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Abstract

We deal with dynamic equations on time scales, where we charac-
terize the positivity of a system. Uniform exponential stability of a
system is determined by the spectrum of its matrix. We investigate
the corresponding stability radii with respect to structured perturba-
tions and show that for positive systems the complex stability radius
and the positive stability radius coincide.
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1 Introduction

A d-dimensional time-invariant linear system of dynamic equations

x∆ = Ax (1)

(A ∈ Rd×d) on a time scale T is said to be positive if it leaves the cone Rd
+

invariant, i.e. if every solution starting at a point ξ ∈ Rd
+ remains in Rd

+.
Positive systems arise in the modeling of processes where the state variables
only have a meaning if they are nonnegative. For the time scales T = R and
T = N the characterization of positive systems in terms of the system matrix
is well-known. We provide a characterization for positivity of system (1) on
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time scales. Since a dynamical model is never an exact portrait of the real
process, it is important to investigate the robustness of a stable system (1)
under perturbations. We deal with uniform exponential stability, which is
determined by the spectrum of the system matrix. It is of interest to find
the maximal r > 0 such that the family of systems

x∆ = (A + ∆)x, ‖∆‖ < r, (2)

is uniformly exponentially stable, where the matrices ∆ are complex, real or
positive, respectively. This leads to the notions of complex, real and positive
stability radius. We also study the case of structured perturbations

A A + B∆C

for given structure operators B and C. For continuous- or discrete-time
systems stability radii are well-investigated notions, see [4]. A discussion on
the differences between the complex and the real stability radius can be found
in [3]. The complex stability radius is more easily analysed and computed
than the real one. For positive systems the situation is simpler, since the
complex and the positive stability radius coincide. The discrete-time case is
investigated in [6], whereas the continuous-time case is established in [5]. In
the setting of Banach lattices a similar result is obtained in [7]. In the present
paper we deal with positive systems on arbitrary time scales. Combining
the Perron-Frobenius theory for positive matrices and for Metzler matrices,
respectively, we show that for such systems the complex and the positive
stability radius with respect to structured perturbations coincide.

2 Preliminaries

In the following K denotes the real (K = R) or the complex (K = C) field.
For sake of simplicity we equip Cd with the usual inner product and the
associated norm, such that we have ‖x + iy‖2 = ‖x‖2 + ‖y‖2 for x, y ∈ Rd.
As usual, Kd×d is the space of square matrices with d rows, Id is the identity
mapping on the d-dimensional space Kd over K and σ(A) ⊂ C denotes the
set of eigenvalues of a matrix A ∈ Kd×d. The spectral radius and the spectral
abscissa of A are given by

ρ(A) := max{|λ| : λ ∈ σ(A)} and µ(A) := max{<λ : λ ∈ σ(A)},
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respectively. Let Rd be equipped with the standard entrywise ordering, i. e.
x ≤ y if and only if xi ≤ yi for all i ∈ {1, . . . , d}, and denote by Rd

+ =
{x ∈ Rd : 0 ≤ x} the set of all positive vectors. Analogously, the set of all
positive matrices in Rn×m is denoted by Rn×m

+ . For A = (aij)i,j ∈ Cn×m we
define |A| := (|aij|)i,j, so that |A| denotes the matrix obtained by taking the
absolute value entrywise. A time scale T is a non-empty, closed subset of
the reals R. For the purpose of this paper we assume from now on that T is
unbounded from above, i.e. sup T = ∞. On T the graininess is defined by

µ∗(t) := inf {s ∈ T : t < s} − t.

For A ∈ Kd×d we consider the d-dimensional linear system of dynamic equa-
tions on the time scale T

x∆ = Ax. (3)

An introduction into dynamic equations on time scales can be found in [8].
We recall the classical examples for this setup.

Example 1. If T = R we have a linear time-invariant system of the form
ẋ(t) = Ax(t). If T = hZ, then (3) reduces to (x(t + h)− x(t))/h = Ax(t) or,
equivalently, to x(t + h) = [Id + hA]x(t).

Let eA : {(t, τ) ∈ T× T : t ≥ τ} → Kd×d denote the transition matrix
corresponding to (3), that is, x(t) = eA(t, τ)ξ solves the initial value problem
(3) with initial condition x(τ) = ξ for ξ ∈ Kd and t, τ ∈ T with t ≥ τ . The
subsequent notions are recalled from [9].

