, where I C {1,... ,k}, and are of the form

Z(I):=P{e € R"\V(A) |2; >0, € L,a;<0,j¢I}.

(Note that by multiplication by —1 there are now for each connected component two
representations of the above kind. But this is irrelevant for our purposes.) For a control
value A; > u > A;41 it is obvious that (A; —u)™! is positive if 1 < j and negative otherwise.
Hence the connected component given by an index set 7 is mapped by (A —ul)~! onto the
connected component given by the index sets I, where [ = {iel|i<jtu{ig¢l|i>7}.
If we are now given two connected components with index sets I, I let j be the smallest
index for which the sets differ, i.e. [yN{1,...,7—1}=1I1,N{l,...,7—1} and j belongs
either to I; or to I. If we choose A\; > u > A1y and £ € Iy then (A — ul)~'¢ belongs
to a connected component I’ satisfying I'N{1,... ,j} = IL,N{l,...,j}, because by the
previously explained rule I’ coincides with [y (and thus with ;) for the indices below j
and does not coincide with /4 (and thus with ;) as regards the index j. We have thus
steered into a connected component whose index set coincides with the one of I, in at
least one more index and it follows that after a finite number of such steps we can steer
into the index set I5.

“(ii) = (v)” Let D C M be a control set. By Theorem 15 in [10] for every open set
W C core(D) there exist £ € W, t € N and u € U/, such that £ = ¢(t; &, u). Choose W

reg

such that for all n € W the representation n = P  a;z; in terms of a basis given by

(generalized) eigenvectors of A implies a; # 0,7 = 1,... ,n. For such an 1 we now have a
representation
t—1
n= H(A —us)7 .
=0



That is in the basis {z1,... ,x,} (with an associated change of basis T') we have

t—1
o= CH(TAT_] —us) e,
5=0
for a suitable constant ¢ # 0 and a = (e4,...,,). In particular, for each Jordan block

J(A) of A corresponding to the indices 7y 1,... ,7 k(n) it holds that

Qi t—1 Qiy t—1 Qiy
=c[[(J(N) —u. )™ : =c[[J(A —u.)™
Q45 k(N $=0 Q45 k(N $=0 Q45 k(N
An easy calculation shows that this implies CHZ;B(](A) — usl)™" = I independent of
A€ o(A).

“(i) = (i1)” Let £ € M be such that O%(¢) is dense in M, then also the set of points
that can be reached from ¢ applying universally regular controls is dense in M. Because

of forward accessibility and invertibility of the system also @_(f) has nonempty interior
[1]. Thus we can steer with a universally regular control from ¢ into its backward orbit
and then back to . The concatenation of these controls is also universally regular by
Remark 2.1 (i). Thus £ is a periodic point under a universally regular control and therefore
contained in the interior of a control set by [10, Prop. 13].

“(iii) = (iv)” The assumption implies that O%(¢) is dense in M for any ¢ € M. Now we
can simply apply the argument of the previous part to any two points £, € M to show
that it is possible to steer from ¢ to 7. O
The unusual fact about the system we are studying is thus that by the universally regular
representation of one element of the system’s semigroup we can immediately conclude
that the system is completely controllable. Furthermore, already the fact that there is a
control set of the system implies complete controllability on the whole state space M. On
the other hand it is worth pointing out, that if the conditions of the above theorem are
not met, then no forward orbit of (3) is dense in M.

For brevity we will call a cyclic matrix A II-controllable (for inverse iteration controllable),
if A satisfies any of the equivalent conditions of Theorem 3.1.

We will reformulate the results of the previous theorem in terms of companion matrices
as this will be the necessary tool for analysis of the interpretation of this controllability
result in terms of the characteristic polynomial of A in the ensuing section. Recall that if
A is cyclic, then it is similar to the companion matrix

O 0 0 ... 0 g
1 0 ... 0 o
0 1 0 ... 0 (0%
Oy = . .
0 O 1 0 au_y
i 0 0 0 1 o, |




n—1

associated with its characteristic polynomial g4(z) = 2" =3 "~ a;z*. Thus via coordinate

transformation we obtain from (1) the equivalent system

(Ca —uD)™ (1)

t+1) = , €N, 9
R (PR R Y

and from (3) the projected system
Et4+1) = (Ca—ud)7'é(t), teN (10)

£0) = &eM,

where u; € U as before, and M = RP! \ V(Ca).
This representation is closely linked to the polynomial models introduced by Fuhrmann,
see e.g. [6]. Let X, := R[z]/qaR[z] with the associated vector space isomorphism

n—1
R"—X,, z~ ijzjmoqu.

