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Abstract

In this paper we investigate the rate of convergence of the
optimal value function of an infinite horizon discounted
optimal control problem as the discount rate tends to
zero. We provide several estimates along trajectories
yielding results on the rate of convergence of the cor-
responding functional. Using appropriate controllability
assumptions we derive a linear convergence theorem on
control sets. Applications of these results are given and
an example is discussed in which both linear and slower
rates of convergence occur.

1 Introduction

The question of convergence of optimal value functions of
infinite horizon discounted optimal control problems has
been considered by various authors during the last years,
see e.g. [10], [2], [12], [1], [13], [8] and the references
therein. Roughly summarized, these papers state that
under appropriate controllability conditions the value
functions converge uniformly to the optimal value of an
average yield optimal control problem at least on cer-
tain subsets of the state space. The main motivation for
obtaining such results is the fact that the optimal value
functions of discounted optimal control problems have
certain nice properties (e.g. contrary to the average yield
case they are characterized as the solution of a Hamilton-
Jacobi-Bellman equation).

However, up to now little has been reported in the litera-
ture about the corresponding rate of convergence. In the
discrete-time Markovian case the results in [13] can be
used to obtain immediate estimates for the rate of con-
vergence. The assumptions in this reference, however,
exclude the deterministic case. This paper presents first
results for continuous time deterministic systems (see also
[11] for some related discrete time results). In Section 2
the precise problem formulation is presented. In Section
3 we develop appropriate estimates for corresponding dis-
counted and averaged functionals based on the Integra-
tion Theorem for Laplace Transforms and we translate
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these results to the optimal value functions. In Section 4
a number of situations in which linear convergence holds
are characterized. Afterwards, in Section 5, we discuss
some cases where these properties are satisfied and finally,
in Section 6, we provide an example illustrating that for
one and the same control system linear convergence may
or may not hold depending on the cost function defining
the functional to be minimized. For the proofs to the
statements given below we refer to [9].

2 Problem formulation

We consider nonlinear optimal control problems for which
the dynamics are given by control systems of the type

&(t) = f(2(t), u(t)) (2.1)
on some Riemannian manifold M where f is such that
uniqueness and existence of solutions on R, is satisfied
for u(-) € U := {u : R = U |u(-) measurable} and U C
R™ is compact. For a given initial value zo € M at time
t = 0 and a given control function u(-) € U we denote
the trajectories of (2.1) by ¢(t, o, u(-)). Let

g: M xR™" - R (2.2)
be a cost function which is Lipschitz continuous and
bounded, i.e. |g(z,u)| < M, for some constant M,. For
0 > 0 we define the discounted functional

oo
T, u()) =6 [ e glo(s, z0,u()),ulo)ds (23)
0
and the optimal value function for the corresponding min-
imization problem by
= inf J -
v5(Zo) u(l_f)leu 5(zo,u(-))

(Note that the corresponding maximization problem is
obtained by simply replacing g by —g.)

In order to characterize the convergence properties for
0 — 0 we also need to define the averaged functionals

t
- / 95, 70, u()), u(s))ds,

Jo(zo,u()) = n
Jo(wo,u(-)) := lim sup J§(wo,u(-)) .
t—o00
and the averaged minimal value function

(2.4)

vo(z) = u(lr)léu Jo(z,u(-)).



3 Discounted and averaged functionals
and value functions

In this section we discuss the relation between discounted
and averaged functionals and value functions. Here we
will use a theorem from the theory of Laplace transfor-
mations as the starting point of our analysis, (see e.g. [5,
Theorem 8.1]).

Theorem 3.1 Let ¢ : R — R be a measurable function
bounded by M,. Then

oo oo t
6/6_5tq(t)dt 252/6_‘5t/q(s)ds dt
0 0 0

We use Theorem 3.1 in order to obtain the following re-
lation between the rate of convergence of discounted and
average time functionals.

Proposition 3.2 Consider a point z € M. Let A € R
and T > 0 and assume there exist sequences of control
functions uy(-) € U and times T — oo as k — oo such
that

A
JE(z,up(-)) <A+ " for all t € [T, Ty).

Then there exist €;(d) — 0 for each fixed § as k — oo
such that

J5(.’L‘, uk()) <A+ A0+ (52M9T2 + Ek((S)
Conversely if there exists a § > 0 and u(-) € U such that
Js(z,u(-)) <A+ Ad

then for each € > 0 there exists a time ¢(d,&) > /e/0M,

such that At
€
TN (@ u() < A+ =
0 (IL' U( )) = +t((s,€)
Both assertions also hold for the converse inequality,
where in the first assertion “+62M,T?” is replaced by

“—§2M,T? and in the second “+¢” is replaced by “—e”.

In what follows we will also need the following estimate,
which can be shown by a straightforward calculation.

Lemma 3.3 Let J{(z,u(-)) < o for all t € [0,7]. Then
Js(z,u(-)) <o +e9T2M,.

4 A linear convergence Theorem

We will now use the estimates from the preceding section
in order to deduce results on linear convergence by im-
posing assumptions on the optimal trajectories. Also, we
are going to use certain reachability and controllability
properties of the system, and will start this section by
defining the necessary objects and properties.

