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Abstract: We discuss controllability properties of non-invertible nonlinear discrete-
time systems under the assumption of forward accessibility. It is shown how regularity
properties of control sequences can be used in the construction of regions of complete
controllability, i.e. control sets. Some properties of control sets are discussed, and the
existence of regular controls with periodic points in a prescribed region of a control
set is shown. Furthermore, the parameter dependence of control sets and chain control

sets is analyzed.
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1. INTRODUCTION

At the basis of this paper lies the approach to
control systems as dynamical systems that has
been introduced for the continuous time case in
(Colonius and Kliemann, 1993), see also (Colonius
and Kliemann, 1996a) for a recent overview over
the available results. In particular, these results
may be used to obtain a spectral theory for con-
trol systems see (Colonius and Kliemann, 1996b),
(Colonius and Kliemann, 1996¢).

The dynamical systems approach to nonlinear
discrete-time systems has been studied to (Alber-
tini and Sontag, 1990), (Albertini and Sontag,
1993), (Bauer, 1996), and references in these pa-
pers. The common point in these references was
to investigate the properties of so-called control
sets and chain control sets. That is sets that de-
scribe particularly nice regions of the state space,
in which some controllability properties hold.
We aim to extend these results in some points,
also generalizing some of the results presented in
(Wirth, 1998) for a special class of systems.

In the discrete time case some results on topo-
logical dynamics of discrete-time control systems

have been presented in (Kotsios, 1993). Unfor-
tunately, not all the results stated in this paper
state correctly the assumptions necessary for the
conclusion to hold.

In this paper we make particular use of the results
obtained in (Sontag and Wirth, 1998), which show
conditions under which the generic existence of
universally regular control sequence can be guar-
anteed.

In the following Section 2 we give a precise de-
scription of the class of systems we want to con-
sider. We will not restrict ourselves to discrete
time systems that come from sampling of con-
tinuous time-systems (which would imply that
for fixed controls we have a diffeomorphism) as
this is sometimes too restrictive in the discrete-
time setup. We discuss regularity and accessibility
properties of our system and point out some con-
nections between them. In the ensuing Section 3
we show how regularity may be used to character-
ize the core of control sets, introduced in (Alber-
tini and Sontag, 1990). Parameter dependence of
control sets and chain control sets is analyzed in
Section 4.



2. PRELIMINARIES

Let the state space M be a connected, Rieman-
nian, C*-manifold of dimension n. On M we con-
sider a metric d to be fixed. Let the set of control
values U C R™ be a connected set, satisfying
U C clint U. Let U be an open set with c1U c U.
Assume there exists an exceptional set X which
describes those pairs of states and controls where
the transition map is not defined.

We assume that X is analytic in M x U and
satisfies furthermore that for all x € M it holds
that {z} x U ¢ X (so that from every point
z we find an admissible control value u). Define
W := (M xU)\ X and the set of admissible control
values U(z) by {z} x U(z) = {z} x U\ X. For an
analytic map

FiW oM )

we consider the discrete-time system on M of the
form

z(t+1) = f(z(t),u®), teN, (2
z(0)=z9 € M, (3)
u(t) € U(x(t)) . (4)

For all ¢t € N the exceptional sets X; in
M x Ut! are in a natural way defined by
(z,u(0),...,u(t)) € X; iff for some 0 < s < tit
holds that (z(s;z, (u(0),...,u(s—1))),u(s)) € X.
We assume that the sets X; are given as the
intersection of an analytic set X, in M x U
with M x Ut. Assume furthermore that the set
Usup := {u € NpemU(z) 5 f(-,u) is submersive}
is the complement of a proper analytic subset in
U intersected with U.

As in (Albertini and Sontag, 1993) regularity
properties of the iterates of the transition map
will be of importance to us. We define

Wy = {(z,u) € M xintU% weUlz)}

and consider the map

F, Wy > M  Fy(z,u) :=xz(t;z,u) .

For fixed z € M and ug € int U(z) we consider
the rank of the linearization of Fy(z,-) : Ut(z) —
M at ug € Ut ¢ R™ with respect to all control
variables and define
OF,

r(t;z,up) :=rk a—ut(a:,uo). (5)
Definition 1. (Regularity). A pair (z,u) € M x
int Ut is called regular, if v € intU%(z) and
r(t;z,u) = n. A control u € int U? is called (V)-
universally regular, if (x,u) is a regular pair for all

€M, (x €V C M).ue UNis called universally
regular if there exists a 7' > 0 such that for all
t > T the finite control sequence (u(0),...,u(t) is
universally regular.

