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Abstract

In this paper we describe the moments of a stochastic model of the
Additive Increase Multiplicative Decrease (AIMD) algorithm. AIMD is
the algorithm that underpins the Transmission Control Protocol (TCP),
which is used extensively in the internet. We prove that the Markov chain
describing TCP has the remarkable property that all moments converge
to their asymptotes at exactly the same rate. Further, we illustrate how
a closed form solution can be obtained from the network properties, and
this formula is explicitly calculated for the case of the third moment.
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1 Introduction

In studying communication networks that employ TCP (Transmission Control
Protocol), one encounters network models that take the form of time-varying
dynamic difference equations of the following form [1, 2, 3, 4, 5, 6, 7]:

W (k + 1) = A(k)W (k), (1)

where W (k) is a real n-dimensional vector and where A(k) is a matrix chosen
randomly from the set of m = 2n − 1 matrices: A = {A1, ..., Am}. The non-
negative matrices A1, ..., Am are defined as follows. Let α1, .., αn, β1, ..., βn be
positive real numbers that are smaller than 1 where the sum of the α’s is equal
to 1. Further, let
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A1 =


β1 0 · · · 0
0 β2 0 0
... 0

. . . 0
0 0 · · · βn

+


α1

α2

· · ·
αn

 [ (1− β1), . . . , (1− βn)
]
.

The matrices A2, .., Am are constructed by taking the matrix A1, and setting
some, but not all, of the βi to 1. We refer to A1 as a TCP matrix and to the
family of matrices {Ai, i = 1, . . . , n} as generated from a TCP matrix. In some
real situations it is convenient to assume that the probability that A(k) = Ai

in (1), denoted pi, is fixed and independent of k.

In the study of the system given by Equation (1) it is natural to consider the
following convex combination of matrices:

Mr =

m∑
i=1

piA
⊗r
i , (2)

where B⊗r denotes the Kronecker product B ⊗B ⊗ · · · ⊗B of length r for any
B ∈ Rn×n and any r ∈ N and where A⊗B is defined as

A⊗B =

 a11B . . . a1nB
...

...
an1B . . . annB

 . (3)

Equation (2) for r = 1 arises when studying the first moment of the stochas-
tic process underlying communication networks employing the TCP algorithm,
and Equation (2) for r ≥ 2 arises when studying the higher moments of this
process. The Perron eigenvectors of these matrices give the asymptotic values
of the moments, and the second largest eigenvalues of Mr bounds the rate of
convergence to the asymptotes. Previous work [5] considered the first and sec-
ond moments of this process, and established that the second largest eigenvalues
of the stochastic matrix corresponding to the first moment, and to the second
moment, coincide. In this paper we prove the remarkable property that all mo-
ments converge at the same rate, and give an explicit formula for the asymptote
of the third moments in two special cases.

We use the following notational conventions. N, R and R+ denote the sets of
natural numbers, real numbers and positive real numbers respectively. For
n ∈ N we denote by Rn the space of n−dimensional real vectors and by
Rn×n the space of n × n real matrices. Given A ∈ Rn×n, we denote its
spectrum by σ(A), and order its elements according to their absolute values:
|λ1(A)| ≥ |λ2(A)| ≥ · · · ≥ |λn(A)|. We refer to λ2(A) as the second largest
eigenvalue of A. This number is important because if A is a stochastic matrix
describing the dynamics of a process, λ2(A) bounds the rate of convergence to
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the steady state.

This paper is structured as follows. In Section 2 we develop models for the
stochastic moments of (1) and show that these models have a common bound
on their convergence rates. In Section 3 we present a method in which the
asymptotes for the third moments can be calculated. We also give explicit
formulae in the case of three flows with distinct AIMD parameters, and in
the case of a network with an arbitrary number of flows with common AIMD
parameters.

2 Convergence rate of the moments

We now consider the second largest eigenvalue of the matrices given in Equa-
tion (2). The following theorem is proved in [5] and is central to our discussion.

Theorem 2.1. Let A1, .., Am be generated from a TCP matrix. Then there
exists a non-singular matrix P such that Ci = P−1AiP is of the form

Ci =


1 | 0 ... 0
− − − − −

|
ci | Si

|
|

 , (4)

where all of the Si are symmetric, positive definite and have spectral radius
ρ(Si) ≤ 1 and the ci are vectors of appropriate size.

