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Abstract: We consider stabilization over communication channels with delays and packet loss.
Using a variation of dynamic quantization an encoder/decoder scheme is presented which is able
to achieve stabilization if a closed loop system exists which is ISS with respect to measurement
errors. Conditions for stabilization require bounds on the long-term average throughput of the
communication channel. In communication channels which can be modelled as Markov processes
this can be guaranteed almost surely provided an ergodicity assumption is met.
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1. INTRODUCTION

In this paper we consider the problem of stabilizing a
nonlinear finite-dimensional system over a digital com-
munication channel. The situation may be represented
as in Figure 1. One of the main problem in this area is
that the amount of information that can be sent from
the sensing device to the controller is limited and can
be corrupted in several ways. This type of problem has
received considerable attention in recent years, De Persis
and Isidori [2004], De Persis [2007], Wu and Chen [2007],
Hespanha et al. [2007], Nešić and Liberzon [2009], Sailer
and Wirth [2009], De Persis [2009].
First steps in this area considered communication con-
straints such as limited bandwidth or data rate, but issues
as delays and packet loss were not treated. Also the com-
munication channel was treated as static, De Persis and
Isidori [2004], Wu and Chen [2007], Hespanha et al. [2007],
Nešić and Liberzon [2009], whereas many realizations of
communication channels use protocols which define inter-
nal dynamics of the channel. Examples of this are given
by TCP and certain wireless protocols. In this paper we
continue our work in Sailer and Wirth [2009] by extending
the idea of dynamic quantization to the case of delays
and packet loss. We also consider communication channels
which are modelled as Markov chains.
The main result of the paper states that if the classic
concept of dynamic quantization is complemented by time
stamp information, then a sufficiently frequent average
communication rate results in stabilization. The conditions
are quite similar to previous results in this area. As an
intermediate step we prove this result in a deterministic
framework. This provides the basis for the proof of almost
sure convergence in a Markovian setting.
The approach of dynamic quantization we are using

here, was introduced by Brockett and Liberzon [2000]
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and has been extended to the nonlinear case in Liberzon
and Hespanha [2005]. However, the notion of non static
quantization is not new. It was first mentioned within the
control community in the PhD thesis of Tatikonda [2000]
or even earlier within the communication community (c.f.,
Goodman and Gersho [1974]).
We will explain the idea behind dynamic quantization with
the help of Figure 2. At time t1 we have a quantization
region, where we know that the actual state of the system
x(t1) lies within. This hypercube is centered at x̂e(t1) and
its edges have the length `(t1). We divide this hypercube
in Nn hypercubes, where n is the dimension of the state
space and N is the number of partitions per dimension.
Each of the smaller hypercubes has a length of `/N . We
will refer to those smaller hypercubes as subregions.
The sensor determines the actual subregion in which the
state lies and calculates the center xe(t1). We will refer
to this process as encoding. The decoder on the other end
of the channel has a copy of these values, i.e. the decoder
knows the center and length of the region and the values
n and N . Thus if we transmit the number of the subregion
in which the state lies, the decoder is able to reconstruct
the value xe(t1).
If both encoder and decoder let the center xe respectively
xd of the subregion follow the closed loop dynamics until
time t2, the error between the estimate xe and the state x
can grow by a certain factor. If we let the subregion grow
by the same amount (the augmented region is the dashed
box in Figure 2), we are sure that the state at time t2 is
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Fig. 2. Schematic representation of the dynamic quantizer

still within the subregion. This subregion becomes the new
quantization region with the new center x̂e(t2) = xe(t−2 ).
Now we are in the same situation as we started, namely
to know a hypercube in which the state lies and are able
to repeat the same steps.
If the quotient between the growth of the quantization
region and the reduction of the error due to N is smaller
than 1, the quantization error converges to 0.
As sketched above it is important that encoder and