In the following we assume that Fy(z,-) is non-
trivial with respect to w for all z,t, i.e. if there
exists a regular pair (z,u) € Wi, then there
exists one in every connected component of = X
Ut(zx). Note that all these assumptions are au-
tomatically satisfied, if we consider systems that
are defined everywhere on M x U. A basic ques-
tion in control theory is that of accessibility. Re-
call that the forward orbit at time ¢ of system
(2) is defined by Of(z) = {y € M;3u €
Ut(x) withy = z(t;z,u)}. The forward orbit of
z is then defined by Ot (z) := |J O/ (z). The
teN
backward orbit of z at time t is given by Oy (z) :=
{y € M;3u € Ul(y) with z = x(t;y,u)} and so
O (z) == U Oy ().
teN

Definition 2. (Accessibility). The system (2) is
called forward accessible from z if int OF (x) # 0,

and forward accessible if it is forward accessible
from all x € M.

We note the following properties of the forward
orbit, which follows from simple continuity argu-
ments.

Lemma 8. Consider system (2). Let 1,20 € M.
If 25 € clO1(21) then clOF (22) C 1 OF (z1).

The following lemma summarizes some easy prop-
erties in connection with regularity.

Lemma 4. Let ug € int U, vy € int U?. For zy €
M let Fyys(mo, (ug,v0)) be defined, then

(i) r(t + 5520, (uo,v0)) 2 r(s; x(t; 7o, uo), vo)-
(ii) If vo € intUZ,, then r(t + s;zo, (uo,v0)) >

su
7(t; To, uo).

Let us state some geometric properties in connec-
tion with regularity.
Lemma 5. Consider system (2).

(i) For all ¢t € N the set of singular pairs
Sp(t) = A{(z,u) € Wy r(t;z,u) <n}
is analytic in W;.
(ii) For all t € N and for every up € intU? the
set
Y (ug,t) :=={z € M;ug € U'(z) and
r(t;z,up) < n}

is analytic in M \ {z € M; wug ¢ U'(z)}.
(iii) For all t € N, z € M the set



Z(z,t) :== {u € int U'(2); r(t;z,u) <n}

is analytic in int U?(z).
(iv) If for every t € N u € int U? the set clY (u)
is analytic in M then the set

YV:i={z € M; VteN, Yu € intU'(z)
it holds that r(¢;z,u) < n}

is analytic in M.

(v) Under the assumption of (iv) Y is an invari-
ant set. Le. for every t € N, u € U? it holds
that

r€Y, ueUz) = z(t;z,u) €Y. (6)

Remark 6. For complex analytic systems, it holds
that if Z(z,t) is a proper analytic subset of
int U*(z) then its complement is open and dense.
This is true as intU! is connected, and thus
int Ut(z) is connected as proper analytic subsets
are nowhere separating in complex spaces. For real
systems this might not be true, as several disjoint
connected components of intU!(x) have to be
considered. This is why we assumed nontriviality
of the maps Fi(z,-). Only nontriviality of the
maps F; with respect to u does not suffice in some
of the following statements.

Definition 7. (Regular orbit). Consider system (2).

For x € M we define the regular forward orbit
at time t by @j(w) := {y; Ju € intU’(z) such
that (z,w) is regular and y = z(¢; z,w)}. Similarly,
O, () := {y; Ju € intUl(y) such that (y,u) is
regular and z = z(t;y, u).

The definitions of (§+(w) and O (z) are then
clear.

The following result is only a slight extension
of similar statements in (Albertini and Sontag,
1993).

Lemma 8. Consider system (2) and let z € M,
then

(1) @j( ) is open in M.

(ii) O, (z) is open in M.

(i) int OF (z) # 0 iff @j(x) # 0.

(iv) If, for t € N, (’) (z) # 0, then @:(x) # 0 for
all s > t.

(v) int Of (z) # 0 = cl Of (z) = cl (’5: (z).

3. CONTROL SETS AND CHAIN CONTROL
SETS

The case that z is a fixed point under a control u
such that (z,u) is a regular pair, can immediately
be characterized as follows.

Proposition 9. For © € M there exist u, €
int Ut,t € N such that (z,u;) is a regular pair
and

z = x(t; 2, us) (7)

if and only if there exists an open neighborhood
V of z such that V C (f):r(a:) NO, ().