Definition 4.1 The positive orbit of £ € M up to the
time T is defined by

OF(z) :={ye M|30<t<T,u(-) €U, such that

o(t, z,u(-)) =y}
The positive orbit of © € M is defined by Ot (z) :=
Uzso OF (z). The negative orbits Oz (z) and O~ (z) are
defined similarly by using the time reversed system.

Definition 4.2 D C M is called a control set, if:

(i) D C Ot (=) for all z € D,

(ii) for every x € D there is u(-) € U such that the
corresponding trajectory (¢, z,u(-)) € D Vt > 0,

(iii) D is maximal with the properties (i) and (ii)

A control set C' is called invariant, if C = O+(z) Vz € C.

Note that this (usual) definition of control sets demands
only approximate reachability; a convenient way to avoid
assumptions about the speed of this asymptotic reach-
ability (as they are imposed e.g. in [1]) is to assume
local accessibility. If local accessibility holds we have
exact controllability in the interior of control sets, i.e.
intD C O*(z) for all z € D, cp. e.g. [2].

Using the notion of control sets we are now able to char-
acterize situations in which linear convergence holds. Our
first result is that v; is constant except for a term linear
in § on compact subsets of the interior of control sets.

Proposition 4.3 Consider a locally accessible optimal
control problem of the form (2.1)—(2.4). Let D C M be
a control set with nonvoid interior. Let K C intD be a
compact set. Then there exists a constant C'x such that

lvs(z) —vs(y)| < 6Cx Mg forall z, y € K.

The next step in the analysis of the rate of convergence
of optimal value functions on control sets is to derive
estimates for finite time averaged functionals along tra-
jectories staying in some compact subset of a control set.
To this end for x € K C M we denote by U, xk C U the
set of all control functions u(-) satisfying p(t, z,u(-)) € K
for all ¢ > 0.

Proposition 4.4 Consider the optimal control problem
(2.1)—(2.4) and assume that (2.1) is locally accessible. Let
D C M be a control set with nonvoid interior and K C D
be compact. Then

(i) For each z € intK there exists a constant A = A(z) >
0 and a time T' = T'(x) such that

A
JE(z,u(-)) > vo(z) — i Jorall u(-) e Up k., t > T.

(ii) There exist a point * € K and sequences of control
functions ug(-) € U and times t; — oo such that

inf  Jo(z,ul(- T
sim o u() + (D)

for all ¢ € [0, min{T, t;}] where ex(T') — 0 for k — oco.

T ur()) < inf



Now we can combine Propositions 3.2 and 4.4 in order to
obtain our main theorem.

Theorem 4.5 Consider the optimal control problem
(2.1)—(2.4) and assume that (2.1) is locally accessible.
Let D C M be a control set with nonvoid interior. As-
sume that one of the following conditions is satisfied

(i) There exist a compact subset K¢ C intD and se-
quences of points zj € K¢ and control functions ug(-) €
Ug,, K, such that

Jo(zk,ur(-)) = volintD

(ii) There exist zg € intD, T > 0 and sequences of
control functions u(-) € U and times Ty, — 0o as k — oo
such that the inequality

A
JE(zo, ur(+)) < volintp + 7

holds for some constant A > 0 and all ¢t € [T, T}], k € N.
Then for each compact subset K C intD there exist con-
stants Ax > 0 and &g > 0 such that

v5(x) < volintp + 0AK for all z € K and all 6 < do.

Conversely, if the following assumption is valid

(iii) There exists x¢ € intD and a compact subset K; C D
such that for all sufficiently small 6 > 0 there exist opti-
mal trajectories for vs in Uy, K,

then for each compact subset K C intD there exist con-
stant Bg > 0 and §g > 0 such that

v§(x) > volintp — 0Bk for all z € K and all § < dp.

Using the invariance property of invariant control sets we
can conclude the following corollary.

Corollary 4.6 Consider the optimal control problem
(2.1)—(2.4) and assume that (2.1) is locally accessible.
Let C C M be a compact invariant control set with non-
void interior. Assume that one of the following conditions
is satisfied
(i) There exist a compact subset Ko C intC and se-
quences of points 2, € Ky and control functions u(-) € U
such that ¢(t, zy,ur(-)) € K for all k € Nand all t > 0
and

Jo(zr, uk()) = volintc
(ii) There exist o € intC', T > 0 and sequences of control
functions ux(-) € U and times T}, — oo as k — oo such
that the inequality

(o, ur(-)) < vo(wo) + ;

holds for some constant A > 0 and all ¢t € [T, T}].
Then for each compact subset K C intD there exist con-
stant Bg > 0 and §y > 0 such that

|vs(x) —vo(z)| < Bk for all xz € K and all § < §p.
Proof: The invariance of C' immediately implies that

assumption (iii) of Theorem 4.5 is always satisfied (with
K, =0C). N

5 Applications

In this section we will highlight two situations in which
linear convergence can be concluded from the theorems
in the preceding section.

The first situation is given by completely controllable sys-
tems on compact manifolds. More precisely the following
corollary is an immediate consequence of Corollary 4.6.