decoder agree on certain values. This is easily achieved,
if there is no delay in the channel, because the decoder
can copy the behavior of the encoder exactly.
The case of fixed delay has been examined in De Persis
[2007]. In order to cope with time varying delays we
propose to send time information along with the encoded
state. The encoder has to send the time information so the
decoder knows the time when the state was encoded. As
soon as the new encoded state is available to the decoder,
it changes the control action. This time information has
to be known by the encoder to copy the behavior of the
state dynamics of the decoder.
We proceed as follows. In the ensuing Section 2.1 we collect
the necessary notations and definitions. The communica-
tion channel is introduced in Section 2.2. In Section 2.3 we
give a detailed description of the quantization scheme and
of the corresponding dynamics of encoder and decoder. It
is important to note that both encoder and decoder have
identical internal models of the system. The important
idea is to ensure that at certain time instances encoder and
decoder are certain to have the same information about the
state of their respective internal models.
In Section 3 we prove that with the encoding-decoding-
scheme introduced in Section 2.3 it is possible to achieve
asymptotic stability. We conclude our paper with some
remarks in Section 4.

2. PRELIMINARIES

2.1 Notations

We use the following definitions. The symbol |x| =
max{|xi||1 ≤ i ≤ n} denotes the maximum norm on
Rn. The floor function b·c : Rn → Rn, x 7→ bxc is
componentwise the biggest integer smaller or equal to xi,
1 ≤ i ≤ n. Similarly the ceiling function d·e : Rn →

Rn, x 7→ dxe, dxe = −b−xc. We introduce r(t−) :=
limt↗t− r(t), if the limit exists. If a continuous function
α : [0,∞) → [0,∞) is strictly increasing and α(0) = 0 then
it is said to be of class K. If α is also unbounded, we say
it is of class K∞. A function β : [0,∞) × [0,∞) → [0,∞)
is said to be of class KL if β(·, t) ∈ K for each fixed t ≥ 0
and β(r, t) decreases to 0 as t → ∞ for each fixed r ≥ 0.
We consider systems of the form

ẋ = f(x, u), x ∈ Rn, u ∈ U ⊂ Rm , (1)
where f : Rn × Rm → Rn is continuous and Lipschitz in
the first component uniformly with respect to u, i.e.,
|f(x, u)− f(y, u)| ≤ L|x− y|, ∀x, y ∈ Rn ,∀u ∈ U . (2)

Remark 2.1. Because of the stochastic nature of Theo-
rem 3.6 we cannot bound the region in which the state
will remain a priori. Therefore we assume global Lipschitz
continuity.
We expect that an extension to the case of local Lipschitz
continuity is possible by using packet drop information,
which determines bounds on the trajectories.
However, for our deterministic result (Theorem 3.1) it
would be sufficient to know a local Lipschitz constant as
discussed in Sailer and Wirth [2009].
Assumption 2.2. There exists a smooth k : Rn → Rm,
x 7→ k(x) with k(0) = 0 such that

ẋ = f(x, k(x + ed(t))) (3)
is ISS with respect to the measurement error ed. Note that
this is equivalent to the existence of functions β ∈ KL and
γ ∈ K∞ so that the solutions of (3) satisfies

|x(t)| ≤ β(|x(t0)|, t−t0)+γ

(
sup

s∈[t0,t]

|ed(s)|

)
∀t ≥ t0. (4)

For a comprehensive introduction and the precise defini-
tion of ISS see e.g., Sontag [2008].
The next section is concerned with the properties of the
communication channel.