PROOF.
(i) 7= This follows as x € @:r(x) NO; (z) and
the fact that both @:r (z) and O, (z) are open
by Lemma 8.
(if) ”«=” This is obvious as z € @:(m) O

Let us now extend this property to connected sets.

Proposition 10. If T C M is a connected set
such that for every x € I' the assumption of
Proposition 9 holds for some ¢(z) € N then there
exists a connected open set V' such that

rchﬂo ynoO (z). (8)

z€el

ITBOOF. Let £ € T and consider the set
O (z) NT, which is open in T' by Lemma 8 (i).
Let y € I' N cl@+(m). As y € O (y), which is
open, it follows that (§+(m)ﬂ(§_(y) # 0 and hence

y € (§+(:1:) Thus (§+(:1:) N T is open and closed
in I' and nonempty. As I' is connected it follows
that T' C @+(a:) and as ¢ € T' was arbitrary it
holds for all xl, z9 € ' that z1 € @+(x2) and thus
@+( 1) C ( 2) by Lemma 4 (i). By symmetry
we obtain (9+(:1:1) = @+(x2).
follows for every y € T' that T ¢ O (y) and
again for all 1,2, € T it holds that O (z;) =
O (22). As T is connected we can thus choose V

to be the connected component of oF ()N~ (z)
containing I for some z € T'. O

Furthermore it

To describe the sets that have the properties
guaranteed by the previous lemmata we introduce
the notion of control sets.

Definition 11. (Control set). Consider system (2).
A set ) # D C M is called a precontrol set, if

(i) D ccOt(z), Vz € D.

(ii) For every x € D there exists a u € UN(z)
and an increasing sequence (tg)ren C N such
that z(tg;z,u) € D for all k € N.

A precontrol set D is called control set, if further-
more



(iii) D is a maximal set with respect to inclusion
satisfying (i).

A control set C'is called invariant control set, if

cdC =c0Ot(z),VreC. 9)

One of the main difficulties with the discrete-time
case is that complete controllability need not hold
in the interior of control sets (a trivial consequence
of the definition in continuous time). Following
(Albertini and Sontag, 1993) we define the core
of a control set, where we also require regularity
property to account for problems due to the non-
invertibility of the system.

Definition 12. (Regular core). Let D C M be a
control set with int D # (. The (regular) core of
D is defined to be the set of points in D for which
regular forward and backward orbit intersect D.
It is denoted by core(D).

Proposition 13. Consider system (2). It holds that

A+ . :
x € O (z), iff there exists a control set D C M
such that z € core(D).

PROOF. 7= This follows from Proposition 9.

"<” Let z € core(D) and y € @ (z) N D. By
Lemma 8 (ii) there exists an open neighborhood
V oof y with V.C O (z). As y € D it follows
that V. N OF(x) # 0. Hence, for some t € N we
may choose a control u € int U?(z) to steer from
z to some z € V by continuous dependence on
u. Then we may steer from z back to z using a
control u, such that (z,u,) is a regular pair. Thus

x € @+($) O

Again we extend some results in (Albertini and
Sontag, 1993) to the present situation.

Proposition 14. Consider system (2) and let D C
M be a control set with int D # . If system (2)
is forward accessible from every z € D, then

(i) core(D) is open in M.
(ii) clcore(D) = clint(D) =clD.
(iii) If x € D then core(D) C @+(x) If z €

core(D) then D c O (x).

(iv) If z € core(D), t € N, u € intUL, and
z(t;z,u) € D then z(s;z,u) € core(D) for
s=0,...,t

PROOF.
(i) If © € core(D), then by Proposition 13

A+ .
2 € O (z). Thus the assertion follows from
Proposition 9, as there exists an open neigh-

borhood V' of z satisfying V C @+(x) N

~A—

O (z).V is an open precontrol set satisfying

V C @+(y) NO (y) for all y € V and thus
contained in core(D).

(ii) Clearly clcore(D) C clintD C clD. Let
z € clD and V any open neighborhood of
z. In order to prove the assertion it suffices
to construct a z € V N core(D).