Definition 2 (Exponential stability). Let T be a time scale which is un-
bounded above. We call system (3)

(i) exponentially stable if there exists a constant α > 0 such that for every
s ∈ T there exists K(s) ≥ 1 with

‖eA(t, s)‖ ≤ K(s) exp(−α(t− s)) for t ≥ s.

(ii) uniformly exponentially stable if K can be chosen independently of s
in the definition of exponential stability.

In general, exponential stability does not imply uniform exponential sta-
bility [9]. The existence of a uniformly exponentially stable system can only
be guaranteed if the time scale T has bounded graininess [10, Theorem 3.1].
In [10, Example 4.1] it is shown that exponential stability of a system can not
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be characterized by the spectrum of its matrix, whereas uniform exponential
stability is determined by the spectrum. Note that although the following
proposition is only proved for a real matrix in [10, Theorem 3.2] the state-
ment remains true for an arbitrary complex matrix without any modification
in the proof.

Proposition 3. [10, Theorem 3.2] For A ∈ Cd×d system (3) is uniformly
exponentially stable if and only if system

x∆ = λx (4)

is uniformly exponentially stable for every λ ∈ σ(A).

Since we want to consider stability radii with respect to uniform expo-
nential stability, we denote

USC(T) = {λ ∈ C : system (4) is uniformly exponentially stable}.

So, for A ∈ Rd×d system (3) is uniformly exponentially stable if and only if
σ(A) ⊂ USC(T).

Remark 4. (i) Since uniform exponential stability is robust it follows that
USC(T) is an open set [10, Proposition 3.1].
(ii) For any h ≥ max{µ∗(t) : t ∈ T} the system

x∆ =
−1

2h
x

is uniformly exponentially stable [10, Proof of Theorem 3.1]. On the other
hand, for any α > 0 the system

x∆ = αx

is not uniformly exponentially stable. Therefore, 0 is contained in the boun-
dary of USC(T).

In a particular case the notions of exponential stability and uniform ex-
ponential stability coincide. We call a time-scale periodic if there exists a
constant p > 0 such that for every t ∈ R we have t ∈ T if and only if
t+ p ∈ T. In this case p is called a period of the time-scale. Clearly, if a time
scale is only given as a subset of [a,∞) and satisfies a periodicity condition
there, it may be extended to a periodic time scale that is unbounded above
and below. The following proposition links the results in [10] and [9] and will
be useful in the discussion of examples below.
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Proposition 5. If the time-scale T is periodic then (4) is exponentially stable
if and only if it is uniformly exponentially stable.

Proof. One implication is clear, so assume that (4) is exponentially stable
and denote a period of the time-scale by p > 0. Note that for any t0 ∈ T we
have |eλ(t0 + p, t0)| < 1, because otherwise we have for all n ∈ N

|eλ(t0 + np, t0)| = |eλ(t0 + p, t0)|n ≥ 1 ,

contradicting exponential stability.
Fix t0 ∈ T. By the previous remark there exists α > 0 such that

|eλ(t0 + np, t0)| ≤ exp(−αnp) for all n ∈ N .

Denote K̃ := exp(αp) sup{ |eλ(t, s)| : s, t ∈ [t0, t0 + 2p] ∩ T}. Consider arbi-
trary s, t ∈ T with s ≤ t. If t < s + p, then

|eλ(t, s)| ≤ K̃ exp(−α(t− s)) .

Otherwise, s + τ1 = t0 + kp for some τ1 ∈ [0, p), k ∈ Z, and we may write
t = τ2 + mp + τ1 + s for uniquely determined m ∈ N and τ2 ∈ [0, p). We
obtain

|eλ(t, s)| = |eλ(t, t− τ2)||eλ(t0 + mp, t0)||eλ(s + τ1, s)|
≤ K̃2 exp(−α(t− s)) .

This implies the assertion, as K̃ is independent of t and s.

For a time scale with bounded graininess several essential features are
captured by an associated characteristic ball. We define

C(T) := sup{c ≥ 0: Bc(−c) ⊂ USC(T)} .

It is clear that C(T) is infinite if USC(T) = C− := {z ∈ C : <z < 0} and
finite in every other case. The ball of uniform exponential stability B(T) is
then defined as the maximal ball contained in USC(T) with real center and
0 on the boundary, i.e.

B(T) := BC(T)(−C(T)) .