2.2 The Communication Between Encoder and Decoder

We consider TCP like packet based transmissions over a
noiseless, errorfree channel with delay and packet loss.
The encoder encodes the state and sends a symbol from a
finite alphabet to the decoder together with the time when
the state was encoded (time stamping). As soon as a packet
arrives at the decoder, it reconstructs the encoded state
and sends an acknowledgment (ack) back to the encoder. If
this ack arrives at the encoder or a predefined time elapses
without receiving one, it repeats the encoding. Denote by
tk the kth time instance the encoder received an ack. The
time when the kth information sent by the encoder is
received by the decoder is denoted by t∗k. Note that we
assume that there is no time delay between the arrival of
an information and the sending of the next packet i.e. tk
and t∗k are also the time instances when the encoder sends
information and the decoder sends an ack respectively.
Assumption 2.3. There exists a long time average of the
difference between tk − tk−1. This average is given by

τ∗ = lim sup
k→∞

1
k

k∑
j=2

(tj − tj−1) = lim sup
k→∞

1
k

tk. (5)



Remark 2.4. Assumption 2.3 states that on average on an
infinite time horizon, every τ∗ units of time a packet will
be successfully acknowledged.
From the relation between tk and t∗k it can be seen that
the long time average of the difference t∗k+1 − t∗k is also
equal to τ∗.
Assumption 2.5. For the communication channel the fol-
lowing should hold:

(1) All packets are time stamped with the current time
they are sent

(2) Only packets sent from encoder to decoder are lost
(3) There exists a minimal delay from encoder to decoder,

given by τmin, i.e., t∗k−tk ≥ τmin and tk−t∗k−1 ≥ τmin

(4) The channel is able to transmit packets containing a
value from a set of Nn (N odd) discrete values within
τmin units of time

(5) If τmax time elapses without receiving an ack, the
packet sent last time is considered lost and a new
packet will be sent

Remark 2.6. By (1) we have to send the actual time
together with the encoded state information. It is not
reasonable to be able to transmit the state information
quantized and the time information not. For the sake of
simplicity we omit details on time quantization, see Sailer
and Wirth [2009] for a discussion.
Assumption 2.5 (2) is a major restriction on the channel
used. But because the ack’s are much smaller than the
state information the decoder could send many ack’s to
ensure that at least one arrives at the encoder. Without
this assumption we could not guarantee that the encoder
and the decoder agree on their states.
Assumption 2.5 (3) is in general not a restrictive one. In
every real communication channel such a minimal delay
exists.
Assumption 2.5 (4) states that the bandwith of the channel
B must be large enough to transmit the state information
within τmin units of time. For instance, if binary encoding
is used we require

B ≥ n log2 N

τmin
. (6)

If this condition is not met, the decoder could introduce
an artificial delay by waiting to ensure that τmin is large
enough to fulfill the bandwith constraint.
The choice for N to be odd guarantees that the center
of the quantization region lies in the interior of one of the
subregions. Although this is not needed in general, it eases
the presentation.
Remark 2.7. By item (5) of Assumption 2.5 and the re-
marks on τmin, the values τmin and τmax may be regarded
as design parameters. While choosing τmin too small, can
violate the bandwith constraint, a larger value can degrade
the performance of the overall system. Similar statements
hold for τmax. If τmax is chosen too small, no ack will arrive
at the encoder before a new packet will be sent. And again
choosing τmax too large may have a negative effect on the
performance.
Assumption 2.8. Clocks of encoder and decoder are syn-
chronized and the time t1 = 0 when the encoder sends the
first packet is known by the encoder and the decoder.
Assumption 2.9. Both the encoder and the decoder know
the same bound of the initial state of the system (i.e.,

encoder and decoder know the same X ∈ R s.t. |x(0)| ≤
X).

2.3 The Equations for Encoder and Decoder

The initial states for the encoder and the decoder are:
k = 1, t0 = 0, t∗0 = 0, t1 = 0 t∗1 = 0 and x̂d(0) = x̂e(0) = 0
xe(0−) = xd(0−) = 0 and `e(0−) = `d(0−) = 2X.

