
A linearization prin
iple for robustness withrespe
t to time-varying perturbations ?Fabian Wirth1Zentrum f�ur Te
hnomathematik, Universit�at Bremen, 28334 Bremen, Germany,fabian�math.uni-bremen.deAbstra
t. We study nonlinear systems with an asymptoti
ally stable �xed pointsubje
t to time-varying perturbations that do not perturb the �xed point. Basedon linearization theory we show that in dis
rete time the linearization 
ompletelydetermines the lo
al robustness properties at exponentially stable �xed points ofnonlinear systems. In the 
ontinuous time 
ase we present a 
ounterexample for the
orresponding statement. SuÆ
ient 
onditions for the equality of the stability radiiof nonlinear respe
tive linear systems are given. We 
onje
ture that they hold onan open and dense set.1 Introdu
tionA natural question in perturbation or robustness theory of nonlinear systems
on
erns the information that the linearization of a nonlinear system at a sin-gular point 
ontains with respe
t to lo
al robustness properties. This questionhas been treated for time-invariant perturbations in [8℄ for 
ontinuous time,(see the referen
es therein for the dis
rete time 
ase). The result obtainedin these papers was that generi
ally the linearization determines the lo
alrobustness of the nonlinear system, where generi
ity is to be understood inthe sense of semi-algebrai
 geometry (on the set of linearizations).Spe
i�
ally, the obje
ts under 
onsideration are the lo
al stability radiusof the nonlinear system and the stability radius of the linear system, whereas usual the stability radius of a system is the in�mum of the norms of desta-bilizing perturbations in a pres
ribed 
lass. The question is then, whetherthese two quantities are equal or more pre
isely when this is 
ase, see also [4,Chapter 11℄.In this paper we treat this problem for nonlinear systems subje
t to time-varying perturbations. Our analysis is based on re
ent results on the gener-alized spe
tral radius of linear in
lusions. In parti
ular, we see a surprisingdi�eren
e between 
ontinuous and dis
rete time. While the linearization al-ways determines the robustness of the nonlinear system if the nominal systemis exponentially stable this fails to be true for 
ontinuous time. On the otherhand we are able to give a suÆ
ient 
ondition whi
h guarantees equality be-tween linear and nonlinear stability radius on an open set of systems. As it is? Resear
h supported by the European Nonlinear Control Network.



2 Fabian Wirthknown from [9℄ that the Lebesgue measure of those linearizations for whi
hit is possible that the nonlinear stability radius is di�erent from the linear iszero it seems therefore natural to 
onje
ture that the set of systems wherethese two quantities 
oin
ide is open and dense.We pro
eed as follows. In Se
tion 2 we re
all the de�nition of the stabil-ity radius for nonlinear systems with time varying perturbations and statesome relevant results from the theory of linear in
lusions. In parti
ular, were
all upper and lower bounds of the stability radius of the nonlinear sys-tem in terms of the stability radius and the strong stability radius of thelinearization. In Se
tion 3 we develop a lo
al robustness theory based on thelinearization of the system for the dis
rete time 
ase. It is shown that the twolinear stability radii 
oin
ide under weak 
onditions, demonstrating that oneneed only 
onsider the linearization in order to determine the lo
al nonlinearrobustness properties of a system. The 
ontinuous time 
ase is treated in Se
-tion 4. We �rst present a 
ounterexample showing that analogous statementsto the dis
rete time 
ase 
annot be expe
ted in 
ontinuous time. We thenpresent a suÆ
ient 
ondition for the equality of the two linear stability radiion an open set. Con
luding remarks are found in Se
tion 5.2 PreliminariesConsider nominal dis
rete and 
ontinuous time nonlinear systems of theformx(t+ 1) = f0(x(t)) ; t 2 N ; (1a)_x(t) = f0(x(t)) ; t 2 R+ ; (1b)whi
h are exponentially stable at a �xed point whi
h we take to be 0. Bythis we mean that there exists a neighborhood U of 0 and 
onstants 
 > 1; � <0 su
h that the solutions '(t;x; 0) of (1a),(1b) satisfy k'(t;x; 0)k � 
e�tkxkfor all x 2 U .As the 
on
epts we will dis
uss do not di�er in 
ontinuous and dis
retetime we will summarize our notation by writing T = N;R+ for the time-s
aleand x+(t) := _x(t); x(t+ 1) a