In the case C(T) = ∞ we put B(T) = C−. Our analysis of positive systems
will yield a positive lower bound for C(T), but a general characterization of
this number is elusive yet.
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3 Positive Systems

For the classical systems in Example 1 positivity can be characterized by a
condition on the system matrix. Recall that a matrix A = (aij) ∈ Rd×d is
said to be Metzler if aij ≥ 0 for i 6= j, i.e. there exists λ ∈ R such that
A + λId ≥ 0. For T = R the system ẋ = Ax is positive if and only if A is
a Metzler matrix, whereas for T = hZ the system x(t + 1) = [Id + hA]x(t)
is positive if and only if A + 1

h
Id ≥ 0. In this section we provide a similar

characterization for positive systems on arbitrary time scales.

Definition 6. (Positive system) System (3) is said to be positive if for all
x ∈ Rd

+ and s, t ∈ T, s ≤ t, it follows that eA(t, s)x ∈ Rd
+.

To characterize the positivity of system (3) by a condition on the defining
matrix, we distinguish two cases: Case 1 : T contains no right scattered
points, i.e. there is a ∈ R such that T = [a,∞). The classical result on
continuous-time systems yields that system (3) is positive if and only if A is
Metzler. Case 2 : T contains right scattered points. We define

η = η(T) :=

{ 1
sup{µ∗(t) : t∈T} if T has bounded graininess

0 otherwise .
(5)

Proposition 7. (Characterization of positive systems) Let T contain right-
scattered points. System (3) is positive if and only if A + ηId ≥ 0.

Proof. (⇒) For every right-scattered point t0 we have

eA(t0 + µ∗(t0), t0) = Id + µ∗(t0)A.

The positivity of the system yields A ≥ − 1
µ∗(t0)

Id. This implies A ≥ −ηId.

(⇐) Assume A ≥ −ηId. In (i) we first show the positivity of system (3) in

the case that all off-diagonal entries of A are strictly positive. In (ii) we use a
continuity argument to establish the assertion for non-negative off-diagonal
entries.

(i) We assume A = (aij) with aij > 0 for i 6= j. For fixed s ∈ T and
ξ ∈ Rd

+ and any t ≥ s we have to show

x(t) = eA(t, s)ξ ∈ Rd
+. (6)

We use the Induction Principle [8, Theorem 1.7], where for t ∈ [s,∞)∩T the
statement S(t) corresponds to (6).
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I. S(s) is satisfied, since eA(s, s) = I.
II. Let t ∈ [s,∞)∩T be right-scattered and let S(t) be true, i.e. eA(t, s)ξ ∈

Rd
+. Then eA(t + µ∗(t), s)ξ = (I + µ∗(t)A)eA(t, s)ξ ∈ Rd

+ due to the assump-
tion, i.e. S(t + µ∗(t)) is true.

III. Let t ∈ [s,∞) ∩ T be right-dense and assume that S(t) is true. We
have to show that there is a neighborhood U of t such that S(τ) is true for all
τ ∈ U ∩ (t,∞) ∩ T. If x(t) = 0 this is straightforward. In the case x(t) 6= 0
we show the assertion indirectly. Assume that there is a sequence (tn) in
U ∩ (t,∞)∩T such that tn ↓ t and x(tn) /∈ Rd

+. Then there are i ∈ {1, . . . , d}
and a subsequence (tnk

) of (tn) such that xi(tnk
) < 0 for all k ∈ N. From

0 ≤ xi(t) = limk→∞ xi(tnk
) ≤ 0 follows xi(t) = 0. The inequality

0 ≥ lim
tnk

↓t

xi(tnk
)

tnk
− t

= x∆
i (t) = (Ax)i(t) =

n∑
j=1

aijxj(t) =
n∑

j=1
j 6=i

aijxj(t) > 0

yields a contradiction.
IV. Let t ∈ [s,∞)∩T be left-dense, i.e. there is a sequence (tn) in [s,∞)∩T

with tn ↑ t. Assume that S(τ) is true for all τ ∈ [s, t). In particular, we have
x(tn) ∈ Rd

+, so x(t) = limn→∞ x(tn) ∈ Rd
+, i. e. S(t) is true. (ii) Now we deal

with the case aij ≥ 0 for all i 6= j. We define

M =


0 1 . . . 1
1 0 . . . 1

1 1
. . . 1

1 1 . . . 0

 ∈ Rd×d.

Using (i), we obtain that system

x∆ = (A + εM)x (7)

is positive for all ε > 0. Choose and fix t2 > t1, t2, t1 ∈ T and x0 ∈ Rd
+. By

variation of constants formula [8, pp. 195], we have

ΦA(t2, t1)x0 = ΦA+εM(t2, t1)x0 + ε

∫ t2

t1

ΦA+εM(t2, s + µ∗(s))MΦA(s, t1)x0 ∆s.