The Encoder equations read:
(i) Every time an ack arrives at the encoder (t = tk)

ts = t (7)

`e(tk) = `e(tk−1)eL(tk−tk−1)/N (8)
xe(t−k ) = xe(tk−1)+∫ t∗k−1

tk−1

f(xe(s), k(x̂e(s)))ds+ (9)∫ tk

t∗
k−1

f(xe(s), k(xe(s)))ds

s(ts) = ϕ(xe(t−k ), x(tk), `e(tk)) (10)

xe(tk) = xe(t−k ) + s(ts)
`e(tk)

N
(11)

x̂e(tk) = xe(t−k ) (12)
Every time the encoder receives an ack (t = tk) it updates
the length of the quantization region according to the
growth of the error on the last interval (8). The center of
the quantization region is updated via (9). Both integrals
are needed to account for the change in the control action
on the decoder side. The subregion in which the state lies
is calculated by (10). This information will be sent to the
decoder together with the actual time (7). The jump from
the center to the subregion is done by equation (11). The
value of the old quantization region is copied by (12).
(ii) If τmax time without an ack elapse

ts = t (13)

`e(t) = `e(tk)eL(t−tk) (14)
xe(t−) = x̂e(t) (15)

s(ts) = ϕ(xe(t−), x(t), `e(t)) (16)

xe(t) = xe(t−) + s(ts)
`e(t)
N

(17)

If τmax units of time elapse without receiving an ack, the
packet sent last time is considered lost and an new one will
be sent. Similar to the case of no loss, the encoder updates
the length of the quantization region (14). Note that there
is no division by N . Equation (15) cancels the jump from
the center to the subregion made in the last encoding step.
The equations (16) and (17) follow the same reason as in
the case of no loss. In both cases ((i) and (ii)) ts and s(ts)
are auxiliary variables, describing the data payload of the
packets sent from encoder to decoder.
(iii) Otherwise:

˙̂xe(t) = f(x̂e(t), k(x̂e(t))) (18)
We need (18) to know the trajectory which will be used
to close the loop on the decoder side as can be seen from
Lemma 3.3 and 3.4. It is also needed to treat the case of
packet loss (15).
The decoder equations read:
(i) Every time a packet arrives at the decoder (t = t∗k)



`d(ts) = `d(tk−1)eL(ts−tk−1)/N (19)

xd(t−s ) = x̂d(t∗k−1) +
∫ ts

t∗
k−1

f(xd(s), k(xd(s)))ds (20)

xd(ts) = xd(t−s ) + s(ts)
`d(ts)

N
(21)

x̂d(t∗k) = xd(ts) +
∫ t∗k

ts

f(xd(s), k(x̂d(s)))ds (22)

(ii) Otherwise
˙̂xd(t) = f(x̂d(t), k(x̂d(t))) (23)

The decoder copies the behavior of the encoder with the
help of (19)-(21). Equation (22) compensates for the delay
between encoder and decoder.
A sketch of the evolution of the different trajectories is
depicted in Figure 3.
The function ϕ calculates the subregion in which the state
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Fig. 3. Snapshot of the different trajectories at time t∗2

lies at each encoding step.

ϕ(xe, x, `) =
⌊

N

`
(x− xe) +

1
2

⌋
. (24)

If at time t the state lies within the quantization region,
the error between the state and the estimate shrinks by N
because of the jump from the center of the region to the
center of a subregion. Hence

|x(t)− xe(t−)| ≤ `

2
⇒ |x(t)− xe(t)| ≤

`

2N
(25)

holds, which can be seen from (24) and (11). Overall, the
evolution of the closed loop system is given by

ẋ(t) = f(x(t), k(x̂d(t))) . (26)
In the ensuing section we will give conditions under which
this scheme results in stabilization.

3. MAIN RESULT

3.1 Deterministic Result

The proofs given in this section are similar to those from
Sailer and Wirth [2009]. The main difference is that we
consider here a long time average for the delay as opposed
to a worst case scenario as in Sailer and Wirth [2009]. To
let this paper stand for its own, the whole proofs are given.
Theorem 3.1. Consider system (1) with encoder/decoder
scheme described in (7)-(23) and let Assumptions 2.2, 2.3,
2.5, 2.8 and 2.9 hold. If

N > eLτ∗ (27)

then u = k(x̂d), where x̂d is generated by the decoder (23),
asymptotically stabilizes the equilibrium x∗ = 0 of (1).
Remark 3.2. By putting together condition (6) and (27),
we get

B ≥ n log2(eLτ∗ + 2)
τmin

.