j=0
On X, we consider the linear operator 5, given by
Sy(p) = zp mod g4 .
With these definitions it is known that the following diagram commutes

R™ R™

(11)

SRS

} }
XQ Xq

Thus (9) is equivalent to the associated system on the polynomial model space X,. In
order to keep track of the invariant subspaces of our linear operators let us point out that
the invariant subspaces of the operator S, in X, are simply the spaces of polynomials
which have a fixed common divisor with the characteristic polynomial ¢4. This may be
seen by noting that if 2 is a common divisor of p and g4 then from

2p(2) = 54(p)(2) + qa(2)r(2)

it follows that h is also a factor of S,(p), see [4] for details.
We have another simple characterization of II-controllability in terms of the existence of a
universally regular periodic orbit through the first unit vector of the system in companion
form. This may come as a surprise. It is helpful to remember here, that by construction
e 1s a cyclic vector for C'y, the matrix in companion form.

Corollary 3.2 Let A € R™ ™ be cyclic with characteristic polynomial q4. Consider the
system (3) on M. The following statements are equivalent:

(z) the matriz A is Il-controllable.



(it) M is a control set of system (10).

(iii) There exist t € N, u € Ul such that Pe; is a periodic point for system (10)

reg
under the control sequence u.

Proof. The equivalence of (i) and (ii) is obvious by similarity transformation and Theo-
rem 3.1. In order to see that assertion (i) implies (iii) it is sufficient to apply (8). So we
now have to prove that (iii) implies the existence of a universally regular control sequence
u such that (8) is satisfied. By (11) we have for every u € U’ the following commutative
diagram

R” [TiZ6(Ca—us 1)} R™

—
! ) (12)
—
X mzismwn X

q

Thus using the universally regular u satisfying (iii) the following diagram commutes

t—1 -1
1O —us t—1 1
€1 ITo=ol - ) [[—o(Ca —usl) ey = ey

} + (13)

1 - ol

120 (z=us) 7

The lower row of this diagram implies

t—1
H(z —us)”" = almod g4,
s=0
and insertion of (4 yields
t—1
H(CA —u, [)™' = al +r(A)g(A)=al .
s=0
Now (8) follows via similarity of A and Cjy. O

4 Polynomial characterizations of II-controllability

As has already become evident in the last result of the previous section the question of
[T-controllability is closely linked to properties of real polynomials. We will now further
investigate this relationship. Here we follow the ideas for the complex case in [4] and
derive comparable results for the real case.

In the following theorem we use the notation p A ¢ = 1 to denote the fact that the two
polynomials p, g € R[z] are coprime.

Theorem 4.1 Let A € R™™™ be cyclic with characteristic polynomial q. Consider the
system (3) on M. The following statements are equivalent:

10



(Z) the matriz A is Il-controllable.

(ii) For every B € Ty := {p(A) | p € R[z],pA g = 1} there exist t € N, w € U]_,,
a € R* such that

o~
|
—

B=a||(A=u),

S

Il
=]

t=1
de. Ta=T% :={p(A) | p(z) = a [[(2 —us),us ER,pAg=1,a € R*} .
s=0

(iii) For every p € R[z],pA ¢ =1 there exist t € N, uw € U!,,, a € R* such that

reg’
t—1

p(z) = aH(z — ug) mod ¢(z).

s=0

(iv) There exists a monic polynomial f with only real roots and at least n—1 pairwise
different roots, o € R* and r(z) € Rlz] such that

f(2) = a+r(2)q(2). (14)

Remark 4.2 From (14) it is easy to deduce the following statement: If for a cyclic matrix
A with characteristic polynomial ¢ there exists a monic polynomial f with only real roots
that are all pairwise distinct such that (14) is satisfied, then there is a neighborhood of A
consisting of IT-controllable matrices. The reason for this is that, keeping o and r(z) fixed,
small changes in the coefficients of ¢ will only lead to small changes in the coefficients
of f, and the assumption guarantees that all polynomials in a neighborhood of f have
simple real roots.