(8)
Since (7) is positive, it follows that ΦA+εM(t2, t1)x0 ∈ Rd

+ for all ε > 0. If ε
tends to zero, we obtain

ΦA(t2, t1)x0 ∈ Rd
+,

which completes the proof.
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Fundamental spectral properties of positive matrices and Metzler matri-
ces are provided by the classical Perron-Frobenius theory. For every positive
matrix B ∈ Rd×d

+ the spectral radius is an eigenvalue of B, so

ρ(B) = µ(B) ∈ σ(B). (9)

For a Metzler matrix A ∈ Rd×d we define

c(A) = min{λ ≥ 0: A + λId ≥ 0}.

As a consequence of (9), we obtain for every Metzler matrix A

µ(A) = ρ(A + αId)− α for all α ≥ c(A).

We arrive at the following well-known properties of Metzler matrices [5, Pro-
position 1 and Lemma 2].

Lemma 8. Let A ∈ Rd×d be a Metzler matrix. Then
(i) µ(A) is an eigenvalue of A and there is a positive eigenvector x ∈ Rn

+ \{0}
such that Ax = µ(A)x.
(ii) µ(A) ≤ µ(A + ∆) for all ∆ ∈ Rd×d

+ .
(iii) Let λ ∈ σ(A). Then

|λ + α| ≤ |µ(A) + α| for all α ≥ c(A).

(iv) (tId − A)−1 exists and is positive if and only if t > µ(A).

For positive matrices A ∈ Rd×d
+ , B ∈ Rd×m

+ , C ∈ Rp×d
+ and an arbitrary

matrix ∆ ∈ Rm×p one has (see [6, Corrollary 2.5])

ρ(A + B∆C) ≤ ρ(A + B|∆|C) . (10)

Finally, we recall the following property of rank-one matrices, which we quote
from [5, Lemma 3 (iii)].

Lemma 9. If ∆ ∈ Rm×p has rank one, then

‖∆‖ = ‖ |∆| ‖ .
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4 Uniform Exponential Stability

In this section we assume that T has bounded graininess, since we want to
ensure the existence of a uniformly exponentially stable system. Assume
σ(A) ∈ USC(T) and define the unstructured complex, real and positive stabi-
lity radius by

rC(A) = inf{‖∆‖ : ∆ ∈ Cd×d, σ(A + ∆) 6⊂ USC(T)},
rR(A) = inf{‖∆‖ : ∆ ∈ Rd×d, σ(A + ∆) 6⊂ USC(T)},
r+(A) = inf{‖∆‖ : ∆ ∈ Rd×d

+ , σ(A + ∆) 6⊂ USC(T)}.

Clearly, one has rC(A) ≤ rR(A) ≤ r+(A). It is of interest in which situations
these stability radii coincide. In a more general setting it is of interest to
subject the matrix A of the nominal system to structured perturbations,
which covers the case that only certain elements of the matrix are uncertain.
To this end we assume structure matrices B ∈ Rd×m

+ and C ∈ Rp×d
+ and

consider the stability radii

rC(A, B, C) = inf{‖∆‖ : ∆ ∈ Cm×p, σ(A + B∆C) 6⊂ USC(T)},
rR(A, B, C) = inf{‖∆‖ : ∆ ∈ Rm×p, σ(A + B∆C) 6⊂ USC(T)},
r+(A, B, C) = inf{‖∆‖ : ∆ ∈ Rm×p

+ , σ(A + B∆C) 6⊂ USC(T)}.

Clearly, one has rC(A, B, C) ≤ rR(A, B, C) ≤ r+(A, B, C). We refer to [4]
for a more detailed discussion of stability radii. We intend to show that for
a positive uniformly exponentially stable system on an arbitrary time scale
the complex stability radius and the positive stability radius coincide.

We start by showing the statement for scalar systems. The d-dimensional
case will be reduced to the scalar system which involves the spectral abscissa
of the system matrix. Note that it is immediate from the definition that
if λ ∈ R, λ ∈ (−C(T), 0), then the one-dimensional system x∆ = λx is
uniformly exponentially stable and rC(λ) = rR(λ) = r+(λ) = |λ|. We now
show the same result for η(T) (cf. (5) ).