This condition on the bandwidth (with binary encoding)
ensures the existence of an odd number N which fullfils
both (6) and (27).

To achieve asymptotic stability of the closed loop system
we have to make sure that the error between the state
of the system and the value which will be used to close
the loop converges to zero (Corollary 3.5). To this end
we have to ensure the convergence of the encoder state
to the state of the system (Lemma 3.4). To bound the
growth of the error between encoder and system, we have
to make sure that they close their loops with the same
signal (Lemma 3.3).
For the ensuing lemma it is important to recall that all the
states of encoder and decoder (with the exception of x̂d)
are only calculated at discrete time instances. Nevertheless
we need a continuous version of the evolution of the
encoder state given by

ẋe(t) =
{

f(xe(t), k(x̂e(t))) t ∈ [tk, t∗k)
f(xe(t), k(xe(t))) t ∈ [t∗k, tk+1)

. (28)

Note that even if packet loss occurred, (28) is valid,
because every time a loss happened the encoder undoes
the jump made in the last encoding step via equations
(15) and (14).
Lemma 3.3. Consider encoder/decoder scheme described
in (7)-(23). If Assumptions 2.2, 2.3, 2.5, 2.8 and 2.9
hold, then x̂d(t) = x̂e(t) for all t ∈ [tk, t∗k) and for all
t ∈ [t∗k, tk+1) we have x̂d(t) = xe(t).

Proof. As soon as a packet arrives at the decoder, it
knows the time when the state was encoded due to the time
stamping. Hence the decoder can use (19) to reconstruct
the length of the quantization region used to encode the
state (8) respectively (14). Hence it holds

`e(ts) = `d(ts). (29)

Because of the initial condition of the encoder and the
decoder and (12) it holds that x̂d(0) = x̂e(0) = 0. Using
t1 = 0 and equations (18) and (23) we obtain

x̂d(t) = x̂e(t) ∀t ∈ [t1, t∗1). (30)

At time t∗1 the value s(ts) as well as the time ts becomes
available to the decoder. Because of the initialization of
encoder and decoder and (11) respectively (21) and (29)
it holds that xe(t1) = xd(t1). By (22), (28) and (30) we
have x̂d(t∗1) = xe(t∗1).
Since both trajectories follow the same dynamics on
the interval [t∗k, tk+1) by (23) and (28) we get x̂d(t) =
xe(t) , ∀t ∈ [t∗1, t2).
Due to the continuity of x̂d at tk and (12) x̂d(t2) = x̂e(t2)
holds. From (9), (20) and (22) as well as (30) we can deduce

xd(t−2 ) = xe(t−2 ).

Now we can use (11) respectively (21) and (29) to get
xd(t2) = xe(t2). To conclude the proof, repeat the argu-
ments inductively.



Define ee(t) := xe(t) − x(t) as the error between the
encoded state and the state of the system. Now that we
know when certain signals on the encoder side coincide
with the corresponding signal on the decoder side, we can
bound the error ee(t) with the help of the next lemma.
Lemma 3.4. Consider system (1) with encoder/decoder
scheme described in (7)-(23). If Assumptions 2.2, 2.3, 2.5,
2.8, 2.9 and condition (27) hold, then limk→∞ |ee(tk)| = 0.

Proof. Because of Assumption 2.9 and initialization of
the encoder, the initial state x(t1) is within the quantiza-
tion region.

|0− x(t1)| = |ee(t−1 )| ≤ X =
`(t−1 )

2
.