In this paper we expand a result from [5, Theorem 2.2]. First recall the following
properties of the Kronecker product that are proved in [8, Section 12.1 and 12.2]
or follow directly from the definition.

Lemma 2.2. Let A,B,C,D ∈ Rn×n, then

1. the following equality holds

(A⊗B)(C ⊗D) = AC ⊗BD;

2. there exists a permutation matrix T ∈ Rn2×n2

such that

B ⊗A = T>(A⊗B)T ;

3. if A and B are lower block triangular matrices then A⊗B is again lower
block triangular;

4. A⊗ (B + C) = A⊗B +A⊗ C;
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5. (pA)⊗B = A⊗ (pB) for all p ∈ R;

6. if σ(A) = {λ1, . . . , λn} and σ(B) = {µ1, . . . , µn}, then σ(A ⊗ B) =
{λiµj , i, j = 1, . . . , n});

7. (A⊗B)> = A> ⊗B>.

Now we can derive a model for the higher moments of the system given by
Equation (1). We have

W (k + 1)⊗W (k + 1) = (A(k)W (k))⊗ (A(k)W (k))

= (A(k)⊗A(k))(W (k)⊗W (k)). (5)

Along the lines of (5), for any r ∈ N, we get the following relation

W (k + 1)⊗r = A(k)⊗rW (k)⊗r. (6)

The entries of W (k)⊗r are of the form of the following product of length r:
wi(k)wj(k) . . . wl(k). The expectations of these products are the moments of
W (k). Taking expectations in Equation (6) with respect to the probabilities pi
of the events A(k) = Ai for i = 1, . . . , n yields

E[W (k + 1)⊗r] = E[A(k)⊗r]E[W (k)⊗r] (7)

= MrE[W (k)⊗r] (8)

thus yielding a model describing the evolution of any moment of (1).

We now present the main result of this section.

Theorem 2.3. Let A = {A1, .., Am} be generated from a TCP matrix. Then
the following assertions are true.

1. σ(M1) ⊂ σ(Mr) for all r ∈ N.

2. Let 1 6= λ ∈ σ(M1) with multiplicity k then for all r ∈ N we have
λ ∈ σ(Mr) with multiplicity of at least r · k.

3. The second largest eigenvalue λ2(Mr) is the same for all r ∈ N.

Proof. The eigenvalues of a block triangular matrix depend only on the diagonal
blocks. Also the matrix product and the Kronecker product of lower triangular
matrices generate lower triangular matrices, see Lemma 2.2(3). So in dealing
with this kind of matrices we can focus on the diagonal blocks. We split the
proof into three parts.

(i) We show that Mr is similar to
∑m

i=1 piC
⊗r
i . This follows from apply-

ing first Lemma 2.2(4),(5) and afterwards repeatedly Lemma 2.2(1) to
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(P−1)⊗rMrP
⊗r, where P is the non-singular transformation matrix from

Theorem 2.1:

(P−1)⊗rMrP
⊗r =

(
P−1

)⊗r
(

m∑
i=1

piA
⊗r
i )P⊗r =

m∑
i=1

pi(P
−1)⊗rA⊗ri P⊗r

=

m∑
i=1

pi
(
(P−1)AiP

)⊗r
=

m∑
i=1

piC
⊗r
i . (9)

(ii) We show that C⊗ri is similar to a block triangular matrix with diagonal
blocks 1, Si, S

⊗2
i , . . . , S⊗ri . Note that these blocks are not necessarily in

this order and each S⊗qi appears exactly
(
r
q

)
times and one block equals

1. We show this using induction. The claim is true for r = 1. Let it be
true for r − 1 ≥ 0. This means there is a non singular Tr−1 ∈ Rnr−1×nr−1

where T−1r−1C
⊗r−1
i Tr−1 is a block triangular matrix with diagonal blocks

1, Si, S
⊗2
i , . . . , S⊗r−1i . Then there is a non-singular matrix Q1 := (Tr−1 ⊗

I)−1, where I ∈ Rn×n is the identity matrix, such that

C⊗ri = Q−11 (Tr−1 ⊗ I)−1(C⊗r−1i ⊗ Ci)(Tr−1 ⊗ I)Q1

= Q−11 (T−1r−1C
⊗r−1
i Tr−1 ⊗ ICiI)Q1, (10)

where we used again Lemma 2.2(1). We then have

Q−11 (T−1r−1C
⊗r−1
i Tr−1 ⊗ ICiI)Q1 (11)

= Q−11




1 0 . . . 0

∗
. . .

