
A linearization priniple for robustness withrespet to time-varying perturbations ?Fabian Wirth1Zentrum f�ur Tehnomathematik, Universit�at Bremen, 28334 Bremen, Germany,fabian�math.uni-bremen.deAbstrat. We study nonlinear systems with an asymptotially stable �xed pointsubjet to time-varying perturbations that do not perturb the �xed point. Basedon linearization theory we show that in disrete time the linearization ompletelydetermines the loal robustness properties at exponentially stable �xed points ofnonlinear systems. In the ontinuous time ase we present a ounterexample for theorresponding statement. SuÆient onditions for the equality of the stability radiiof nonlinear respetive linear systems are given. We onjeture that they hold onan open and dense set.1 IntrodutionA natural question in perturbation or robustness theory of nonlinear systemsonerns the information that the linearization of a nonlinear system at a sin-gular point ontains with respet to loal robustness properties. This questionhas been treated for time-invariant perturbations in [8℄ for ontinuous time,(see the referenes therein for the disrete time ase). The result obtainedin these papers was that generially the linearization determines the loalrobustness of the nonlinear system, where generiity is to be understood inthe sense of semi-algebrai geometry (on the set of linearizations).Spei�ally, the objets under onsideration are the loal stability radiusof the nonlinear system and the stability radius of the linear system, whereas usual the stability radius of a system is the in�mum of the norms of desta-bilizing perturbations in a presribed lass. The question is then, whetherthese two quantities are equal or more preisely when this is ase, see also [4,Chapter 11℄.In this paper we treat this problem for nonlinear systems subjet to time-varying perturbations. Our analysis is based on reent results on the gener-alized spetral radius of linear inlusions. In partiular, we see a surprisingdi�erene between ontinuous and disrete time. While the linearization al-ways determines the robustness of the nonlinear system if the nominal systemis exponentially stable this fails to be true for ontinuous time. On the otherhand we are able to give a suÆient ondition whih guarantees equality be-tween linear and nonlinear stability radius on an open set of systems. As it is? Researh supported by the European Nonlinear Control Network.



2 Fabian Wirthknown from [9℄ that the Lebesgue measure of those linearizations for whihit is possible that the nonlinear stability radius is di�erent from the linear iszero it seems therefore natural to onjeture that the set of systems wherethese two quantities oinide is open and dense.We proeed as follows. In Setion 2 we reall the de�nition of the stabil-ity radius for nonlinear systems with time varying perturbations and statesome relevant results from the theory of linear inlusions. In partiular, wereall upper and lower bounds of the stability radius of the nonlinear sys-tem in terms of the stability radius and the strong stability radius of thelinearization. In Setion 3 we develop a loal robustness theory based on thelinearization of the system for the disrete time ase. It is shown that the twolinear stability radii oinide under weak onditions, demonstrating that oneneed only onsider the linearization in order to determine the loal nonlinearrobustness properties of a system. The ontinuous time ase is treated in Se-tion 4. We �rst present a ounterexample showing that analogous statementsto the disrete time ase annot be expeted in ontinuous time. We thenpresent a suÆient ondition for the equality of the two linear stability radiion an open set. Conluding remarks are found in Setion 5.2 PreliminariesConsider nominal disrete and ontinuous time nonlinear systems of theformx(t+ 1) = f0(x(t)) ; t 2 N ; (1a)_x(t) = f0(x(t)) ; t 2 R+ ; (1b)whih are exponentially stable at a �xed point whih we take to be 0. Bythis we mean that there exists a neighborhood U of 0 and onstants  > 1; � <0 suh that the solutions '(t;x; 0) of (1a),(1b) satisfy k'(t;x; 0)k � e�tkxkfor all x 2 U .As the onepts we will disuss do not di�er in ontinuous and disretetime we will summarize our notation by writing T = N;R+ for the time-saleand x+(t) := _x(t); x(t+ 1) aording to the time-sale we are working on.Assume that (1a),(1b) are subjet to perturbations of the formx+(t) = f0(x(t)) + mXi=1 di(t)fi(x(t)) =: F (x(t); d(t)) ; (2)where the perturbation funtions fi leave the �xed point invariant, i.e. fi(0) =0; i = 0; 1; : : : ;m. We assume that the fi are ontinuously di�erentiable in0 (and loally Lipshitz in the ase T = R+ ). The unknown perturbationfuntion d is assumed to take values in �D � Rm ,d : T! �D ;



