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Abstract

We consider a perturbed nonlinear system with a fixed
point that is invariant under all perturbations. Under the
assumption that this fixed point is locally exponentially
stable for the unperturbed system we propose a method
for the approximation of the robust domain of attraction,
that is, the set of points that are attracted to the fixed
point under all time-varying perturbations taking values
in a specified set.

1 Introduction

For nonlinear systems one basic question is that of the
determination of domains of attraction of asymptotically
stable fixed points. This question has received consider-
able attention over the last decade, see e.g. [9], [1], [7].
In this paper we study nonlinear systems with an affine
perturbation structure that have a singular fixed point.
This setup is a special case of the one treated in [6], where
it has been proved that for uniformly asymptotically sta-
ble sets of families of time-varying systems there exist
smooth global Lyapunov functions.

We proceed as follows. In Section 2 we introduce the class
of systems we wish to consider. The concept of the robust
domain of attraction is introduced and a few properties
are discussed. In the ensuing section we analyze the lin-
earization of the nonlinear systems, finding a ball of ini-
tial conditions yeilding trajectories which robustly con-
verge to the origin. The determination of the domain of
attraction, however, is clearly a nonlinear problem, thus
in Section 4 we characterize the robust domain of attrac-
tion in terms of an optimal control problem, and present
approximations to this problems whose value functions
are computable as viscosity solutions of Hamilton-Jacobi-
Bellman equations. In order to improve these approxima-
tions, we suggest how to use the information provided by
the linearization in Section 5. The algorithm suggested
by our results is then presented in Section 6.
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2 Problem formulation

Consider an autonomous system subject to affine pertur-
bations as follows:

m

&= fo(x) + Y _ di(t) fi(z) =: F(z,d(t))

i=1

(2.1)

where f;(0) = 0, ¢ = 0...m and the d(-) € £°(R,R™)
are such that existence and uniqueness of solutions is
guaranteed. We assume that the vector fields f; are lo-
cally Lipschitz continuous and continuously differentiable
in 0. Solutions to the initial value problem (2.1) with
z(0) = =z for a particular d will be denoted (t; zq,d).
The unknown perturbation function d is assumed to take
values in D C R™, where D is compact, convex, with
nonempty interior, and 0 € D. Denote D := {d €
{>*(R,R™) ; d(t) € D}.

Given d € D, the domain of attraction of 0 at time £y = 0
for (2.1) is

Aq(0) :={z | p(t;z,d) = 0,t - o0}
A robust domain of attraction may now be defined.

Definition 2.1 [D-robust Domain of Attraction] Let
D C R™ as before. The D-robust domain of attraction
of the equilibrium 0 of (2.1), is

Ap(0) = {z |VdeD, p(t;z,d) = 0,t > oo}
= Naep 4a(0)

Note that the definition implies that if 0 is locally uni-
formly asymptotically stable for all d € D, then Ap(0)
is an open, connected, invariant set. This definition in-
spires a number of problems regarding the robustness of
the perturbed system (2.1). The two main problems are:

(i) Given D C R™, determine Ap(0).

(ii) Given A C A(0) and D C R™, determine the largest
a such that A C A,p(0).

In this paper we concentrate on the first question. Note
that if the allowable perturbations are increased there
are three different scenarios with which the the property
A C Ayp(0) is lost at some minimal «q.



(i) Loss of stability at 0. i.e. A C Ayp(0) for a < aq
and dist(A4,0A,p(0)) > 6 > 0 for all 0 < & < ayp.
e.g. linear systems.

(ii) As a — ag it holds that dist(A,8.A4,p(0)) — 0.