Hence we can use (25) to obtain

|ee(t1)| ≤
`(t−1 )
2N

. (31)

Let a∨b := max{a, b} and a∧b := min{a, b}. The encoder
error ee satisfies for t ∈ [tk−1, tk) according to (28) and
(26):

|ee(t)| = |xe(t)− x(t)| = |xe(tk−1)+∫ t∗k−1∧t

tk−1

f(xe(s), k(x̂e(s)))ds+
∫ t∨t∗k−1

t∗
k−1

f(xe(s), k(xe(s)))ds

−x(tk−1)−
∫ t

tk−1

f(x(s), k(x̂d(s)))ds|.

We can split the last integral and collect the corresponding
terms to get:

|ee(t)| = |xe(tk−1)− x(tk−1)+∫ t∗k−1∧t

tk−1

(f(xe(s), k(x̂e(s)))− f(x(s), k(x̂d(s))))ds

+
∫ t∨t∗k−1

t∗
k−1

(f(xe(s), k(xe(s)))− f(x(s), k(x̂d(s))))ds|.

Now we can use (2) and Lemma 3.3 to arrive at:

|ee(t)| ≤ |ee(tk−1)|+ L

∫ t

tk−1

|ee(s)|ds.

Because of the continuity of ee(t) on the interval t ∈
[tk−1, tk) the Gronwall-lemma yields

|ee(t−k )| ≤ |ee(tk−1)|eL(tk−tk−1).

Using (25) again gives

|ee(tk)| ≤ |ee(tk−1)|eL(tk−tk−1)/N.

Starting with (31) and repeating the previous arguments
yields

lim
k→∞

|ee(tk)| ≤ lim
k→∞

|ee(t1)|eL(tk−t1)/Nk. (32)

With the help of (5) we get

lim
k→∞

|ee(tk)| ≤ X lim
k→∞

(
eLτ∗

N

)k

= 0 ,

where the convergence is guaranteed by condition (27) and
the proof is complete.

With the help of the bound on the error on the encoder
side, we can bound the error on the decoder side as well.
To this end define ed(t) := x̂d(t)−x(t) as the error between
the trajectory used to close the loop and the state of the
system.

Corollary 3.5. Consider system (1) with encoder/decoder
scheme described in (7)-(23). Let the premise of Lemma 3.4
hold, then limk→∞ |ed(t∗k)| = 0.

Proof. Using Lemma 3.3 we are able to conclude
|ed(t∗k)| = |ee(t∗k)|.

Using the Gronwall Lemma as in the proof of Lemma 3.4,
the error evolves according to:

|ed(t∗k)| = |ee(t∗k)| ≤ |ee(tk)|eL(t∗k−tk).

Applying limits on both sides and considering (32), we get

lim
k→∞

|ed(t∗k)| ≤ |ee(t1)| lim
k→∞

eL(t∗k−tk)eL(tk−t1)/Nk .

From (5) we can deduce

lim
k→∞

|ed(t∗k)| ≤ |ee(t1)| lim
k→∞

eL(t∗k−t1)/Nk (33)

≤ |ee(t1)| lim
k→∞

(
eLτ∗

N

)k

eL(t∗1−t1) = 0 ,

where the last equality follows from condition (27).

The proof of our main Theorem 3.1 is now an easy
consequence of the ISS Assumption 2.2.

Proof. (of Theorem 3.1) By Corollary 3.5 and the con-
tinuity of ed(t) on the interval [t∗k, t∗k+1) the bound W :=
supt≥0 |ed(t)| < ∞ exists. From the bound of the initial
value X and the maximal error on the decoder side W we
obtain using (4) that

|x(t)| ≤ β(X, 0) + γ(W ) =: E ∀t ≥ 0.

Using (4) again we get

|x(t)| ≤ β(E, t− t0) + γ

(
sup

s∈[t0,t]

|ed(s)|

)
∀t ≥ t0.

As t0 goes to infinity the right hand side converges to zero
which shows the attractivity of x∗ = 0. On the other hand
we can use (33) to interpret (4) as:

|x(t)| ≤ β(|x(0)|, 0) + γ(sup
k∈N

|xe(0)− x(0)|eL(t∗k−t1)/Nk).