. . .
...

...
. . . S⊗qi 0

∗ . . . ∗
. . .

⊗ Ci

Q1 (12)

= Q−11


Ci 0

. . .

S⊗qi ⊗ Ci

∗
. . .

Q1 (13)

(14)

Thus C⊗ri is similar to a block triangular matrix with diagonal blocks
1⊗ Ci, Si ⊗ Ci, S

⊗2
i ⊗ Ci, . . . , S

⊗r−1
i ⊗ Ci, where the blocks again do not

have to appear in this specific order. According to Lemma 2.2(2), for each
block S⊗qi ⊗ Ci with q = 1, . . . , r − 1 exists a permutation matrix Tq of
appropriate size, such that

Ci ⊗ S⊗qi = T−1q

(
S⊗qi ⊗ Ci

)
Tq. (15)
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Further, we can find a permutation matrix Q2 ∈ Rnr×nr

, which is a block
diagonal matrix with blocks Tq, q = 1, . . . , r − 1, such that

Q−11 Q>2 (Tr−1 ⊗ I)−1(C⊗r−1i ⊗ Ci)(Tr−1 ⊗ I)Q2Q1

is a block triangular matrix with diagonal blocks

Ci ⊗ 1, Ci ⊗ Si, Ci ⊗ S⊗2i , . . . , Ci ⊗ S⊗r−1i .

Using Ci =

[
1 0
∗ Si

]
the claim follows.

We conclude thatMr is similar to a block triangular matrix with blocks 1,
∑m

i=1 piSi, . . . ,
∑m

i=1 piS
⊗r
i ,

where each block
∑m

i=1 piS
⊗r
i appears exactly

(
r
q

)
times for all q = 1, . . . , r and

one block equals 1. The theorem’s first two claims follow immediately.

(iii) To prove (3) we show that the largest eigenvalue of
∑m

i=1 piS
⊗r
i is less

than or equal to the largest eigenvalue of
∑m

i=1 piS
⊗(r−1)
i for all r ∈ N.

To this end let I ∈ Rn−1×n−1 be the identity matrix and by Lemma 2.2(6)

σ
(∑m

i=1 piS
⊗(r−1)
i

)
⊂ σ

(
I ⊗

(∑m
i=1 piS

⊗(r−1)
i

))
= σ

(∑m
i=1 piI ⊗ S

⊗(r−1)
i

)
,

and no new eigenvalues arise by taking the Kronecker product with the
identity. According to Theorem 2.1, for every vector z ∈ R(n−1)r we have
that

z>

(
m∑
i=1

piI ⊗ S⊗(r−1)i −
m∑
i=1

piS
⊗r
i

)
z

=z>

(
m∑
i=1

pi(I − Si)⊗ S⊗(r−1)i

)
z ≥ 0, (16)

since S
⊗(r−1)
i is positive definite and I − Si is positive semi-definite for

all i = 1, . . . ,m. As the Si are real symmetric matrices, by Lemma 2.2(7)

so are
(∑m

i=1 piI ⊗ S
⊗(r−1)
i

)
and

(∑m
i=1 piS

⊗r
i

)
. Now we denote by µ the

largest eigenvalue of
(∑m

i=1 piI ⊗ S
⊗(r−1)
i

)
and by ν the largest eigen-

value of
(∑m

i=1 piSi ⊗ S⊗(r−1)i

)
. By the Rayleigh-Ritz Theorem [9, The-

orem 4.2.2], we have

µ = max
‖z‖=1

z>

(
m∑
i=1

piI ⊗ S⊗(r−1)i

)
z, (17)