(iii) Birth of an attractor in intA,
dist(A,0A4p(0)) > 6 >0 for all 0 < a < ap.

while

An example for the last scenario is given by the following
system on R:

T=—-z+ d(t)g:c sin(z)
™

with A = [1,1] and D = [1,1]. Then, A;5(0) =
[—, @], while for 0 < @ < 1 we have A,p(0) =R

3 The linearized system

The first question to consider is under which conditions
Ap(0) contains a neighborhood of 0. To examine this
question we study the linearization of (2.1) at 0:

§(t) = Aoy(t) + D di(t) Aiy(t) := A(d(t)) y(t) (3.1)
i=1
where A; denotes the Jacobian of f; in 0, 4 = 0...m.
For d € D let ®,4(t,s) denote the evolution operator of
z = A(d(t))xz(t). The corresponding Bohl exponent is
defined by

B(d) := inf{B; IM : [|®alt, 5)]| < M= ¥t > 5 > 0}

Exponential stability of a linear time-varying system
given by d € D is equivalent to 8(d) < 0, see [4]. We
denote the maximal Bohl exponent by

/3(-’405 tee aAmaD) = r;leagﬁ(d) .

In [2] it is shown that the maximum is indeed attained. If
the maximal Bohl exponent is negative this is equivalent
to existence of constants M > 1,3 < 0 such that

|®a(t,s)|| < MePt, VdeD. (3.2)

By [4, Th. VIL1.3] the Bohl exponent is upper semi-
continuous even under nonlinear perturbations. Thus:

Lemma 3.1 Consider (2.1) with linearization (3.1).

(i) If B(Aq, ..., Am, D) < 0 then Ap(0) contains an open
neighborhood of 0.

() If B(Ag, ..., Am,D) > 0 then 0 € 0Ap(0).

The following example shows that for the case
B(Ag, ..., An, D) = 0 both situations are possible.

Example 3.2 Let Ay,..., A, € R"*™ and D C R™ be
such that 5(0,A4,..., Ay, D) = 0 and consider the sys-
tems

& = —x(t) < z(t),z(t) > + i di(O)Az(t)  (3.3)

& =a(t) <z(t),z(t) >+ ) di(t)Asz(t) (3.4)
i=1

Clearly, for system (3.3) Ap(0) = R™ while for (3.4)
Ap(0) = {0} and the Bohl exponent of the linearization
is 0 for both systems.

As in [8] for a given D the following can be shown. For
all C'-perturbation structures fo,..., fm with singular
fixed point 0, outside of a residual set, there exists at
most one a > 0 such that §(Ao,...,Amn,aD) = 0. Thus
“generically” the point where the Bohl exponent does not
indicate whether 0 € int.Ap(0) is exactly the perturba-
tion intensity at which the system becomes exponentially
unstable.

We conclude this section with a more precise statement
on the size of the ball contained in Ap(0), which is
a consequence of [4, Th.VIL.1.3]. To this end denote
L(D) = maxaep A

Lemma 3.3 Let 3(Ag,...,An, D) <8 <0 and Mg >1
such that (8.2) is satisfied and fix 3 < B' < 0 and M >
Mg. Let h >0, g > 0 be such that

1- Mge*(ﬂfﬁ')h >0 and
qhePLD)+a+B0h — min fpr — Mg,1— Mﬁe*(ﬁfﬁ')h}_
If ||F(z,d) — A(d)|| < q for all z € B(0,¢),d € D then
lz(t, z,d)—A(d)z|| < MePt||z||, Vz e B(0,e/M),deD.
In particular, it follows that B(0,e/M) C Ap(0).

4 An optimal control characterization of
the robust domain of attraction

By definition we have
20 € Ap(0) & Vd € D lim [|p(t; 2o, d)]| = 0,
t—00

Assuming that B(4o,...,Am,D) < 0 and applying
Lemma 3.1 we obtain immediately that

20 € Ap(0) & VdeD, limsupl|e(t;xo,d)| £D1)
t—o0

It is of interest to note that negativity of the Bohl expo-
nent allows for a uniform bound.