ording to the time-s
ale we are working on.Assume that (1a),(1b) are subje
t to perturbations of the formx+(t) = f0(x(t)) + mXi=1 di(t)fi(x(t)) =: F (x(t); d(t)) ; (2)where the perturbation fun
tions fi leave the �xed point invariant, i.e. fi(0) =0; i = 0; 1; : : : ;m. We assume that the fi are 
ontinuously di�erentiable in0 (and lo
ally Lips
hitz in the 
ase T = R+ ). The unknown perturbationfun
tion d is assumed to take values in �D � Rm ,d : T! �D ;



A linearization prin
iple for robustness 3where in the 
ase T = R+ we impose that d is measurable. Here � > 0des
ribes the perturbation intensity, whi
h we intend to vary in the sequel,while the perturbation set D is �xed. Thus stru
tural information aboutthe perturbations one wants to 
onsider 
an be in
luded in the fun
tionsfi; i = 1; : : : ;m and in the set D. For the perturbation set D � Rm weassume that it is 
ompa
t, 
onvex, with nonempty interior, and 0 2 int D.Solutions to the initial value problem (2) with x(0) = x0 for a parti
ulartime-varying perturbation d will be denoted '(t;x0; d).The question we are interested in 
on
erns the 
riti
al perturbation in-tensity at whi
h the system (2) be
omes unstable. The stability radius is thusde�ned asrnl(f0; (fi)) := inff� > 0 j 9d� : T! �D : x+(t) = F (x(t); d�(t))is not asymptoti
ally stable at 0g : (3)By linearizing the perturbed system in (2) we are led to the systemx+(t) =  A0 + mXi=1 di(t)Ai!x(t) ; t 2 T : (4)This is a (dis
rete or di�erential) linear in
lusion, whi
h is in prin
ipledetermined by the setM(A0; : : : ; Am; �) := (A0 + mXi=1 diAi ����� kdk � �) :If the matri
es Ai are �xed we will denote this set by M(�) for the sake ofsu

in
tness.The in
lusion (4) is 
alled exponentially stable, if there are 
onstantsM � 1; � < 0 su
h thatk (t)k �Me�tk (0)k ; 8t 2 Tfor all solutions  of (4).Exponential stability is 
hara
terized by the number�(M(A0; : : : ; Am; �)) := sup lim supt!1 k (t)k1=t ;where the supremum is taken over all solutions of (4). Namely, (4) is ex-ponentially stable i� �(M(A0; : : : ; Am; �)) < 1. Again we will write �(�) ifthere is no fear of 
onfusion.In the dis
rete time 
ase the number � is known as the joint or the gener-alized spe
tral radius. We refer to [2,10℄ for further 
hara
terizations of thisnumber and for further referen
es. In the 
ontinuous time 
ase it is more
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ustomary to 
onsider the quantity �(�) := log �(�), whi
h is known underthe name of maximal Lyapunov exponent, see [4℄ and referen
es therein.As in the nonlinear 
ase we now de�ne stability radii byrLy(A0; (Ai)) := inff� � 0 j �(�) � 1g ;�rLy(A0; (Ai)) := inff� � 0 j �(�) > 1g :The relation between the linear and the nonlinear stability radii is indi-
ated by the following result whi
h is 
ontained in [3℄ for the 
ontinuous andin [7℄ for the dis
rete time 
ase.Lemma 1. Let T = N;R+ and 
onsider system (2) and its linearization (4),thenrTLy(A0; (Ai)) � rTnl(f0; (fi)) � �rTLy(A0; (Ai)) :It is the aim of this paper to obtain further results on the information thelinear stability radii 
ontain for the nonlinear system.The following set of matrix sets will play a vital role in our analysis. Re
allthat a set of matri
es M is 
alled irredu
ible if only the trivial subspa
es ofRn are invariant under all A 2M.We de�neI(Rn�n ) := fM � Rn�n j M 
ompa
t and irredu
ibleg :Note that this set is open and dense in the set of 
ompa
t subsets of Rn�nendowed with the usual Hausdor� metri
.The proof of the following statements 
an be found in [10℄. They are thefoundation for our analysis of linearization prin
iples.Theorem 1. (i) The generalized spe
tral radius is lo
ally Lips
hitz 
on-tinuous on I(Rn�n ).(ii) The maximal Lyapunov exponent is lo
ally Lips
hitz 
ontinuous onI(Rn�n ).Furthermore in the dis
rete time 
ase a stri
t monotoni
ity property 
anbe shown to hold, under the assumption that the following 
ondition 
an besatis�ed. Given A 2 Rn�n we denote by PA the redu
ing proje
tion 
orre-sponding to the eigenvalues � 2 �(A) with j�j = r(A).Property 1. The set M � K(Rn�n ) is said to have Property 1 if n = 1; 2 orif there exists an A 2 M su
hr(A) < �(M) ; or rankPA 6= 2 ; or �((I � PA)A) 6= f0g :In the following statement we denote the aÆne subspa
e generated by aset M � Rn�n by a�M while int a�M denotes the interior with respe
t tothis aÆne subspa
e.