ν = max
‖z‖=1

z>

(
m∑
i=1

piSi ⊗ S⊗(r−1)i

)
z (18)

and µ ≥ ν by Equation (16). This concludes the proof.
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In the following we are interested only in situations where the moments of our
model actually converge. This is assured by Theorem 2.3 if we make the addi-
tional assumption that the second largest eigenvalue of M1 is strictly less than 1.
It is straightforward to see that the second largest eigenvalue of M1 can be equal
to 1 if and only if there is at least one entry of W (k) that is a strictly increasing
function in k. In the context of communication networks this is impossible, as
it would correspond to the existence of a TCP flow that never backs off. Under
this additional assumption Theorem 2.3 not only assures that all moments con-
verge to unique asymptotes, but furthermore it gives a uniform bound for the
rate of convergence of all moments. In the next section we describe a method in
which all higher moments of the system given by Equation (1) can be calculated
directly from the network parameters.

3 Formulae for the Perron vector of Mr

In the previous section we have shown that the moments of the TCP model con-
verge to their asymptotes with a uniform bound on their rate of convergence.
The asymptote to which they converge is determined by the Perron eigenvector
of the Mr. These eigenvectors uniquely determine the moments of the process
and are of practical interest. Furthermore, they are difficult to obtain experi-
mentally, requiring a large number of simulations, and the probability density
from which they are derived is hard to analyse.

Examples are depicted in Figures 1 and 2, where the fractal-like characteristics
of the density can be observed. For the simulations we used the following pa-
rameters: α1 = α2 = α3 = 1

3 , β1 = β2 = β3 = 1
4 ,W (0) = ( 1

3 ,
1
3 ,

1
3 )>. For the

experiment depicted in Figure 1 all possible congestion events have the same
probability, for the experiment depicted in Figure 2 only those congestion events
were allowed, where two or more flows react to the congestion; these occur with
equal probabilities. Congestion events are time instants at which the competing
users (wi) share the full available resource between them and one or more users
have to perform a multiplicative decrease. Each congestion event corresponds
to a time step of (1).

In view of these experiments, it is not only remarkable that information about
the moments can be captured in the Perron eigenvectors of Mr, but also that
closed form expressions for these vectors can be obtained. In this section we give
a procedure for calculating the Perron vector of Mr. Details are given for M3

but the same procedure follows for any Mr. This approach follows and expands
upon the ideas given on an ad-hoc basis in [4].

Specifically, we now present a method in which the third moments of (1) can
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Figure 1: One realisation of a simulation of 10000 congestion events in a three flow
network. (a) comes from a simulation of three flows competing for bandwidth in a sin-
gle bottleneck network, where all possible congestion events have the same probability
and each axis corresponds to the window size of one flow; (b) shows a corresponding
histogram, i.e the number of congestion events in each segment of a partition of the
simplex from (a).
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Figure 2: A second realisation of a simulation of 10000 congestion events in a three
flow network. (a) comes from a simulation of three flows competing for bandwidth in a
single bottleneck network, where congestion events have distinct probabilities and each
axis corresponds to the window size of one flow; (b) shows a corresponding histogram,
i.e the number of congestion events in each segment of a partition of the simplex from
(a).
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be expressed in terms of the second and first moments and the network param-
eters. As we have mentioned, this enables us to abstain from doing extensive
simulations. We now proceed to obtain an expression for this moment. We as-
sume that the first and second moments are known [4], and we will now obtain
the third moment from these vectors and the network parameters. Throughout
this section we are omitting the dependence of variables on the time k whenever
there are no ambiguities. We are interested in finding a method to compute
the third moments of (1). If we assume (without any loss of generality) that∑n

i=1 wi = 1, then using

E[wi] = E[wi · 1] = E[wi · (w1 + w2 + · · ·+ wn)] (19)

and the linearity of the expectation, we obtain the following three equations

E[w2
i ] = E[w3

i ] +
∑
j 6=i

E[w2
iwj ] (20)

E[wi] = E[w3
i ] +

∑
j 6=i

E[wiw
2
j ] + 2

∑
j 6=i

E[w2
iwj ] +

n∑
j,l=1;j,l 6=i;j 6=l

E[wiwjwl] (21)

E[wiwj ] = E[w2
iwj ] + E[wiw

2
j ] +

∑
l 6=i,j

E[wiwjwl]. (22)