A linearization priniple for robustness 3where in the ase T = R+ we impose that d is measurable. Here � > 0desribes the perturbation intensity, whih we intend to vary in the sequel,while the perturbation set D is �xed. Thus strutural information aboutthe perturbations one wants to onsider an be inluded in the funtionsfi; i = 1; : : : ;m and in the set D. For the perturbation set D � Rm weassume that it is ompat, onvex, with nonempty interior, and 0 2 int D.Solutions to the initial value problem (2) with x(0) = x0 for a partiulartime-varying perturbation d will be denoted '(t;x0; d).The question we are interested in onerns the ritial perturbation in-tensity at whih the system (2) beomes unstable. The stability radius is thusde�ned asrnl(f0; (fi)) := inff� > 0 j 9d� : T! �D : x+(t) = F (x(t); d�(t))is not asymptotially stable at 0g : (3)By linearizing the perturbed system in (2) we are led to the systemx+(t) =  A0 + mXi=1 di(t)Ai!x(t) ; t 2 T : (4)This is a (disrete or di�erential) linear inlusion, whih is in prinipledetermined by the setM(A0; : : : ; Am; �) := (A0 + mXi=1 diAi ����� kdk � �) :If the matries Ai are �xed we will denote this set by M(�) for the sake ofsuintness.The inlusion (4) is alled exponentially stable, if there are onstantsM � 1; � < 0 suh thatk (t)k �Me�tk (0)k ; 8t 2 Tfor all solutions  of (4).Exponential stability is haraterized by the number�(M(A0; : : : ; Am; �)) := sup lim supt!1 k (t)k1=t ;where the supremum is taken over all solutions of (4). Namely, (4) is ex-ponentially stable i� �(M(A0; : : : ; Am; �)) < 1. Again we will write �(�) ifthere is no fear of onfusion.In the disrete time ase the number � is known as the joint or the gener-alized spetral radius. We refer to [2,10℄ for further haraterizations of thisnumber and for further referenes. In the ontinuous time ase it is more



4 Fabian Wirthustomary to onsider the quantity �(�) := log �(�), whih is known underthe name of maximal Lyapunov exponent, see [4℄ and referenes therein.As in the nonlinear ase we now de�ne stability radii byrLy(A0; (Ai)) := inff� � 0 j �(�) � 1g ;�rLy(A0; (Ai)) := inff� � 0 j �(�) > 1g :The relation between the linear and the nonlinear stability radii is indi-ated by the following result whih is ontained in [3℄ for the ontinuous andin [7℄ for the disrete time ase.Lemma 1. Let T = N;R+ and onsider system (2) and its linearization (4),thenrTLy(A0; (Ai)) � rTnl(f0; (fi)) � �rTLy(A0; (Ai)) :It is the aim of this paper to obtain further results on the information thelinear stability radii ontain for the nonlinear system.The following set of matrix sets will play a vital role in our analysis. Reallthat a set of matries M is alled irreduible if only the trivial subspaes ofRn are invariant under all A 2M.We de�neI(Rn�n ) := fM � Rn�n j M ompat and irreduibleg :Note that this set is open and dense in the set of ompat subsets of Rn�nendowed with the usual Hausdor� metri.The proof of the following statements an be found in [10℄. They are thefoundation for our analysis of linearization priniples.Theorem 1. (i) The generalized spetral radius is loally Lipshitz on-tinuous on I(Rn�n ).(ii) The maximal Lyapunov exponent is loally Lipshitz ontinuous onI(Rn�n ).Furthermore in the disrete time ase a strit monotoniity property anbe shown to hold, under the assumption that the following ondition an besatis�ed. Given A 2 Rn�n we denote by PA the reduing projetion orre-sponding to the eigenvalues � 2 �(A) with j�j = r(A).Property 1. The set M � K(Rn�n ) is said to have Property 1 if n = 1; 2 orif there exists an A 2 M suhr(A) < �(M) ; or rankPA 6= 2 ; or �((I � PA)A) 6= f0g :In the following statement we denote the aÆne subspae generated by aset M � Rn�n by a�M while int a�M denotes the interior with respet tothis aÆne subspae.



A linearization priniple for robustness 5Proposition 1. Let M1;M2 2 I(Rn�n ) satisfy M1 6=M2 andM1 � int a�M2onvM2 : (5)Assume that M1 has Property 1 then�(M1) < �(M2) :3 The disrete time aseIn disrete time the situation turns out to be partiularly simple. In fat, ifProperty 1 holds then we an immediately onlude the following linearizationpriniple.Theorem 2. Let T = N and onsider the disrete-time system (1b) andthe perturbed system (2) along with its linearization (4). If for some �� <rLy(A0; (Ai)) the set M(��) is irreduible and satis�es Property (1), thenrLy(A0; (Ai)) = rnl(f0; (fi)) = �rLy(A0; (Ai)) :Proof. The assumptions guarantee that the map � 7! �(�) is stritly inreas-ing on [��;1). This implies rLy(A0; (Ai)) = �rLy(A0; (Ai)). The assertion nowfollows from Lemma 1.Corollary 1. Let T = N and onsider the disrete-time system (1b) and theperturbed system (2) along with its linearization (4). If the point x� = 0 isexponentially stable for the unperturbed systemx(t+ 1) = f0(x(t))thenrLy(A0; (Ai)) = rnl(f0; (fi)) = �rLy(A0; (Ai)) :Proof. There exists a similarity transformation T suh that allAi; i = 0; : : : ;mare similar to matries of the formTAiT�1 = 2666666664A
i11 Ai12 : : : : : : Ai1d0 Ai22 Ai23 : : : Ai2d0 0 Ai33 ...... . . . . . . ...0 : : : 0 Aidd