A linearization prin
iple for robustness 5Proposition 1. Let M1;M2 2 I(Rn�n ) satisfy M1 6=M2 andM1 � int a�M2
onvM2 : (5)Assume that M1 has Property 1 then�(M1) < �(M2) :3 The dis
rete time 
aseIn dis
rete time the situation turns out to be parti
ularly simple. In fa
t, ifProperty 1 holds then we 
an immediately 
on
lude the following linearizationprin
iple.Theorem 2. Let T = N and 
onsider the dis
rete-time system (1b) andthe perturbed system (2) along with its linearization (4). If for some �� <rLy(A0; (Ai)) the set M(��) is irredu
ible and satis�es Property (1), thenrLy(A0; (Ai)) = rnl(f0; (fi)) = �rLy(A0; (Ai)) :Proof. The assumptions guarantee that the map � 7! �(�) is stri
tly in
reas-ing on [��;1). This implies rLy(A0; (Ai)) = �rLy(A0; (Ai)). The assertion nowfollows from Lemma 1.Corollary 1. Let T = N and 
onsider the dis
rete-time system (1b) and theperturbed system (2) along with its linearization (4). If the point x� = 0 isexponentially stable for the unperturbed systemx(t+ 1) = f0(x(t))thenrLy(A0; (Ai)) = rnl(f0; (fi)) = �rLy(A0; (Ai)) :Proof. There exists a similarity transformation T su
h that allAi; i = 0; : : : ;mare similar to matri
es of the formTAiT�1 = 2666666664A
i11 Ai12 : : : : : : Ai1d0 Ai22 Ai23 : : : Ai2d0 0 Ai33 ...... . . . . . . ...0 : : : 0 Aidd

3777777775 ;where ea
h of the setsMj := fAijj j i = 0; : : : ;mg; j = 1; : : : ; d is irredu
ible.It holds that �(�) = maxj=1;::: ;d �(Mj(�)).Thus it is suÆ
ient to 
onsider the blo
ks individually to determine rLy,resp. �rLy. Under the assumption of exponential stability we have r(A0) < 1.Hen
e for ea
h j we have r(A0jj ) < 1 and the setMj(�) has Property 1 for all� > 0 su
h that �(Mj(�)) > r(A0). Now the result follows from Theorem 2.