Proof. By Theorem 3.1 the Il-controllability of A is equivalent to the existence of a
universally regular control sequence u such that HZ;B(A — usI)™' € R*I which implies
HZ;B(A — us) = al for some @ # 0. It is an immediate consequence of the Cayley-
Hamilton theorem that this is equivalent to (iv). Likewise the equivalence of (ii) and
(iii) follows from Cayley-Hamilton. The assertion (iv) is a special case of (iii) for the
polynomial p(z) = a so that we have to show that (iv) implies (iii). By Corollary 3.2
assumption (iv) implies that the system in companion form has M as a control set. As
system (10) is forward accessible it follows in particular that Core(M) = M. Hence, for

every © € R™\ V(Cj) there exist a ¢t € N and a universally regular u € U" such that

t—1

H(CA —us[)7'r = ae

5=0
for some a # 0. Using again the commutative diagram (12) and the remark that the
invariant subspaces of S, are given by polynomials which have a common factor with g,
this implies that for every p € X,,p A ¢ =1 there is u € U}, such that

reg
t—1

p(z) = O/H(Z — ug)l modg(z).
s=0

11



This completes the proof. d
As an immediate consequence of Theorem 3.1 we obtain a complete characterization of
the reachable sets of the inverse power iteration given by

E(t+1)=(A—- ut[)_lf(t), teN, £(0) =& € RP*, (15)
for TI-controllable matrices A € R™™ ™. This extends a result in [4] for real matrices.

Corollary 4.3 Let A be Il-controllable with characteristic polynomial q4, then
(i) for each ¢ = Pz € RP*™" we have

oty =P () VN U V,

CEV,AVCY s @V,AVCV
Ot = P ﬂ V = Pspan{z, Az, A%z,... A" 'z},
2EV,AVCY

(it) There is a one-to-one correspondence belween

a) The forward orbils of system (15).
b) The closures of the forward orbils of system (15).
¢) The A-invariant subspaces of R™.

d) The factors of qa(z) over the polynomial ring R|z].

Proof. (i) For = # 0 let W, := span{z, Az, A%z,... A" 'z} denote the A-invariant
subspace generated by . By construction this subspace is invariant under (A —ul)™! so
that it follows that for ¢ = Pz we have Ot () C PW, =P ﬂer’AVcV V. As Ais cyclicso is
the restriction of A to the A-invariant subspace W, which we denote by A,. Furthermore,
A, is Tl-controllable because the existence of a universally regular representation of a
multiple of the identity as in (8) is an immediate consequence of the II-controllability of
A. This shows that the orbit of z is the set M of cyclic vectors of A, by Theorem 3.1
which is equivalent to OT(¢) = PW, \ ngzV,AVcV V', which shows the assertion. The
statement about the closure ¢l OF(€) is an immediate consequence.

(ii) Given an A-invariant subspace V we see from (i) that PV is the closure of the forward
orbit for all ¢ = Px such that = generates V. For such ¢ = Pz the forward orbit is PV
without the projection of the A-invariant subspaces contained in V' but not containing .
Also this characterization is independent of the generating element x of V. This shows the
one-to-one correspondence between the orbits, their closures and A-invariant subspaces
of R”. On the other hand the relation between the A-invariant subspaces and the factors
of ga over R[z] is well known, see [4]. O

5 Conditions for II controllability

The result of the previous section raises the question for which cyclic matrices A admit a
representation of the form (8) or equivalently when (14) is possible. With respect to this
question we have the following preliminary results.

12



Proposition 5.1 Let A € R™*" be cyclic with characteristic polynomial q4.
(1) A is not Il-controllable, if it salisfies one of the following conditions

(a) A has a nonreal eigenvalue of mulliplicity p > 1.
(b) A has a real eigenvalue of multiplicity p > 2.

(it) A is I-controllable, if o(A) C R and no eigenvalue has multiplicity p > 2.

Proof. (i) (a) This is an immediate consequence of (14). Differentiating this equality
we obtain

f'(2) = r'(2)qa(2) + r(2)d4(2) - (16)

If g4 has multiple roots with nonzero imaginary part, the previous equation implies that
these are roots of f’. This implies that f does not have only real roots as the roots of f’
are contained in the convex hull of the roots of f.

(i) (b) If a polynomial p has only real roots then it is easy to see that all the roots of p’
that are not roots of p are simple and real. From (16) we see that real eigenvalues of A
of multiplicity greater than two are at least double roots of f’. Also, by construction of
f they are not roots of f, which yields a contradiction.