(2.1)
,Am),D) <0 then

Lemma 4.1 Consider and that

B((Ao, - -

zo € Ap(0) & lim sup [l (t; 2o, d)|| = 0.
t—o0 deD

assume

Proof: Clearly we need only show “=”. Assume that
z € Ap(0) and there exist sequences dy, € D, Ty, — ¢
such that ||z(Tk,z,dg)|| > d > 0 for all £ € N. Without
loss of generality d — d € D in the weak-x topology
on D. By assumption for every £ there exists a to such



that z(to,z,d) € B(0,¢) choosing ¢ > 0 small enough
we can guarantee by Lemma 3.1 that all solutions start-
ing in B(0, 2¢) are bounded by 2e MgePt for some 3 < 0.
As z(to,x,dr) — z(to,z,d) this means for all k large
enough [|z(t, z,dy)|| < 2eMgePt=t0) for t > t, a contra-
diction. 0
Motivated by (4.1) and this lemma, the domain of at-
traction can thus be characterized via the following opti-
mization problem. Define

Jo(x,d) :=limsup [|¢(t; =, d)]|
t—o0

and the corresponding value function

vo(x) = sup Jo(z,d),

then Ap(0) = vy (0). In other words, there clearly exists
a ¢ > 0 such that = ¢ Ap(0) implies that vo(z) > c.

The problem with this value function is obviously its dis-
continuity at the boundary of Ap(0). As v is hard to
calculate we use a standard approximation scheme, e.g.
[5], for its calculation. For 6 > 0 define

Js(w,d) = / se=lp(t; 7, d) |t
0

with value function v5(z) = supyep Js(x,d). Note that
vg is continuous w.r.t. x.

Although it is not generally true that vs is strictly de-
creasing w.r.t. §, it is possible to obtain a convergence
result.For M > 1 and 0 > 8 > (4o,...,An, D) denote

X(M,B) :={z; Vt >0 : sup||z(t, zo,d)|| < Me’'}
deD

Note that Ap(0) D X(M, (), and via Lemmas 3.3 and

4.1, Ap(0) = UM21,0>B>ﬁ(A0,...,Am,D) X (M, B). The fol-
lowing result may then be shown.

Proposition 4.2 Consider (2.1) and assume that

B((Ao,--.,Am), D) <0 then
vs — vo uniformly on compact subsets of Ap(0).

Furthermore for 0 > 8 > B(Ao, ..., Am, D) it holds that

é
z € X(M,B) = vs(z) < Mm
The previous statement implies that vs converges linearly
on compact subsets of Ap(0) to 0. To obtain an estimate

for Ap(0) define
A(d,e) :=={z € R* ; vs(z) < €}.
Then we have

Proposition 4.3 Consider (2.1) and assume that
B(Ag,..., Am,D) < 0 then for all 0 < & < ¢p :=
dist(0,0.Ap(0))

Ap(0) = JAG,e)= |J AGe), V&*>0

6>0 0*>6>0

In general, information about ¢y amounts to the solution
of the original problem itself, so we need a lower bound
on ¢g. Using the quantities introduced in Lemma 3.3,
assume that ||F'(z,d)— A(d)z|| < g for all x € B(0,¢),d €
D, then B(0,e/M) C Ap(0) and so e/M < ¢ is the lower
bound we require.

In order to use the information provided by Proposi-
tion 4.3 we have to obtain estimates for the quantities
B(Ag, ..., Ap, D) and Mg as used in Lemma 3.3, from
these the quantities ¢ and ¢ are determinable and Propo-
sition 4.3 is then applicable.

5 Estimation of linear growth bounds

In order to estimate ¢ and M, we need some informa-
tion about the local growth properties of the perturbed
system. Via Lemma 3.3 these may be obtained by exam-
ining the linearization at 0 (3.1). Thus, in this section,
we briefly review the theory of Lyapunov exponents of
families of time-varying matrices, see [3] for further de-
tails. Recall that the Lyapunov exponent given by an
initial condition x¢ and d € D is defined by

1
Ao, d) = lim sup - log ||z(t; 2o, d)||
t—o00 t

It is known [2] that
/8(140; .. '5Ama-D) = maX{A(z.O;d) y To 75 O)d € D}

The following scheme for an approximate calculation of
B(Ao,--.,Am, D) based on the theory of Lyapunov ex-
ponents has been proposed, see [5], [10] and references
therein. Via projection onto the sphere S”~! we obtain

from system (3.1) the system
8(t) = (A(d(®)) — s(t)TA®d(®))s(t) - Id)s(t)  (5.1)