Let y € DNV. By Lemma 8 (v) we may
choose t € N, u € intU%(y) such that
z(t;y,u) € intD N @+(y). By continuous
dependence on the initial values there exists
a neighborhood Vo C V of y such that
z(t; V2,u) C int D, where V5 may be chosen
such that V2NY (u) = 0, i.e. u is an admissible
control for all points in V5, by Lemma 5 (ii).
Let y' € x(t; Va,u) C D. Therefore we obtain
that y € D C clO*(y'), and thus we may
again apply Lemma 8 (v) to see that there

exists a z € V5 such that z € (§+(y’).
We claim that z € core(D). The fact that
z € @Jr(y’ ) implies in particular that y' €
O (2)NintD # 0, and as y' € 1 OF(2') for
all 2/ € D it follows that z € O™ (2') for
all 2/ € D, by Lemma 3. Furthermore, by
construction z(t; z,u) € @+(z) NintD #
and thus D C cdOT(z(t;z,u)) C O (2).
Combining these statements we obtain that
z € V N core(D), which shows that x €
cl core(D).

(iii) If = € core(D) then z € cl O (y) for every

y € D. By Proposition 9, z € @ () and so

Ory)N O (z) # 0 and hence y € O (z)
as we may choose a t € N and a control

in int Ut(y) to steer from y to @ (z). This

shows that D C O (z). As x € core(D) was
arbitrary this implies also that core(D) C

oF (y) for every y € D.
(iv) This is clear as D ¢ @ (z) € O (x(s;z,u))
for s = 0,...,t by Lemma 4 (ii), and

A

core(D) C (’j+(:v(t;:1:,u)) C (’)+(x(s;x,u))
by (iii). O

We have to point out that even with M compact
and (2) forward accessible not every point in the
core of a control set can be represented as a fixed
point under a universally regular control, although
these are generic for ¢ large enough and the core
can be characterized via fixed points satisfying a
regularity condition. An example to this effect can
be found in (Wirth, 1998). We can, however, prove
the following statement.

Theorem 15. Assume that system (2) is forward
accessible. For every control set D C M with
core(D) # () and every open, relatively compact



set ) #V C core(D) there exist z € V, t € N, ut
V-universally regular such that z(t; z,u) = =.

PROOF. Let x € V. By Proposition 13 =z €

oF (x), and we can choose t € N, u € int U? such
that (z,u) is a regular pair and

z = z(t;T,u). (10)

Without loss of generality let ¢ be large enough
such that the set of V-universally regular con-
trols is open and dense in int U?, see (Sontag and
Wirth, 1998). By Proposition 13 we can choose u
V-universally regular such that y; := z(¢; z,u1) €
(’5: () N O, () N V. Using the V-universal reg-
ularity of w; and applying the implicit function
theorem it may be concluded that there exists
an open neighborhood V(z) C V such that for
every y € V(x) there exists a V-universally reg-
ular u(y) with y1 = z(t;y,u(y)). Furthermore as

1 € @t_ (z) we may choose uy € intU!,, such
that y2 := z(t;y1,u2) € V(z). Hence

y1 =z (2691, (u2, u(y2))) , (11)

where (u2,u(y2)) denotes the concatenation of
u2,u(y2)). As us € intU¢, and u(y:) is V-
universally regular it follows by Lemma 4 that
(u2,u(y2)) is V-universally regular. O

Note that the formulation and proof of the previ-
ous proposition can be simplified if M is compact
and then forward accessibility implies genericity of
universally regular controls. If M is not compact
this statement can only be shown for relatively
compact subsets of M.

Another object that is of interest is given by the
chain control sets of system (2). These are defined
not via trajectories of the system but rather with
parts of trajectories of (2) that can be connected
with arbitrarily small jumps. For z,y € M an
(e,T)-chain from z to y is given by a sequence
T = Xg,%1,...,Zx = y with controls uy,...,uk
such that d(z(t;,z;,u;),zi41) < € for suitable
t;>Tandalli=0,... k—1.

Definition 16. Consider system (2). A set § #
E C M is called a chain control set, if

(i) For every z,y € E and all € > 0,T > 0 there
exists an (g, T')-chain from z to y.
(ii) For every z € E there exists a u € UN(z)
such that z(t;z,u) € E for all t € N.
(iii) F is a maximal set w.r.t. to inclusion satis-
fying (i) and (ii).

It is easy to show that chain control sets are
closed, and that to every control set D there

exists a chain control set £ D clD. However,
it may happen that chain control sets contain
several control sets. For examples we refer to
the continuous time examples in (Colonius and
Kliemann, 1996a), that exhibit all the necessary
points.