(i) Let A := {Ay, ..., Ay} be the set of simple eigenvalues and p; < ... < g be the double
eigenvalues of A. If ¢/{(p;) has the same sign for j = 1,... ,/, then for some o > 0 small
enough one of the polynomials

atqa(z), —a+qa(z)

has only real roots, all of which are distinct and we are done. Otherwise, suppose ¢4 (p;) >
Oforj=1,...,50—1and ¢;(p;,) < 0. Choose pj,—1 < ¢ < pj,, ¢ ¢ A, then the polynomial

91(2) i= (¢ = 2)qa(z)

has the same set of double roots as g4 and we have ¢{(u;) = (¢ — p;)g'i(p;). From
the choice of ¢ it follows that ¢{(u;) > 0 for 5 = 1,...,jo and we see that after the
multiplication of g4 with a finite number ¢ of factors of the form ¢; — z we obtain a
polynomial where all double roots are local minima. Hence the polynomial

t—

o+ qA(z) H(cs — z)

s=0

—

has only simple real roots for all a > 0 small enough. O
We state the following lemma, which despite its triviality provides a way to construct
further cases in which representations of the form (14) do not exist.
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Lemma 5.2 Let A € R™*" be arbitrary.

(i) If for two eigenvalues Ay, Ay € o(A) and all uw € R we have
|/\1—u| < |/\2—u|,

then A does not satisfy (8) for any t € N and any sequence (ug,...,u—y) € U'. In
particular, if A is cyclic then A is not Il-controllable.

(it) If A is cyclic and the spectrum o(A) is symmetric with respect to rotation by
a root of unity, i.e. o(A) = exp(2mi/m)o(A) (laking into account multiplicilies),
then the existence of a representation of the form (14) implies that there exists a
universally reqular control sequence u € U such that

t—1

[[(A™ —up) e R7T. (17)

s=0

Proof. (i) Assuming (8) is satisfied for v € U' we have al = HZ;B(A—USI>. In particular,
this_limplies a = H;;f()\l —ug) = Hi;é(/\z — uy). However, the assumption implies that
ITZ M — us| < Iy |A2 — us, a contradiction.

(ii) Again we assume that a polynomial f(z) = []'Zl(z — us) satisfying (14) exists, then
for each A € o(A) we have

t—1
7Oy = [T =) = o (13)
s=0
Multiplication with exp(k2mi/m)" (the k-th root of unity of order m raised to the t) yields
t—1
H(exp(k?rri/m))\ — exp(k2mi/m)us) = exp(k2mi/m)'a,
5=0

for all A € o(A). As 0(A) = exp(k2mi/m)o(A) by assumption this implies that

-1
H()\ — exp(k2mi/m)us) = exp(k2mi/m)'a,
5=0
for all A € o(A), k = 1,... ,m. Multiplying these equations for & = 1,...,m we obtain
that
t—1 t—=1 m m
H(/\m —ul') = H H()\ — exp(k2mi/m)u,) = Hexp(k?wi/m)toz,
s=0 s=0 k=1 k=1

m+1_m

and the expression on the right hand side is equal to (=1)"*'a™. For the case m > 2
the TI-controllability of A implies that all nonreal eigenvalues of A are simple by Propo-
sition 5.1 (i). Then the real eigenvalues of A are also simple by the assumed symmetry.

14



Hence all the eigenvalues of A™ have algebraic and geometric multiplicity equal to m
and the above calculation shows that the polynomial HZ;B(Z — u”) evaluated in A™ is a
nonzero multiple of the identity.

For the case m = 2 and real eigenvalues A\, —\ it is possible that the multiplicity of X is
two. In this case it remains to show that % [T (2% — u?).—x = 0. Note that we have in
addition to (18) that f/(A) = 0= f'(=X). Now g¢(z) := Hi;é(;;? —u?) = —f(2)f(==). So
that ¢'(A) = = f'(A) f(=X) = f(XA)f'(=X) = 0 as desired. O

We can exploit the previous result in the following immediate fashion.

Corollary 5.3 Let A € R™*™ be cyclic.

(i) If for two eigenvalues Ay, Ay € 0(A) we have Re XAy = Re Ay, || # |Az] then A is
not Il-controllable.

(it) If the spectrum o(A) is symmetric with respect to rotation by a root of unily, i.e.
o(A) = exp(2mi/m)o(A) (taking into account multiplicilies) and two eigenvalues of
A™ salisfy the condition of (i) then A is not Il-controllable.

If, furthermore, m is even, then il is sufficient that for two eigenvalues of A™ we
have

A —uf <Az —ul,
for all w > 0 in order that A ts not II-controllable.