3777777775 ;where eah of the setsMj := fAijj j i = 0; : : : ;mg; j = 1; : : : ; d is irreduible.It holds that �(�) = maxj=1;::: ;d �(Mj(�)).Thus it is suÆient to onsider the bloks individually to determine rLy,resp. �rLy. Under the assumption of exponential stability we have r(A0) < 1.Hene for eah j we have r(A0jj ) < 1 and the setMj(�) has Property 1 for all� > 0 suh that �(Mj(�)) > r(A0). Now the result follows from Theorem 2.



6 Fabian WirthCorollary 2. Let T = N. The stability radius of linear systems with respetto time-varying perturbations rLy is ontinuous on the setf(A0; : : : ; Am) 2 (Rn�n )m+1 j r(A0) 6= 1g :Furthermore, the setf(A0; : : : ; Am) 2 (Rn�n )m+1 j rLy(A0; : : : ; Am) 6= �rLy(A0; : : : ; Am)gis ontained in a lower dimensional algebrai set.Proof. It was shown in [7℄ that rLy; �rLy are upper respetively lower semion-tinuous on (Rn�n )m+1. The preeding Corollary 1 shows that these two fun-tions oinide if r(A0) < 1, whih shows ontinuity in this ase. If r(A0) > 1the statement is obvious as both funtions are equal to 0.The seond statement now follows beause a neessary ondition for theondition rLy(A0; : : : ; Am) 6= �rLy(A0; : : : ; Am) is r(A0) = 1. The latter on-dition de�nes a lower dimensional algebrai set.The result for the linear stability radii extends to the ase of nonlinearsystems as follows. First, denote by C1(Rn ;Rn ; 0) the set of ontinuouslydi�erentiable maps from Rn to itself satisfying f(0) = 0. This spae may beendowed with the C1 topology inherited from the topologies on the spaeC1(Rn ;Rn ), (see [6, Chapter 17℄).Corollary 3. Given n;m 2 N, the set W of funtions (f0; f1; : : : ; fm) 2C1(Rn ;Rn ; 0)m+1 for whihrnl(f0; (fi)) = rLy(A0; (Ai)) (6)ontains an open and dense subset of C1(Rn ;Rn ; 0)m+1 with respet to boththe oarse and the �ne C1 topology.Proof. This is immediate from the de�nition of the C1 topology.4 Continuous timeA natural question is if statements similar to those of Theorem 2 and Corol-lary 1 hold in ontinuous time. The fundamental tool for this results is themonotoniity property given by Proposition 1. This statement is unfortu-nately in general false in ontinuous time, as any subset M1 of the skew-symmetri matries generates a linear inlusion whose system semigroup isa subset of the orthogonal group and for whih the maximal Lyapunov ex-ponent is therefore equal to 0. Taking a set M2 whih ontains M1 in itsinterior (with respet to the skew-symmetri matries) does not yield a Lya-punov exponent larger than one, so that the strit monotoniity propertyfails to hold. This example leaves still some hope that maybe a statementorresponding to Corollary 1 remains true in ontinuous time. The followingexample shows that even suh expetations are unfounded.



A linearization priniple for robustness 7Example 1. Consider the matriesA(d) := � 0 d�d �2 + d� :It is easy to see that A�(d) + A(d) � 0 for all d 2 (�1; 2). Hene forD � (�1; 2) it is immediate that �(D) � 0 as the Eulidean unit ball isforward invariant under the assoiated time-varying linear system. On theother hand while (A(0)) = 0, we have (A(d)) < 0 for all d 2 (0; 2), seeFigure 1.
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Fig. 1. The spetral absissa of A(d) in dependene of d.The onsequene of this is the following. If we de�ne A0 = A(1=2) andA1 := � 0 1�1 1� ;then0 < rLy(A0; A1) � 12 < 32 = �rLy(A0; A1) ;beause at least A0 � 1=2A1 = A(0) is not asymptotially stable. While onthe other hand for � < 3=2 the perturbation set is a strit subset of (�1; 2)and (A0) = �(3 + p5)=4 � �0:191 so that the unperturbed system isexponentially stable.While this example shows that we annot expet a ontinuous time oun-terpart to the disrete-time results of Setion 3 we are able to show that theproperty that the stability radius of the linearization determines the nonlin-ear stability radius is true on ertain open sets. We even onjeture that itis true on an open and dense set, but this point remains open for the mo-ment. The following theorem strengthens the result obtained in [9, Theorem3.1 (i)℄. Here the loal Lipshitz ontinuity property of the maximal Lyapunovexponent will play a vital role, as it will allow the appliation of the impliit