We obtain another set of equations relating the first three moments of (1) in the
following manner. For a single flow i ∈ {1, . . . , n} we can describe its evolution
by

wi(k + 1) = βiwi(k) + αiT, (23)

where T is the time between the k′th and the (k+ 1)′th congestion event. This
formula is the fundamental component of TCP (or AIMD). It describes a linear
increase in wi for a time interval of length T , potentially followed by an abrupt
reset upon detection of congestion; see [3] for full details of this algorithm.
Cubing Equation (23) yields

w3
i (k + 1) = β3

i w
3
i (k) + 3αiβ

2
i w

2
i (k)T + 3α2

iβiwi(k)T 2 + α3
iT

3 (24)

and taking the expectation yields

E[w3
i (k + 1)] = E[β3

i w
3
i (k) + 3αiβ

2
i w

2
i (k)T + 3α2

iβiwi(k)T 2 + α3
iT

3]. (25)

Using the linearity of the expectation, and the fact that αi is a constant, and
that probabilities are independent of w(k) for all k ∈ N we obtain

E[w3
i (k + 1)] =

E[β3
i ]E[w3

i (k)] + 3αiE[β2
i w

2
i (k)T ] + 3α2

iE[βiwi(k)T 2] + α3
iE[T 3]. (26)

Next, we utilise the knowledge that E[w3
i (k)] converges as k → ∞. Note this

follows from Section 1 as the second eigenvalue of Mr is strictly less than unity
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for all r. Thus, for large k0 ∈ N we can approximate E[w3
i (k + 1)] = E[w3

i (k)]
for all k ≥ k0 and thus we obtain

E[1− β3
i ]

α3
i

E[w3
i (k)] = 3

E[β2
i w

2
i (k)T ]

α2
i

+ 3
E[βiwi(k)T 2]

αi
+ E[T 3]. (27)

For convenience, we now use the following notation in the final part of the proof:

pijl =
E[1− βiβjβl]

αiαjαl
. (28)

Equation (27) is a special case of the following equation (which is obtained in
the same manner)

pijlE[wiwjwl] =
E[βiβjwiwjT ]

αiαj
+
E[βjβlwjwlT ]

αjαl
+
E[βiβlwiwlT ]

αiαl
+

E[βiwiT
2]

αi
+
E[βjwjT

2]

αj
+
E[βlwlT

2]

αl
+ E[T 3] (29)

These equations give rise to the following two equations by eliminating all terms
containing a T . For the first equation we need the existence of three distinct
flows, and for the second equation two flows suffice.

2
(
piiiE[w3

i ] + pjjjE[w3
j ] + plllE[w3

l ]
)

+ 12pijlE[wiwjwl]

=3
(
piijE[w2

iwj ] + pjjiE[w2
jwi] + pjjlE[w2

jwl]

+plljE[w2
l wj ] + plliE[w2

l wi] + piilE[w2
iwl]

)
(30)

3piijE[w2
iwj ]− 3pjjiE[w2

jwi] = piiiE[w3
i ]− pjjjE[w3

j ] (31)

The next proposition gives an explicit formula for the third moments in the
case for an arbitrary number of flows, where all flows share the same AIMD
parameters.

Proposition 3.1. In the case of n flows, where all flows have the same network
parameters, that is α1 = · · · = αn ∈ R+ and β1 = · · · = βn ∈ (0, 1) the third
moments are given by: E[w3

i ] =(
(n− 2)3E[1− β2

1β2] + 6E[1− β1β2β3]
)
E[w2

1]− 2E[1− β1β2β3]E[w1]

(n− 2)3E[1− β2
1β2] + 4E[1− β1β2β3] + (n− 1)(n− 2)E[1− β3

1 ]
,

for all i = 1, . . . , n, where we have E[w1] = · · · = E[wn] = 1
n .
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Proof. Equations (20),(21) and (30) reduce to:

E[w3
i ] = E[w1]− 3(n− 1)E[w1w

2
2]− (n− 1)(n− 2)E[w1w2w3] (32)

E[w3
i ] = E[w2

1]− (n− 1)E[w1w
2
2] (33)

E[1− β3
1 ]E[w3

1] = 3E[1− β1β2
2 ]E[w1w

2
2]− 2E[1− β1β2β3]E[w1w2w3] (34)

and eliminating the expectations of the mixed products proves the assertion.