Proof. The assumption of (i) on the eigenvalues Ay, A, implies that of Lemma 5.2 (i).
To prove (ii) suppose A is Il-controllable. Then, under the symmetry constraint, A™
satisfies (17). Thus if two eigenvalues of A™ satisfy condition (i) the same arguments as
for Lemma 5.2 (i) lead to a contradiction. This shows the first part of (ii). For the second
part note that if m is even, then the term «™ in (17) is nonnegative. So the argument can
be reduced to the nonnegative shifts for A™. As the construction of a universally regular
control requires the application of n — 1 different shifts, a single shift can be disregarded.
So that, omitting v = 0, it is sufficient that only nonnegative shifts fulfill the absolute
value inequality.

O
Using this corollary it is easy to construct examples of matrices that are not I 7-controllable.
Such are e.g. the companion matrices of the polynomial p(z) = z(2* + 1) and the 7-th
degree polynomial whose roots are 0, the three cubic roots of ¢ and their respective com-
plex conjugates. Using the last statement, one sees that the matrix corresponding to
p(z) = (2 = 1)(2* + 1) is not II-controllable. Many more examples like this can be con-
structed, as we see in the following result. This list is, of course, far from complete and
can be extended easily for matrices of higher dimensions and more intricate spectral pat-
terns. The patterns discussed in the following corollary are depicted in Figures 1,2 for the
special case, that the spectrum is symmetric to the imaginary axis. The shaded regions
show those areas in which 4 centrally symmetric eigenvalues exclude TI-controllability if
the other eigenvalue(s) are fixed.
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Corollary 5.4 If one of the following cases is satisfied, then the matriz A is not II-
controllable.

(i) Let A € R*™™” n > 4 and assume there exist \; € o(A),1 = 1,...,4 with \y #
)\2 € R, )\3 = )\_4, Re)\g = %()\1 + )\2) and Im)\g 2 %|)\1 — )\2|

(ii) Let A € R™",n > 5 and assume there exist \; € 0(A),a=1,...,5 with \; € R,
A=Azl =X, A =530, 0, ImAy =Im Ay > [Re )y — Re Xy > 0.

(iit) Let A € R™™ n > 6 and assume there exist \; € o(A),1 = 1,...,6 with
M # XA € R, A = A, ds = g, %()\1 + Ay) = 52?23 Aj with the properties
|)\] — %()\1 + )\2>| 2 %|)\1 - )\2|,j = 3, e ,6 and Re(()\] - %()\1 + )\2))2> < %|)\1 - )\2|
foryg=3,...,6.

(iv) Let A € R™™ n > 6 and assume there exist \; € o(A),1 = 1,...,6 with
M =Xy, A3 = M, As = X, ImA3 = Im A5, Re); = %2?23 A; with the property
Re((A;g - %()\1 -I— )\2))2) < (Im)\l)z

Proof. In all cases we will just check that the assumptions of Corollary 5.3 (ii) for the
case m = 2 are satisfied.

(i) Note that after a shift we may assume that Re A3 = 0. Then the assumption imply
that o(A) = —o(A). The eigenvalues of A% are A? > 0 and A2 < 0, which satisfy by
assumption, that A2 < |A}| and thus also

A} —ul < A7 +u <A\ +u=|A;—ul, for all u > 0.

(ii) After a shift we may assume that A; = 0 and the remaining four eigenvalues are
centrally symmetric to zero, so that we have o(A) = —a(A). The eigenvalues of A?

are 0, A3 = /\_Z. Now the assumptions imply that Re(A3) < 0 and hence for all u > 0
we have that

A —u| =u < |Re(\)) —u| < |A; —ul.

(iii) After a shift we may assume that —A; = Ay and the remaining four eigenvalues are
centrally symmetric to zero, so that we have o(A) = —c(A). The eigenvalues of A?
given by A, \2 = )\_Z all have multiplicity 2. The asumption implies that |As| > |\|
and Re(A}) < |A1] and hence for all u > 0 we have that

|)\f — u|2 = )\‘11 — 211,)\% +u? < |)\3|2 — 2u Re()\g)) +ul= |)\?3 — u|2,
and the assertion follows upon taking square roots.

(iv) After a shift we may assume that ReA; = 0 and the remaining four eigenvalues
are centrally symmetric to zero, so that we have o(A) = —o(A). The assumptions
imply that Re(A2) < A? < 0 and so for all u > 0 we have

A7 —u| = =\ +u < |Re(A3) —u| < |A] — ul.
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(a) 4 eigenvalues

(b) 5 eigenvalues

Figure 1: Cases (i) and (ii)

(a) 6 eigen

values, (iii)

(b) 6 eigenvalues, (iv)

Figure 2: Tmpossible locations of 6 eigenvalues

Finally, for n < 3 the following complete result can be given.