It is an easy calculation (see [2]) that for zo € S"~! there
exists a ¢, determined by the A;, such that

t
[@a(t, 0)zo]| = eap ( / qw(s;wo,d),d(s))ds) ol

(5.2)
Thus the Lyapunov exponent is of the form
1t
A(zo,d) = lim sup —/ q(¥(s;z0,d), d(s))ds
t—o0 t 0
where (s;zg,d) denotes the trajectory of (5.1). Inter-

preting this expression as an average yield optimal control
problem on S™~1, we introduce the following approximat-
ing functional for § > 0

Js(zo,d) := /000 66_63q(1/1(s;$0,d),d(s))ds

with associated value function Vs(z) := supyep Js5 (20, d) -
For these optimal control problems it is known that

max Vs(z) > B(Ag,..., Am,D),

R =
zesn—1



and ks — B(Ag,--.,An,D) with a linear convergence
rate in 4, see [5, 10]. Thus if S(Aq, ..., Am, D) <0, then
choosing 6 > 0 small enough we can obtain 0 > k5 >
B(Ao,...,Am, D). In order to obtain our two required
estimates it remains to obtain a constant M, such that
M, ks satisfy (3.2).

Let 0 > k > kg. By (5.2) it is sufficient to find T' > 0 s.t.

T
sup /0 q(¥(s,z,d),d(s) — kds < 0

[lz||=1,deD
Then it follows that ||®4(T,0)|| < e*T, Vd € D, and so
||®a(t,0)]| < eLP)Tert Yd e DVt >0

Note that in order to find 7', the value function vs that
has already been calculated can be used, and it is suffi-
cient to find T such that

sup
||z||=1,deD

/ ¥ e (g (s, 2, ), d(s) — r)ds <O (5.3)
0

Note that solvability of (5.3) depends on the fact that
K > Kg, as for kg, the expression on the left is always
negative.

6 A description of the algorithm

With the estimates provided in the previous sections, we
are in a position to describe an algorithm for determin-
ing Ap(0), which is the main contribution of the paper.
Given fy,..., fm and D:

(i) Calculate ks for small §. If k5 > 0 for all § larger
than some threshold stop.

(i)

With the data ks, M satisfying (3.2), determine a
ball B(0,¢) contained in Ap(0) via Lemma 3.3.

Let o = ¢, Ag = B(0,¢).

Determine the value function vs associated with the
cost functional

Ts(z,d) = / Se=Stgu(p(tsz, d))dt,  (6.1)
0

where gy, (z) = ||z|| if ||z|| & Ak, gr(z) = 0, other-

wise.

Determine ej41 such that B(0,ex41) C Appr :=
1)5_1([0,619]).

If £, — €g41 is bigger than some threshold go to (iv).
Otherwise, determine whether to decrease  and go
to (iv) or stop, depending on the size of §.

(v)

(vi)

Remark 6.1 (i) The reason to stop after the first step
if kg > 0 for reasonably small § is that although the
nonlinear system may be exponentially stable, the Bohl

exponent of the linearization is so small that the system
is unlikely to be robustly stable.

(ii) The reason for choosing the particular form of gy
(6.1) is that once a trajectory enters Ay, it will robustly
converge to 0, and thus no longer need to be penalized in
the cost.

(iii) Note that by construction Ay C Ap(0), thus the
algorithm supplies an inner approximation of the robust
domain of attraction.

Theorem 6.2 The A, generated by the above algo-
rithm form a monotonically increasing sequence such that

U2 oAk = Ap(0).

7 Conclusions

In this paper we have discussed robust domains of attrac-
tion of singular fixed points. A scheme for the approxi-
mation of the robust domain of attraction has been pre-
sented. This involves the calculation of approximations of
the maximal Bohl exponent of the linearized system and
subsequently the solution of an optimal control problem
given by the nonlinear system.
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