8 Fabian Wirthfuntion theorem for Lipshitz ontinuous funtions. To this end we will needthe Clarke subdi�erential of a funtion g, whih we denote by �Clg(x). Herewe will not need the most general de�nition. For our purposes it is suÆientto know that if we assume that g : Rp ! R is loally Lipshitz ontinuousthen�Clg(x) = onv� 2 Rp ���� 9xk ! x :  = limk!15g(xk)� ; (7)see [5, Theorem II.1.2℄, where we taitly assume that the gradient 5g existsin xk if we write 5g(xk). Note that Lipshitz ontinuity of g implies thatit is di�erentiable almost everywhere by Rademaher's theorem. For furtherdetails we refer to [5℄.The following lemma ensures that the theory of the Clarke generalizedgradient is appliable in our ase.Lemma 2. The map(A0; : : : ; Am; �) 7! �(A0; : : : ; Am; �) := � (A0 + mXi=1 diAi ����� kdk � �)!is loally Lipshitz ontinuous on the set I(Rn�n )� R>0 .Proof. Note that the map(A0; : : : ; Am; �) 7! (A0 + mXi=1 diAi ����� kdk � �)is Lipshitz ontinuous. As the omposition of Lipshitz ontinuous maps isagain Lipshitz ontinuous the laim follows from Theorem 1 (ii).Proposition 2. Let n;m 2 N. Fix fA�0; : : : ; A�mg 2 I(Rn�n ) and letrLy(A0; (Ai)) <1 :Consider the map � : (A0; : : : ; Am; �) 7! �(M(�)) and denote�Cl;��(z) := � 2 R j 9p0 2 (Rn�n )m+1 : (p0; ) 2 �Cl�(z)	 :If inf �Cl;��(A�0; : : : ; A�m; rLy(A�0; (A�i ))) > 0 ; (8)then rLy = �rLy on a neighborhood of (A0; : : : ; Am) 2 (Rn�n )m+1 and on thisneighborhood rLy is loally Lipshitz ontinuous.



A linearization priniple for robustness 9Proof. By Lemma 2 and (8) we may apply the impliit funtion theorem forLipshitz ontinuous maps [5, Theorem VI.3.1℄ whih states that for every(B0; : : : ; Bm) in a suitable open neighborhood of (A0; : : : ; Am) 2 (Rn�n )m+1the map� 7! �(M(B0; : : : ; Bm; �))has a unique root and this root is a loally Lipshitz ontinuous funtionof (B0; : : : ; Bm). In other words, this means that on this neighborhood thefuntions rLy and �rLy oinide and are loally Lipshitz ontinuous.Conjeture 1. For �xed m � 1 the set L � (Rn�n )m+1 given byf(A0; : : :; Am) j rLy(A0; (Ai)) = �rLy(A0; (Ai))gontains an open and dense set. Furthermore, the Lebesgue measure of theomplement L is 0.Remark 1. (i) The statement that the omplement has measure zero is shownin [9, Theorem 3.1 (i)℄.(ii) With the help of Proposition 2 it is easy to identify open sets onwhih rLy = �rLy in the ontinuous time ase. For instane, if Ai = I forsome i = 1; : : : ;m this implies that ondition (8) holds. The problem iswhether this onditions holds generially.5 ConlusionIn this paper it was shown that linearization at singular points an provideinformation about the stability radius of a nonlinear system with respet totime-varying perturbations. In disrete time this information is omplete ifthe nominal system is exponentially stable, while this is false in ontinuoustime.The fundamental di�erene between disrete and ontinuous time lies inthe fat that the perturbation in disrete time is on the level of the systemssemigroup, whereas in ontinuous time the perturbations at on the level ofthe Lie algebra of the system. This at least gives an indiation that somedi�erenes are to be expeted.We onjeture that also in ontinuous time the linearization provides suÆ-ient information at least on an open and dense set of systems. If Conjeture 1an be proved to hold it is lear how to formulate results for the ontinuoustime ase analogous to Corollaries 2,3.Referenes1. Barabanov N. E., (1988) Absolute harateristi exponent of a lass of linearnonstationary systems of di�erential equations. Sib. Math. J. 29(4):521{530
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