4. PARAMETER DEPENDENCE

Assume now that our control system (2) depends
analytically on a parameter a € I C R, where I
is an open interval with 0 € I. To be precise we
consider an analytic map f : W x I — M and
assume that each of the systems

z(t +1) = f(z(t), u(t),a), teN

satisfies the conditions stated for system (2). (A
more general description of the problem would
also allow the dependence of the exceptional set
on the parameter, but this is inessential here.) It
is of interest to know how the regions of complete
controllability can vary under small changes of a.
Unfortunately, it is easy to see that neither control
sets nor chain control sets depend continuously on
parameters. An easy example is given by a system
on R" where the transmission maps may be any
matrix with positive entries of norm < 2. For such
a system the positive orthant in R™ is an invariant
control set, but for any open neighborhood of this
set of matrices in R"*" the system is completely
controllable on R™. However, we can state the
following results, which we will show for compact
M for ease of exposition. In the following the
index a will denote objects defined via the system

(2)q-

Proposition 17. Let M be compact and system
(2)4 be forward accessible for every a € I.

Let Dy be a control set of (2)o and K be a compact
set with K C core(D). Then:

(i) There exists a neighborhood I; of 0 such that
for every a € I there is a control set D, with
K C core(Dy).

(ii) The map a — clDy,a € I is lower semi-
continuous w.r.t. the Hausdorff norm.

PROOF. Note that it is sufficient to prove (i)
as (ii) follows immediately from this statement.
To see (i) let K be as described. For each z,y €
K there exists a t(z,y) € N such that y €

@:Ew,y) (z). Using a standard compactness argu-
ment it follows that max, yex t(z,y) < oo, see
also (Wirth, 1998). Let u € U’(z) be such that
(z,u) is regular and z(t;z,u) = y. By regularity
of the map Fyy in (x,u,0) with respect to u we can
apply the implicit function theorem to obtain that
for every (z,a) a sufficiently small neighborhood



of (x,0) € M xI there exists a control v that steers
z to y under the system (2),. In particular, this

holds for the points (z,a) so that y € @:Ewy)a(x)
for || small enough. A further compactness argu-
ment completes the proof. O

Proposition 18. Let M be compact and system
(2)a be forward accessible for every a € I.

Let Ey be a chain control set of (2)g and V' be
an open neighborhood of Ej separating FEy from
an open neighborhood of the other chain control
sets of (2)g. Assume that for some open interval
0 € Iy C I the map f is uniformly continuous on
V xU xIyNW x Iy, then the following hold:

(i) There exists a neighborhood I of 0 such that
for every a € I, and every chain control set E, of
(2)4 it holds that

E,NV # () implies E, C V.

(i) For o € I, let E, ;,j € J(a) be the fam-
ily of chain control sets for system (2), having
nonempty intersection with V. Define

Ey:= |J Ea,
i€d(a)

then, the map a — E,,a € I is upper semi-
continuous w.r.t. the Hausdorff norm.

PROOF. Again (ii) is a consequence of (i). Here
we merely supply an outline of the proof of (i).

Assume that there exists a sequence ay — 0 such
that for every k € N there exists a chain control
set Ejp of (2)a, with points 2 € E; NV and
yr € Ep \ V. Without loss of generality there
are ¢ € clV,y € M\ V such that 2, — z and
yr = y as k — oo. Fix € > 0. Then there exists
a k. € N such that for all k¥ > k. it holds that
max{d(zy,z),d(yr,y)} < €. Thus for all k > k.
there exist controlled (2e,T)4, -chains from zj to
y and from yj, to x, which can e.g. be constructed
by going along an (g,T)q,-chain in Ej from zj
to yr and then jumping to y. Using uniform
continuity we may then construct a (4¢, T')o-chain
from z to y and back to x.

As € > 0 was arbitrary this proves that z,y are
contained in a chain control set E for (2)g. This
contradicts the assumptions on V. O

An interesting subproblem of the previous propo-
sition is obtained when we assume that U is star
shaped with respect to 0 and consider the param-
eter dependence in the form f(z,u,a) := f(z,au)
a > 0. For a — 0 these control systems approxi-
mate the free system

2(t+1) = f(z(t),0), teN.

The relation between the chain transitive sets of
the free system and the control sets of the control
sets with “small” control values has been studied
in (Bauer, 1996).

5. CONCLUSION

We have presented some results make the connec-
tion between dynamical systems and discrete-time
control systems motivated by similar results for
the continuous time case.
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