Corollary 5.1 Consider a locally accessible optimal
control system (2.1)—(2.4) on a compact manifold M. As-
sume the system is completely controllable, i.e. there ex-
ists an invariant control set C' = M. Then there exists a
constant K > 0 such that

[lvs — volloo < K.

Note that this setup coincides with the one in [6]; in
fact there is a strong relation between this result and the
periodicity result there since in both cases the values of
trajectory pieces have to be estimated. The techniques,
however, used in order to obtain these results are rather
different.
The second application of our results is somewhat more
specific. Here we consider the problem of the approx-
imation of the top Lyapunov exponent of a semi-linear
control system

a(t) = A(u(t))z(t), =€ R? (5.1)
This problem is the continuous time analogue to the one
considered in [11]. Note that here we consider the maxi-
mization problem so all results are applied with inverted
inequalities. Also, since here we are going to derive an es-
timate for the supremum of vs we will directly use Propo-
sitions 3.2 and 4.4 instead of Theorem 4.5.
We will briefly collect some facts about this problem, for
detailed information we refer to [3] and [4].

The Lyapunov exponent of a solution z (¢, zg, u(-)) of (5.1)
is defined by

Az, u(-)) = lim sup 3 I la(t, z0,u()|

t—o0

which for ||zg|| = 1 can also be expressed as an averaged
integral by

t

Aao, u()) =limsup ;. [ gl(s,z0,u(), u(s))ds

t—o00

where (t,xo,u(-)) denotes the solution of the system
projected to M = S% ' — which satisfies $(t) =
(A(u(t)) — s(t)T Au(t)s(t) - Id)s(t) — and g is a suitable
function meeting our general assumptions. The top Lya-
punov exponent can be defined on S%~1 via

K:= sup sup A(zg,u(:)).

zoeSI—1u(-)eU



It characterizes the stability of the solutions of (5.1) un-
der all possible functions u(-), and can also be used to
define a stability radius of (5.1) analogously to [11].

It already follows from the arguments in [8] that
SUp,cgd—1 V5 () converges to k as 6 — 0. Now it remains
to determine the rate of convergence.

Assuming local accessibility for the projected system
there exists a invariant control set C' C S¢~! with non-
void interior (in S?71). Furthermore the top Lyapunov
exponent can be realized from any initial value o € S%1,
hence from any point zo € intC. Thus Proposition 4.4(ii)
with K = C yields the existence of a point z* € C' and
sequences of control functions u;(-) = u(ty, +-) and times
t; satisfying

J(@*,ui (1)) > K —&(T) for all t € [0,min{T,#}].

We can conclude that vs(z*) > k for all § > 0 and it
remains to find an upper bound for sup,cga-1v5(x). To
this end consider a basis z1, . ..,z of R? such that ||z;|| =
1 and z; € intC for all ¢ = 1,...,d. Then Proposition
4.4(i) with K = C yields the existence of a constant B >
0 such that

Jo(esu()) < Kk 7

for all 4 = 1,...,d and all u(-) € U and hence
llz(t, z;,u(-))|| < ePe®. By the compactness of S?~!
there exists a constant v > 0 such that any point
xo € S%1 can be written as a linear combination zy =
25:1 wi(zo)z; with coefficients |u;(xo)| < v. Thus we
obtain

d
ll&(t, 20, u()Il = 1D pi(wo)a(t, i, u(-))[| < dvePer.
i=1
Thus with A = B + Indv it follows that
A
Jo(wo,u(-)) <K+ n

for all 2o € S ' and all u(-) € U. For any A > A Propo-
sition 3.2 (with ug(-) = u(-) for all k) yields vs(zo) <
K + 6 A for all sufficiently small § which finally yields the
desired estimate

sup wvs(x) € [k, K + 0A].
zeSd-1

6 An Example

Here we provide an example of a simple 1d control system
with one (invariant) control set where linear convergence
does or does not hold depending on the cost function.
Consider the control system

z = —uz|z|+ (u—-1)(z — 1)z — 1 (6.1)
with z € R and w € [0,1]. It is easily seen that (6.1)
possesses an (invariant) control set C = [0,1]. For the
cost function g;(z,u) = |z| and initial values 2o € C it is
obviously optimal to steer to the left as fast as possible,
i.e. the optimal control is u = 1.

The solution for this constant control is given by z(t) =
TacT, thus Ji(zo,1) = % does not converge lin-
early, and by the first assertion of Proposition 3.2 (for
the converse inequality) the same holds for dvs.

Now we consider g2(z,u) = |z —0.5|. For the initial value
zo = 1/2 we obtain with u = 1/2 that z(¢, zg,u) = x¢ for
all t > 0, hence J¢(1/2,1/2) = 0 for all ¢ > 0. Obviously
here Condition (i) of Corollary 4.6 is satisfied, thus linear
convergence follows. A similar argumentation is valid for
all a € (0,1).

7 Conclusions

Convergence rates of optimal value functions of dis-
counted optimal control problems have been investigated.
It has been shown that under appropriate assumptions
linear convergence holds. These conditions are applied to
problems from application implying linear convergence.
However, an example shows that linear convergence is
not always satisfied.
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