6 Fabian WirthCorollary 2. Let T = N. The stability radius of linear systems with respe
tto time-varying perturbations rLy is 
ontinuous on the setf(A0; : : : ; Am) 2 (Rn�n )m+1 j r(A0) 6= 1g :Furthermore, the setf(A0; : : : ; Am) 2 (Rn�n )m+1 j rLy(A0; : : : ; Am) 6= �rLy(A0; : : : ; Am)gis 
ontained in a lower dimensional algebrai
 set.Proof. It was shown in [7℄ that rLy; �rLy are upper respe
tively lower semi
on-tinuous on (Rn�n )m+1. The pre
eding Corollary 1 shows that these two fun
-tions 
oin
ide if r(A0) < 1, whi
h shows 
ontinuity in this 
ase. If r(A0) > 1the statement is obvious as both fun
tions are equal to 0.The se
ond statement now follows be
ause a ne
essary 
ondition for the
ondition rLy(A0; : : : ; Am) 6= �rLy(A0; : : : ; Am) is r(A0) = 1. The latter 
on-dition de�nes a lower dimensional algebrai
 set.The result for the linear stability radii extends to the 
ase of nonlinearsystems as follows. First, denote by C1(Rn ;Rn ; 0) the set of 
ontinuouslydi�erentiable maps from Rn to itself satisfying f(0) = 0. This spa
e may beendowed with the C1 topology inherited from the topologies on the spa
eC1(Rn ;Rn ), (see [6, Chapter 17℄).Corollary 3. Given n;m 2 N, the set W of fun
tions (f0; f1; : : : ; fm) 2C1(Rn ;Rn ; 0)m+1 for whi
hrnl(f0; (fi)) = rLy(A0; (Ai)) (6)
ontains an open and dense subset of C1(Rn ;Rn ; 0)m+1 with respe
t to boththe 
oarse and the �ne C1 topology.Proof. This is immediate from the de�nition of the C1 topology.4 Continuous timeA natural question is if statements similar to those of Theorem 2 and Corol-lary 1 hold in 
ontinuous time. The fundamental tool for this results is themonotoni
ity property given by Proposition 1. This statement is unfortu-nately in general false in 
ontinuous time, as any subset M1 of the skew-symmetri
 matri
es generates a linear in
lusion whose system semigroup isa subset of the orthogonal group and for whi
h the maximal Lyapunov ex-ponent is therefore equal to 0. Taking a set M2 whi
h 
ontains M1 in itsinterior (with respe
t to the skew-symmetri
 matri
es) does not yield a Lya-punov exponent larger than one, so that the stri
t monotoni
ity propertyfails to hold. This example leaves still some hope that maybe a statement
orresponding to Corollary 1 remains true in 
ontinuous time. The followingexample shows that even su
h expe
tations are unfounded.



A linearization prin
iple for robustness 7Example 1. Consider the matri
esA(d) := � 0 d�d �2 + d� :It is easy to see that A�(d) + A(d) � 0 for all d 2 (�1; 2). Hen
e forD � (�1; 2) it is immediate that �(D) � 0 as the Eu
lidean unit ball isforward invariant under the asso
iated time-varying linear system. On theother hand while 
(A(0)) = 0, we have 
(A(d)) < 0 for all d 2 (0; 2), seeFigure 1.
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Fig. 1. The spe
tral abs
issa of A(d) in dependen
e of d.The 
onsequen
e of this is the following. If we de�ne A0 = A(1=2) andA1 := � 0 1�1 1� ;then0 < rLy(A0; A1) � 12 < 32 = �rLy(A0; A1) ;be
ause at least A0 � 1=2A1 = A(0) is not asymptoti
ally stable. While onthe other hand for � < 3=2 the perturbation set is a stri
t subset of (�1; 2)and 
(A0) = �(3 + p5)=4 � �0:191 so that the unperturbed system isexponentially stable.While this example shows that we 
annot expe
t a 
ontinuous time 
oun-terpart to the dis
rete-time results of Se
tion 3 we are able to show that theproperty that the stability radius of the linearization determines the nonlin-ear stability radius is true on 
ertain open sets. We even 
onje
ture that itis true on an open and dense set, but this point remains open for the mo-ment. The following theorem strengthens the result obtained in [9, Theorem3.1 (i)℄. Here the lo
al Lips
hitz 
ontinuity property of the maximal Lyapunovexponent will play a vital role, as it will allow the appli
ation of the impli
it
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tion theorem for Lips
hitz 
ontinuous fun
tions. To this end we will needthe Clarke subdi�erential of a fun
tion g, whi
h we denote by �Clg(x). Herewe will not need the most general de�nition. For our purposes it is suÆ
ientto know that if we assume that g : Rp ! R is lo
ally Lips
hitz 
ontinuousthen�Clg(x) = 
onv�
 2 Rp ���� 9xk ! x : 
 = limk!15g(xk)� ; (7)see [5, Theorem II.1.2℄, where we ta
itly assume that the gradient 5g existsin xk if we write 5g(xk). Note that Lips
hitz 
ontinuity of g implies thatit is di�erentiable almost everywhere by Radema
her's theorem. For furtherdetails we refer to [5℄.The following lemma ensures that the theory of the Clarke generalizedgradient is appli
able in our 
ase.Lemma 2. The map(A0; : : : ; Am; �) 7! �(A0; : : : ; Am; �) := � (A0 + mXi=1 diAi ����� kdk � �)!is lo
ally Lips
hitz 
ontinuous on the set I(Rn�n )� R>0 .Proof. Note that the map(A0; : : : ; Am; �) 7! (A0 + mXi=1 diAi ����� kdk � �)is Lips
hitz 
ontinuous. As the 
omposition of Lips
hitz 
ontinuous maps isagain Lips
hitz 
ontinuous the 
laim follows from Theorem 1 (ii).Proposition 2. Let n;m 2 N. Fix fA�0; : : : ; A�mg 2 I(Rn�n ) and letrLy(A0; (Ai)) <1 :Consider the map � : (A0; : : : ; Am; �) 7! �(M(�)) and denote�Cl;��(z) := �
 2 R j 9p0 2 (Rn�n )m+1 : (p0; 
) 2 �Cl�(z)	 :If inf �Cl;��(A�0; : : : ; A�m; rLy(A�0; (A�i ))) > 0 ; (8)then rLy = �rLy on a neighborhood of (A0; : : : ; Am) 2 (Rn�n )m+1 and on thisneighborhood rLy is lo
ally Lips
hitz 
ontinuous.