Proposition 5.5 Let A € R™*™ be cyclic.

(i) If n = 1,2 then A is II-

(it) If n = 3 then A is [I-controllable if and only if the eigenvalues A1, Az, A3 of A do

not have a common real part, i.e. do not salisfy Re Ay = Re Ay = Re As.

Proof. (i) In the case n = 1 there is nothing to show. If n = 2 then note that for any
quadratic monic polynomial ¢ we can find a constant ¢ such that ¢(z) — ¢ has two distinct
real roots, so that it is trivial to satisfy condition (14).

(ii) The necessity of the result follows from Proposition 5.1 (i) and Corollary 5.3 (i). Thus
it remains to show the sufficiency. If all roots of g are real the assertion is a consequence of
Proposition 5.1 (ii). So we have to treat the case of one pair of imaginary roots A, A and a

controllable.
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real root p with g # Re A. Note that by the transformation z — z/a— 8 o, € R,a # 0
it suffices to prove the assertion for A = ¢r purely imaginary where r > 0 and p = 1.

We will now construct products of two shifts with the property that the absolute value of
the result is the same for g and A (and hence also for X). For any two real numbers a, b
we have:

(i'r' — a)(i’r‘ — b) =ab—r*+ 'i'r'(a + b)

(1—a)(1—-0b)=ab+1—(a+Db)

With the notation
r=ab, y=a+b (19)
the condition
|(ir — a)(ir = )] = |(1 — a)(1 = )|’

may equivalently be written as

(0= ) 4y = (o~ y £ 1),
This leads to the requirement

L =Dy*+2y+rt—1
2 r?+1—y

Tr =

Ly F L4 (20)

And the condition that a,b € R enforces y*/4 > z. However,

1(r2 —1)y2+2y+r4—1
2 r2+1—y

y' /4>

may clearly be solved for all » € R by choosing y > 0 large enough (depending on r).
Thus we may conclude as follows: Given r € R we may choose a,b € R such that the
polynomial f,;(z) := (2 — a)(z — b) satisfies

| fap(ir)| = [fap(1)]

by choosing z,y such that (20) is satisfied and such that there exist real solutions a,b for
(19). With these choices of a,b we can reach from the point ir the set of points

(r? —1)y2+2y+r4—1_r4+r2—yr2+iry

1
2 . _ -
T =g rP+1l—y r2+1—y

1 riy? 2 :
= — _ — ] )
2<r2+1+y rr+l+y) +oury
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(for y large enough) in such a fashion that the absolute value of these points coincides
with the absolute values of the points reached from 1 with the application of the same
shifts.

By continuity and as the solutions for (20) do not all have the same argument (otherwise
they would lie on a line through zero) we may choose z,y subject to the condition that

arg(l' —r? 4 i'r'y) e Q.

And hence for some m € N we have f, 4(ir)™ = f,,(1)™. To obtain a universally regular
representation we need of course 3 different zeros of f. This can be easily obtained by
choosing a different pair o', b subject to the same condition. Then we have constructed

[ as desired. O

6 Conclusions

In this paper we have studied the inverse power iteration with real shifts as a control
system on projective space. An algebraic condition for complete controllability on the
submanifold M of cyclic vectors has been derived. The characterization of this condition
is far from complete. But the results obtained already reveal an intricate structure, that
appears to be quite complicated in high dimensions. The easiest case to control is that of
a purely real spectrum. This fits in nicely with known results on the analysis of the shifted
inverse power iteration which has good convergence properties in the case of Hermitian
maftrices.

Some fundamental questions about the concept of Il-controllability remain unanswered.
It is unclear, whether the set of II-controllable cyclic matrices is open, though we know
from Remark 4.2 and Proposition 5.1 (ii) that it contains a large open set. Furthermore
it would be reasonable to conjecture that the property of II-controllability is generic, but
again we have been unable to find a proof beyond dimension 3, although all conditions
we have found 1mplying uncontrollability are of course non-generic. The matter would
be simplified if it were known that the set of II-controllable matrices is semi-algebraic (as
it turns out to be for n = 1,2,3). If it were known that it is possible to give bounds
(only depending on the dimension n) on the necessary length of the universally regular
control sequence u in the representation (8), then it is an immediate consequence of the
Tarski-Seidenberg principle, that the set of II-controllable matrices is semi-algebraic.
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