Proposition 10. Let λ ∈ R such that λ ≥ −η. Suppose that the scalar
positive system

x∆ = λx (11)

is uniformly exponentially stable. Then rC(λ) = rR(λ) = r+(λ) = |λ|.
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Proof. We first establish r+(λ) ≤ rC(λ). Let ∆C = a + bi ∈ C be such that
the system

x∆ = (λ + ∆C)x

is not uniformly exponentially stable. We have to show that there exists
∆ ∈ R+ such that ∆ ≤ |∆C| and the corresponding system

x∆ = (λ + ∆)x

is not uniformly exponentially stable. We choose ∆ =
√

a2 + b2 and verify

|eλ+∆C(t2, t1)| ≤ |eλ+∆(t2, t1)|, for all t1, t2 ∈ T, t1 ≤ t2,

where we use that

|eλ+∆C(t2, t1)| = exp

(∫ t2

t1

lim
s↘µ∗(u)

log |1 + s(λ + ∆C)|
s

∆u

)
.

It remains to show the inequality

lim
s↘µ∗(u)

log |1 + s(λ + ∆C)|
s

≤ lim
s↘µ∗(u)

log |1 + s(λ + ∆)|
s

for any u ∈ T.

We consider two cases:

• µ∗(u) = 0: A straightforward computation yields that

lim
s↘µ∗(u)

log |1 + s(λ + ∆C)|
s

= lim
s↘0

log |1 + s(λ + ∆C)|
s

= λ + a

≤ λ +
√

a2 + b2

= lim
s↘µ∗(u)

log |1 + s(λ + ∆)|
s

.

• µ∗(u) 6= 0: Since (11) is positive it follows that 1 + µ∗(u)λ ≥ 0. We
obtain

|1+µ∗(u)λ+µ∗(u)∆C| ≤ 1+µ∗(u)λ+µ∗(u)|∆C| = |1+µ∗(u)λ+µ∗(u)∆|.
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So far we have proved that rC(λ) = rR(λ) = r+(λ). To compute r+(λ) we
first observe that the system

x∆ = 0 x

is not uniformly exponentially stable. Therefore, r+(λ) ≤ |λ|. As the system
(11) is uniformly exponentially stable we have λ < 0. Take any β ∈ (0, |λ|)
and consider the system

x∆ = (λ + β)x. (12)

Notice that for any h ≥ max{µ∗(u) : u ∈ T} the system

x∆ =
−1

2h
x

is uniformly exponentially stable (see Remark 4), i.e. there exist K, α > 0
such that the inequality

|e−1
2h

(t2, t1)| = exp

(∫ t2

t1

lim
s↘µ∗(u)

log |1 + s
(−1

2h

)
|

s
∆u

)
≤ K exp(−α(t2 − t1))

holds for all t2 ≥ t1. Choose h ≥ max{µ∗(u) : u ∈ T} such that λ + β < −1
2h

.
Due to

lim
s↘µ∗(u)

log |1 + s(λ + β)|
s

≤ lim
s↘µ∗(u)

log |1 + s−1
2h
|

s
for all u ∈ T

it follows that system (12) is uniformly exponentially stable. Consequently,
r+(λ) ≥ |λ|, which completes the proof.

We note an immediate consequence for the ball of uniform exponential
stability B(T).

Corollary 11. Let T be a time scale with bounded graininess, then η(T) ≤
C(T), that is,

Bη(−η) ⊂ B(T) ⊂ USC(T) .

Remark 12. On the other hand, if inf{µ∗(u) : u ∈ T} > 0, then with ν =
1

inf{µ∗(u) : u∈T} the inclusion USC(T) ⊆ Bν(−ν) is satisfied.
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Example 13. (i) In the classical cases T = R and T = hZ for a fixed h > 0
we obtain the standard results. In particular, if T = R, then A generates a
positive system if and only if A is Metzler, η(T) = C(T) = ∞ and the ball of
positivity and of uniform exponential stability coincide. Similar statements
hold for T = hZ, namely A generates a positive system if and only if A+hI ≥
0, η(T) = C(T) = h and again the ball of positivity and the ball of uniform
exponential stability coincide, i.e. Bη(−η) = B(T).

(ii) Consider the time scale T = {tn}n∈N of so-called harmonic numbers
t0 := 0, tn :=

∑n
k=1

1
k
, n ≥ 1. The graininess is given by µ∗(tn) = 1

n+1
. So

η = 1, and a system is positive if and only if A + I ≥ 0. On the other hand,
the set of exponential stability is C−,[9]. We will use the techniques of the
section on eventually positive systems to establish C(T) = ∞, thus the balls
of positivity and uniform exponential stability are very different.