A linearization prin
iple for robustness 9Proof. By Lemma 2 and (8) we may apply the impli
it fun
tion theorem forLips
hitz 
ontinuous maps [5, Theorem VI.3.1℄ whi
h states that for every(B0; : : : ; Bm) in a suitable open neighborhood of (A0; : : : ; Am) 2 (Rn�n )m+1the map� 7! �(M(B0; : : : ; Bm; �))has a unique root and this root is a lo
ally Lips
hitz 
ontinuous fun
tionof (B0; : : : ; Bm). In other words, this means that on this neighborhood thefun
tions rLy and �rLy 
oin
ide and are lo
ally Lips
hitz 
ontinuous.Conje
ture 1. For �xed m � 1 the set L � (Rn�n )m+1 given byf(A0; : : :; Am) j rLy(A0; (Ai)) = �rLy(A0; (Ai))g
ontains an open and dense set. Furthermore, the Lebesgue measure of the
omplement L
 is 0.Remark 1. (i) The statement that the 
omplement has measure zero is shownin [9, Theorem 3.1 (i)℄.(ii) With the help of Proposition 2 it is easy to identify open sets onwhi
h rLy = �rLy in the 
ontinuous time 
ase. For instan
e, if Ai = 
I forsome i = 1; : : : ;m this implies that 
ondition (8) holds. The problem iswhether this 
onditions holds generi
ally.5 Con
lusionIn this paper it was shown that linearization at singular points 
an provideinformation about the stability radius of a nonlinear system with respe
t totime-varying perturbations. In dis
rete time this information is 
omplete ifthe nominal system is exponentially stable, while this is false in 
ontinuoustime.The fundamental di�eren
e between dis
rete and 
ontinuous time lies inthe fa
t that the perturbation in dis
rete time is on the level of the systemssemigroup, whereas in 
ontinuous time the perturbations a
t on the level ofthe Lie algebra of the system. This at least gives an indi
ation that somedi�eren
es are to be expe
ted.We 
onje
ture that also in 
ontinuous time the linearization provides suÆ-
ient information at least on an open and dense set of systems. If Conje
ture 1
an be proved to hold it is 
lear how to formulate results for the 
ontinuoustime 
ase analogous to Corollaries 2,3.Referen
es1. Barabanov N. E., (1988) Absolute 
hara
teristi
 exponent of a 
lass of linearnonstationary systems of di�erential equations. Sib. Math. J. 29(4):521{530
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