In order to compute the third moments in the case of distinct parameters
we write some of the above equations in a matrix notation. To this end let
X := [E[w3

i ]] ∈ Rn, Y := [E[w2
iwj ]]j 6=i ∈ Rn(n−1), Z := [E[w2

i ]] ∈ Rn and

V := [E[wiwj ]]j 6=i ∈ R
n(n−1)

2 , where entries are to be ordered lexicographically
according to their indices. In matrix notation we can write (20) as

X + U1Y = Z, (35)

where if we denote by In the identity matrix of dimension n and by sn−1 the
all ones row vector of length n− 1, we then have U1 = In ⊗ sn−1 ∈ Rn×n(n−1).
Further, Equation (31) can be written as

CX + U2Y = 0, (36)

where C ∈ R
n(n−1)

2 ×n and U2 ∈ R
n(n−1)

2 ×n(n−1). We would like to note at
this point that there is more than one possibility of writing Equation (36) in
the described matrix form. In particular rows of C and U2 can be swapped or
multiplied by−1 as long as it is done simultaneously. Substituting Equation (30)
in Equation (22) yields

RX + U3Y = V, (37)

whereR ∈ R
n(n−1)

2 ×n and U3 ∈ R
n(n−1)

2 ×n(n−1). To calculate the third moments,
we can now use (35) to substitute for X in (36) and (37) and calculate Y with
the following two resulting equations:

R(Z − U1Y ) + U3Y = V (38)

and
C(Z − U1Y ) + U2Y = 0. (39)

Equivalently
(RU1 − U3)Y = RZ − V (40)

and
(CU1 − U2)Y = CZ. (41)

Together we have [
(RU1 − U3)
(CU1 − U2)

]
Y =

[
RZ − V
CZ

]
. (42)
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[
(RU1 − U3)
(CU1 − U2)

]
is a square matrix of order n2−n. In all practical applications

this matrix is invertible or can be made invertible by a slight change of some of

the parameters. Assuming we can use the inverse of

[
(RU1 − U3)
(CU1 − U2)

]
we obtain

Y =

[
(RU1 − U3)
(CU1 − U2)

]−1 [
RZ − V
CZ

]
. (43)

And together with (35) we obtain

X = Z − U1

[
(RU1 − U3)
(CU1 − U2)

]−1 [
RZ − V
CZ

]
. (44)

For the special case of three flows, invertibility of the matrix

[
(RU1 − U3)
(CU1 − U2)

]
can be shown directly. This result is summarised in the following lemma.

Lemma 3.2. For n = 3 the matrix

[
(RU1 − U3)
(CU1 − U2)

]
in Equation (42) is invert-

ible.

Proof. We use the following notation:

a1 :=
−2p111 − 3p112

12p123
a2 :=

−2p111 − 3p113
12p123

(45)

a3 :=
−2p222 − 3p221

12p123
a4 :=

−2p222 − 3p223
12p123

(46)

a5 :=
−2p333 − 3p331

12p123
a6 :=

−2p333 − 3p332
12p123

. (47)

For n = 3 we can write

[
(RU1 − U3)
(CU1 − U2)

]
as a rank-1 update of the form A+B

with

A = (48)
−1 0 −1 0 0 0
0 −1 0 0 −1 0
0 0 0 −1 0 −1

p111 + 3p112 p111 −p222 − 3p221 −p222 0 0
0 0 p222 p222 + 3p223 −p333 −p333 − 3p332

−p111 −p111 − 3p113 0 0 p333 + 3p331 p333


and

B = vw>, (49)

with v =
[

1 1 1 0 0 0
]>

and w =
[
a1 a2 a3 a4 a5 a6

]>
.