(iii) In the case of alternating continuous intervals and jumps of constant
length we consider the time scale

Tσ :=
⋃
k∈Z

[k, k + σ]

for a fixed σ ∈ [0, 1]. This time scale is periodic, so by Proposition 5 expo-
nential stability and uniform exponential stability coincide and the pictures
in [9] represent USC(T). We obtain η = (1 − σ)−1. It can be shown by
simple calculations that C(T) = η2, so the inclusion of the positive ball in
the ball of uniform exponential stability is strict, Bη(−η) ⊂ B(T). The cases
σ = 0.21 and σ = 0.8 are depicted in the subsequent figure. The hatched
area represents the set of exponential stability USC(T), the full ball is the
ball of positivity Bη(−η), and of the ball B(T) only the boundary is shown.
Recall that for σ = 0.21 the set USC(T) is disconnected [9]. Here we only
represent the connected component with 0 in its boundary.

(iv) To give an example of a more exotic time scale, consider as in [9]
the time scale obtained by gluing standard Cantor sets (corresponding to
the value 1/3) together. In this case, the time-scale is clearly periodic, so
exponential stability coincides with uniform exponential stability and the
stability set calculated in [9] coincides with the set of exponential stabi-
lity. We have max µ∗(t) = 1/3, and by the previous considerations follows
B3(−3) ⊂ USC(T). This ball is by no means the largest one contained
in the stability set. We checked numerically that for γ ≈ 6.9969 we have
Bγ(−γ) ⊂ USC(T). It is tempting to conjecture that the real number in
question is C(T) = 7, but we have no proof of this.
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Figure 1: Stability regions and positive balls as described in Example 13 (iii),
i.e. USC(T ) (hatched), Bη(−η) (full ball) and B(T) (only boundary shown)

Theorem 14 (Characterization of a positive uniformly exponentially stable
system). Assume that the system

x∆ = Ax, A ∈ Rd×d, x ∈ Rd (13)

is positive. Then the following statements hold: (i) The scalar system

x∆ = µ(A)x (14)

is positive.
(ii) System (13) is uniformly exponentially stable if and only if system (14)
is uniformly exponentially stable.

Proof. (i) By virtue of Lemma 8, there exists x ∈ Rd
+ \ {0} such that

Ax = µ(A)x.

Consequently,

eA(t2, t1)x = eµ(A)(t2, t1)x, for all t2 ≥ t1, t2, t1 ∈ T.

Since (13) is positive, we obtain

eµ(A)(t2, t1) ≥ 0, for all t2 ≥ t1, t2, t1 ∈ T.
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Figure 2: Stability regions and positive balls for the Cantor set example as
described in Example 13 (iv), i.e. USC(T ) (hatched), Bη(−η) (full ball) and
B(T) (only boundary shown)

Equivalently, system (14) is positive.
(ii) Due to Proposition 3 the uniform exponential stability of system (13)
implies the uniform exponential stability of system (14). Conversely, assume
that system (14) is uniformly exponentially stable and fix λ ∈ σ(A). Clearly,
Reλ ≤ µ(A), and by virtue of Lemma 8 we have

|η + λ| ≤ |η + µ(A)| . (15)

Hence σ(A) ⊂ B|η+µ(A)|(−η) ⊂ Bη(−η), because µ(A) ∈ (−η, 0) by Propo-
sition 7 and Lemma 8. By Corollary 11 we have σ(A) ⊂ USC(T) and the
assertion follows.

Theorem 15. Let

x∆ = Ax, A ∈ Rd×d, x ∈ Rd (16)

be a positive uniformly exponentially stable system and let structure matrices
B ∈ Rd×m

+ , C ∈ Rp×d
+ be given. Then

rC(A, B, C) = rR(A, B, C) = r+(A, B, C) =
1

‖CA−1B‖
,

where we set 0−1 := ∞.
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Proof. Denote by Γus the boundary of the open set USC(T). According to
Remark 4, we have 0 ∈ Γus. Define the transfer matrix

G(s) = C(sI − A)−1B

for all elements s of the resolvent set of A. First, we provide a formula
to compute the complex stability radius. Second, we estimate the positive
stability radius.
Step 1: We establish

rC(A, B, C) =
1

max{‖G(s)‖ : s ∈ Γus}
. (17)

This follows from a general result for the computation of the complex stability
radius with respect to open subsets of the complex plane, see [2]. We include
the proof for the convenience of the reader. Without loss of generality we
assume in this step that m ≥ p. Let ∆ ∈ Cm×p, x ∈ Cd, x 6= 0 and s ∈ Γus

such that
(A + B∆C)x = sx .