The existence of the supremum is guaranteed by Corol-
lary 3.5. Hence the right hand side can be chosen arbitrar-
ily small by choosing |x(0)| small, which together with the
attractivity concludes the proof.

3.2 Markovian Communication Models

In this section we derive conditions for the stabilization
of the system given in (1) under the condition that the
communication channel can be described by a (time-
homogeneous) Markov process. The model of system,
encoding and decoding will remain the same. Only the
process of delays and packet loss will have additional as-
sumptions. The approach of modeling the communication
channel in a Markovian way is justified by the fact that in
many cases this yields appropriate models for the dynam-
ical behavior of the channel, as can be seen for example in
Wirth et al. [2006] and Shorten et al. [2007] for TCP and
in Bianchi [2000] for the wireless case.
In the following we assume as given a communication chan-
nel in which external perturbations such as average load
of other users is stationary. We consider a Markov chain
{X(k)}k∈N, where the state X lies in a state space of the



chain S. This state space would be specified by concrete
situations. As we are considering TCP like transmissions
over a digital channel, we can only send information at
discrete time instances, justifying a Markov process which
is discrete in time.
We assume as given two continuous maps describing the
communication, namely

T : S → [Tmin,∞) , g : S → N , (34)
where T (X) denotes the length of the next communication
interval depending on the state X of the channel and
g(X) denotes the number of bits that can be sent in that
interval. Thus if communication starts at a time t1 ∈ R
and l := n log2 N + b bits have to be sent, where b is the
acknowledgment size in bits, we define a stopping time of
the Markov chain by

k∗1 = min

k

∣∣∣∣∣∣
k∑

j=0

g(X(j)) ≥ l or
k∑

j=0

T (X(j)) ≥ τmax


and until k∗1

k∗1∑
j=0

T (X(j)) =: τ(1)

units of time elapse. If τ(1) ≥ τmax, we consider the
information to be lost. To ensure the Markovian property
of our description, we assume that X(k) has the strong
Markov property, i.e. the evolution of the process only
depends on the state of the chain at the stopping time
k∗. The next time we want to send information, i.e. at
time t1 + τ(1) we define the next stopping time k∗2 by

k∗2 = min

k

∣∣∣∣∣∣
k∑

j=k∗1

g(X(j)) ≥ l or
k∑

j=k∗1

T (X(j)) ≥ τmax

 .

And the duration from k∗1 until k∗2 by
∑k∗2

j=k∗1
T (X(j)) =:

τ(2) If we repeat this procedure a sequence of time
instances is given by {τ(j)}j∈N.
We now assume ergodicity of the Markov chain, which
ensures that almost surely

τ∗M := lim
k→∞

1
k

k∑
j=0

τ(j)1{τ(j) < τmax} (35)

exists, where 1 denotes the indicator function.
With the above considerations we are able to state the
next theorem.
Theorem 3.6. Consider system (1) with encoder/decoder
scheme described in (7)-(23) and let Assumptions 2.2, 2.5,
2.8 and 2.9 hold. Let an ergodic Markov process X with
stopping times as in (3.2) exist with T and g given in (34).
If

N > eLτ∗M , (36)
where τ∗M is denoted by (35), then u = k(x̂d), where x̂d

is generated by the decoder (23), asymptotically stabilizes
the equilibrium x∗ = 0 of (1) almost surely.

Proof. The proof goes along the lines of the proof of
Theorem 3.1. Only the condition (27) has to be exchanged
with condition (36).

4. CONCLUSION

In this note we have presented an extension to Sailer and
Wirth [2009] to a more sophisticated model for delay and

packet loss. By considering a long time average rather than
a maximal delay, we could give in general better conditions
for the communication channel. In the case of deterministic
delays we had to assume the existence of such a long time
average. For the case that the communication channel is
modeled by a Markov process, we have given conditions
under which such an average almost surely exists.
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