If A is invertible and further 1 + w>A−1v 6= 0, then A+ vw> is invertible and

13



by the Sherman-Morrison Formula, e.g [9, p. 19],

(A+ vw>)−1 = A−1 − 1

1 + w>A−1v
A−1vw>A−1. (50)

First we show that A is invertible. The determinant of A is equal to

detA =− 3 (p111p222 + p111p333 + p222p333) (p112 + p113 + p221 + p223 + p331 + p332)

− 9p111 (p223 + p332) (p112 + p113 + p221 + p331)

− 9p222 (p113 + p331) (p112 + p221 + p223 + p332)

− 9p333 (p112 + p221) (p113 + p223 + p331 + p332)

− 27 (p113 + p331) (p112 + p221) (p223 + p332) . (51)

As pijl > 0 for all i, j, l = 1, 2, 3 as can be seen directly from the definition
in Equation (28), it follows that detA < 0 and thus A is invertible. Using
symbolic manipulation one obtains that w>A−1v is a ratio of sums of positive
terms. Thus 1 + w>A−1v 6= 0 for any set of parameters.

In the general case the third moments can be calculated using Equation (43)
and Equation (44). In the following proposition, that follows directly from the
above discussion, we present an explicit formula for the third moments in the
special case of three flows with distinct AIMD parameters.

Proposition 3.3. For 3 flows with distinct AIMD parameters α1, α2, α3 and
β1, β2, β3, the third moments are obtained from the second moments through the
following formulae


E[w2

1w2]
E[w2

1w3]
E[w2

2w1]
E[w2

2w3]
E[w2

3w1]
E[w2

3w2]

 = (A+B)−1


−p111E[w2

1 ]+p222E[w2
2 ]+p333E[w2

3 ]
6p123

 1
1
1

−
 E[w1w2]
E[w1w3]
E[w2w3]

 p111E[w2
1]− p222[w2

2]
p222[w2

2]− p333[w2
3]

−p111[w2
1] + p333[w2

3]




and  E[w3

1]
E[w3

2]
E[w3

3]

 =

 E[w2
1]

E[w2
2]

E[w2
3]

−
 E[w2

1w2] + E[w2
1w3]

E[w2
2w1] + E[w2

2w3]
E[w2

3w1] + E[w2
3w2]

 ,
where A and B are given in Equations (48) and (49) respectively.

Example : To conclude our paper we now demonstrate the efficacy of our
formulae by comparing their predictions against numerical simulations. For this
purpose measurements were obtained from ensembles of Matlab simulations,
in which three flows compete against each other for a resource using AIMD,
and where the probabilities pi are fixed a-priori. In particular we used α1 =

14



1
6 , α2 = 2

6 , α3 = 3
6 , β1 = β2 = β3 = 1

4 ,W (0) = ( 2
3 ,

1
3 , 0)> and the available

resource is normed to 1. At each congestion event each subset of flows has
the same probability of performing a multiplicative decrease reaction. From
the measurements obtained in these simulations, the first, second, and third
moments were derived. The evolution of these moments toward their asymptotes
is depicted in Figures 3,4 and 5. The theoretical predictions are depicted in the
figures as a dashed line, where the predictions in Figures 3 and 4 are based on
results of [4]. The predictions in Figure 5, are based on the formulae derived in
this present paper. Figure 5 illustrates the fidelity of the results in this paper.
Note that all moments converge to a unique asymptote. This is consistent with
the second eigenvalue of the Mr matrices being strictly less than unity. Second,
note that all trajectories converge to their asymptote within 10 time-steps. This
observation is consistent with the fact that the second eigenvalue is identical for
all the Mr. Finally, note that the theoretical asymptotes and the measured
values are in close agreement.
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Figure 3: Graphical presentation of results of MATLAB simulations for first
moments. (a) shows how the window sizes averaged over 100 trials converge
to the calculated first moment; (b) shows how in one trial the temporal mean
of the window sizes converges to the calculated first moment. Both horizontal
axes describe time measured in congestion events.
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Figure 4: Graphical presentation of results of MATLAB simulations for second
moments. (a) shows how the squares of the window sizes averaged over 100
trials converge to the calculated second moment; (b) shows how in one trial the
temporal mean of the squares of the window sizes converges to the calculated
second moment. Both horizontal axes describe time measured in congestion
events.
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Figure 5: Graphical presentation of results of MATLAB simulations for third
moments. (a) shows how the cubes of the window sizes averaged over 100 trials
converge to the calculated third moment; (b) shows how in one trial the temporal
mean of the cubes of the window sizes converges to the calculated third moment.
Both horizontal axes describe time measured in congestion events.
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