System (16) is uniformly exponentially stable, therefore s 6∈ σ(A). Hence,
Cx 6= 0 and for y = Cx the above equality leads to

y = G(s)∆y,

which yields

‖∆‖ ≥ 1

‖G(s)‖
.

Consequently, we have

rC(A, B, C) ≥ 1

max{‖G(s)‖ : s ∈ Γus}
. (18)

If G(s) ≡ 0, then the proof is concluded. Otherwise, to prove the converse
direction, suppose that the maximum of s 7→ ‖G(s)‖, s ∈ Γus, occurs at s0.
(Note that a maximum has to exist as ‖G(s)‖ → 0 for |s| → ∞ .) The
singular value decomposition of G(s0) has the form

G(s0) =
m∑

j=1

sjujv
∗
j , (19)
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where the vectors {u1, . . . , um} are orthonormal in Cp, the set {v1, . . . , vm}
is an orthonormal basis in Cm and the singular values s1, . . . , sm satisfy

s1 = ‖G(s0)‖ ≥ s2 ≥ · · · ≥ sm.

Define
∆ = s−1

1 v1u
∗
1 ∈ Cm×p. (20)

Using (19), we obtain

G(s0)∆u1 =
m∑

j=1

sjujv
∗
j ∆u1 =

m∑
j=1

sjujv
∗
j s
−1
1 v1u

∗
1u1 = u1,

where we use the fact that {u1, . . . , um} and {v1, . . . , vm} are orthonormal to
obtain the last equality. As a consequence,

C(s0I − A)−1B∆u1 = u1,

which implies
(A + B∆C)x = s0x,

where x := (s0I−A)−1B∆u1. Obviously, x 6= 0 and hence s0 ∈ σ(A+B∆C).
On the other hand, it is easy to see that ‖∆‖ = s−1

1 . Therefore,

rC(A, B, C) ≤ 1

maxs∈Γus ‖G(s)‖
,

which together with (18) implies the claim. We note for further reference,
that the destabilizing ∆ of minimal norm may by (20) be chosen to be of
rank one.
Step 2: We show that

r+(A) ≥ 1

‖BA−1C‖
. (21)

Indeed, let ∆ ∈ Rm×p
+ be destabilizing, i.e. the system

x∆ = (A + B∆C)x (22)

is not uniformly exponentially stable. Obviously, system (22) is positive.
Due to Theorem 14 the system

x∆ = µx

16



with µ = µ(A + B∆C) is not uniformly exponentially stable. On the other
hand, by virtue of Theorem 14 the system

x∆ = µ(A)x (23)

is positive and uniformly exponentially stable. By applying Proposition 10
we obtain

|µ− µ(A)| ≥ −µ(A).

Due to Lemma 8 (ii) it follows that µ ≥ µ(A) and therefore µ ≥ 0. Since
A + B∆C is a Metzler matrix, Lemma 8 (i) implies that µ ∈ σ(A + B∆C)
and that there exists x ∈ Rd

+ \ {0} such that

(A + B∆C)x = µx.

This implies for y := Cx ∈ Rp
+ \ {0}

G(µ)∆y = y,

where we use the fact that µ 6∈ σ(A) due to the uniform exponential stability
of (16), so (µI − A)−1 exists. Thus,

‖∆‖ ≥ 1

‖G(µ)‖
. (24)

Notice that (24) holds for arbitrary nonnegative destabilizing matrices ∆, so
it is sufficient to show

‖G(µ)‖ ≤ ‖G(0)‖ (25)

to obtain (21). Indeed, since (23) is uniformly exponentially stable, it follows
that µ(A) < 0. Hence, by using Lemma 8 (iv) we get that

G(0) = C(−A)−1B and G(µ) = C(µId − A)−1B

are positive matrices. By the resolvent equation (cf. e.g. [1]) we have

C(−A)−1B − C(µId − A)−1B = C
(
µ(−A)−1(µId − A)−1

)
B ≥ 0,

which proves (25).
Step 3: It remains to show rC(A, B, C) ≥ r+(A, B, C). Then we obtain from
steps 1 – 3 the inequalities

rC(A, B, C) ≥ r+(A, B, C) ≥ 1

‖BA−1C‖
≥ rC(A, B, C) ,
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which proves the assertion of the theorem. If rC(A, B, C) = ∞, then there
is nothing to show. So assume we have a destabilizing perturbation ∆, such
that σ(A+B∆C) 6⊂ USC(T). ¿From (20) we see that it is no loss of generality
to assume that ∆ has rank one. As Bη(−η) ⊂ USC(T), we have by the choice
of ∆ and using (10) that

η ≤ ρ(A + B∆C + ηId) ≤ ρ(A + B|∆|C + ηId) =: ρ .

By the Perron-Frobenius theorem 0 ≤ ρ − η ∈ σ(A + B|∆|C), so that |∆|
is destabilizing. As ∆ is of rank one, it follows from Lemma 9 that ‖∆‖ =
‖ |∆| ‖, which implies rC(A, B, C) ≥ r+(A, B, C) as desired.

As a corollary we note that a similar statement is true with respect to
the ball of uniform exponential stability.

Corollary 16. Let

x∆ = Ax, A ∈ Rd×d, x ∈ Rd (26)

be a uniformly exponentially stable system such that A + C(T)Id ∈ Rd×d
+ .

Let structure matrices B ∈ Rd×m
+ , C ∈ Rp×d

+ be given. Then

rC(A, B, C) = rR(A, B, C) = r+(A, B, C) =
1

‖CA−1B‖
,

where we set 0−1 := ∞.

Proof. We simply need to retrace the steps of the proof of Theorem 15. Step 1
did not use the positivity of A, so is directly applicable under the assumption
of the corollary. In step 2 we can replace positivity of A by the assumption
that A is Metzler and B(T) ⊂ USC(T). The same reasoning applies to step
3.

5 Eventually Positive Systems and Robust-

ness

For the sake of stability analysis of linear systems it turns out that a slightly
more general system class has the same nice properties as positive systems.
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Definition 17 (Eventually Positive Systems). System (3) is said to be even-
tually positive if there exists a t0 ∈ T such that for all x ∈ Rd

+ and s, t ∈ T,
t0 ≤ s ≤ t it follows that eA(t, s)x ∈ Rd

+.

¿From the previous sections we immediately obtain the following state-
ments.

Proposition 18. (i) A is eventually positive if and only if there exists a
t0 ∈ T such that for

η0 :=
1

sup{µ∗(t) : t ≥ t0}
we have A + η0I ≥ 0. (ii) If we set

µ∞ := inf { sup {µ∗(t) : t ≥ t0 } : t0 ≥ 0 } = lim
t0→∞

sup{µ∗(t) : t ≥ t0}

and

η∞ =
1

µ∞
,

then A generates an eventually positive system if A+ηI ≥ 0 for some η > η∞.

Proposition 19. Let

x∆ = Ax, A ∈ Rd×d, x ∈ Rd (27)

be an eventually positive, uniformly exponentially stable system and let
structure matrices B ∈ Rd×m

+ , C ∈ Rp×d
+ be given. Then

rC(A, B, C) = rR(A, B, C) = r+(A, B, C) =
1

‖CA−1B‖
,

where we set 0−1 := ∞.

Proof. This follows immediately from Theorem 15, as a destabilizing solution
in particular destabilizes the positive system on the time scale T∩[t0,∞).

Example 20. (i) For the harmonic time scale discussed in Example 13 (ii) it is
easy to see, that every Metzler matrix defines an eventually positive system,
as µ∗(tn) → 0. Thus it follows that η∞ = ∞ and so USC(T) = C−. For A
Hurwitz and Metzler, B, C ≥ 0 we have that A defines a uniformly expo-
nentially stable system and that rC(A, B, C) = r+(A, B, C) = ‖CA−1B‖−1.
(ii) For periodic time-scales a system is positive if and only if it is eventually
positive. This shows, in particular, that Bη∞(−η∞) can still be a strict subset
of B(T) using the examples of Example 13 (iii).
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6 Conclusion

In this note we investigated positive linear systems on time-scales. These
systems are generated by a subset of the set of Metzler matrices, depending
on the graininess of the time-scale T. Surprisingly, there is a difference
between the ball in which the spectrum of a positive uniformly exponentially
stable system may lie and the ball of uniform exponential stability. This is
in contrast to the classical cases T = R and T = hZ, where this phenomenon
does not occur. It is of interest to investigate the difference of these balls
further and to understand the significance of the ball of uniform exponential
stability. For positive systems we provided an easily computable formula for
the stability radii. We note that although we have restricted ourselves to the
case of the Euclidean norm, all results apply to monotone norms using the
techniques provided in [5].
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