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Abstract. We study nonlinear systems with an asymptotically stable fixed point
subject to time-varying perturbations that do not perturb the fixed point. Based
on linearization theory we show that in discrete time the linearization completely
determines the local robustness properties at exponentially stable fixed points of
nonlinear systems. In the continuous time case we present a counterexample for the
corresponding statement. Sufficient conditions for the equality of the stability radii
of nonlinear respective linear systems are given. We conjecture that they hold on
an open and dense set.

1 Introduction

A natural question in perturbation or robustness theory of nonlinear systems
concerns the information that the linearization of a nonlinear system at a sin-
gular point contains with respect to local robustness properties. This question
has been treated for time-invariant perturbations in [8] for continuous time,
(see the references therein for the discrete time case). The result obtained
in these papers was that generically the linearization determines the local
robustness of the nonlinear system, where genericity is to be understood in
the sense of semi-algebraic geometry (on the set of linearizations).

Specifically, the objects under consideration are the local stability radius
of the nonlinear system and the stability radius of the linear system, where
as usual the stability radius of a system is the infimum of the norms of desta-
bilizing perturbations in a prescribed class. The question is then, whether
these two quantities are equal or more precisely when this is case, see also [4,
Chapter 11].

In this paper we treat this problem for nonlinear systems subject to time-
varying perturbations. Our analysis is based on recent results on the gener-
alized spectral radius of linear inclusions. In particular, we see a surprising
difference between continuous and discrete time. While the linearization al-
ways determines the robustness of the nonlinear system if the nominal system
is exponentially stable this fails to be true for continuous time. On the other
hand we are able to give a sufficient condition which guarantees equality be-
tween linear and nonlinear stability radius on an open set of systems. As it is
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known from [9] that the Lebesgue measure of those linearizations for which
it is possible that the nonlinear stability radius is different from the linear is
zero it seems therefore natural to conjecture that the set of systems where
these two quantities coincide is open and dense.

We proceed as follows. In Section 2 we recall the definition of the stabil-
ity radius for nonlinear systems with time varying perturbations and state
some relevant results from the theory of linear inclusions. In particular, we
recall upper and lower bounds of the stability radius of the nonlinear sys-
tem in terms of the stability radius and the strong stability radius of the
linearization. In Section 3 we develop a local robustness theory based on the
linearization of the system for the discrete time case. It is shown that the two
linear stability radii coincide under weak conditions, demonstrating that one
need only consider the linearization in order to determine the local nonlinear
robustness properties of a system. The continuous time case is treated in Sec-
tion 4. We first present a counterexample showing that analogous statements
to the discrete time case cannot be expected in continuous time. We then
present a sufficient condition for the equality of the two linear stability radii
on an open set. Concluding remarks are found in Section 5.

2 Preliminaries

Consider nominal discrete and continuous time nonlinear systems of the
form

a(t+1) = fo(z(t)), teN, (1a)
#(t) = fo(z(t)), teR:, (1b)

which are exponentially stable at a fixed point which we take to be 0. By
this we mean that there exists a neighborhood U of 0 and constants ¢ > 1,8 <
0 such that the solutions p(t; z,0) of (1a),(1b) satisfy ||¢(t;x,0)|| < ceBt||z||
forallz € U.

As the concepts we will discuss do not differ in continuous and discrete
time we will summarize our notation by writing T = N, R for the time-scale
and 7t (t) := @(t), z(t + 1) according to the time-scale we are working on.

Assume that (1a),(1b) are subject to perturbations of the form

m

e (1) = fola(t) + Y di(0) fila(t)) =: F((1),d(t)) (2)

i=1

where the perturbation functions f; leave the fixed point invariant, i.e. f;(0) =
0,7 =0,1,...,m. We assume that the f; are continuously differentiable in
0 (and locally Lipschitz in the case T = Ry). The unknown perturbation
function d is assumed to take values in aD C R™,

d:T— aD,
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where in the case T = R; we impose that d is measurable. Here a > 0
describes the perturbation intensity, which we intend to vary in the sequel,
while the perturbation set D is fixed. Thus structural information about
the perturbations one wants to consider can be included in the functions
fi,i = 1,...,m and in the set D. For the perturbation set D C R™ we
assume that it is compact, convex, with nonempty interior, and 0 € int D.
Solutions to the initial value problem (2) with x(0) = zo for a particular
time-varying perturbation d will be denoted ¢(t; o, d).

The question we are interested in concerns the critical perturbation in-
tensity at which the system (2) becomes unstable. The stability radius is thus
defined as

r(fo, (fi)) :==inf{a > 0| 3d* : T — aD : " (t) = F(z(t),d"(t))
is not asymptotically stable at 0} . (3)

By linearizing the perturbed system in (2) we are led to the system

ot (t) = (Ao + idi(t)Az) z(t), teT. (4)

This is a (discrete or differential) linear inclusion, which is in principle
determined by the set
ldll < a} :

If the matrices A; are fixed we will denote this set by M(«) for the sake of
succinctness.

The inclusion (4) is called exponentially stable, if there are constants
M > 1,3 < 0 such that

M(Ag, ..., Am, @) = {Ao + ZdiAi

i=1

lw@)Il < MeP[lp(0)l|, VteT

for all solutions v of (4).
Exponential stability is characterized by the number

p(M(Ao, ..., An,a)) := suplimsup [ ()|,
P t—=o0

where the supremum is taken over all solutions of (4). Namely, (4) is ex-
ponentially stable iff p(M (Ao, ..., Am,a)) < 1. Again we will write p(a) if
there is no fear of confusion.

In the discrete time case the number p is known as the joint or the gener-
alized spectral radius. We refer to [2,10] for further characterizations of this
number and for further references. In the continuous time case it is more
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customary to consider the quantity k() := log p(«), which is known under
the name of maximal Lyapunov exponent, see [4] and references therein.
As in the nonlinear case we now define stability radii by

rLy(Ao, (4i)) == inf{a > 0| p(a) > 1},
FLy(Ao, (45) = inf{a > 0] p(a) > 1}.

The relation between the linear and the nonlinear stability radii is indi-
cated by the following result which is contained in [3] for the continuous and
in [7] for the discrete time case.

Lemma 1. Let T = N,Ry and consider system (2) and its linearization (4),
then

rLy (Ao, (42) <roy(fo, (f) <71, (Ao, (4))

It is the aim of this paper to obtain further results on the information the
linear stability radii contain for the nonlinear system.

The following set of matrix sets will play a vital role in our analysis. Recall
that a set of matrices M is called irreducible if only the trivial subspaces of
R™ are invariant under all A € M.

We define

I(R™™") := {M C R**™ | M compact and irreducible} .

Note that this set is open and dense in the set of compact subsets of R**"
endowed with the usual Hausdorff metric.

The proof of the following statements can be found in [10]. They are the
foundation for our analysis of linearization principles.

Theorem 1. (i) The generalized spectral radius is locally Lipschitz con-
tinuous on IT(R™*™).
(ii) The mazimal Lyapunov exponent is locally Lipschitz continuous on

Furthermore in the discrete time case a strict monotonicity property can
be shown to hold, under the assumption that the following condition can be
satisfied. Given A € R™**" we denote by P4 the reducing projection corre-
sponding to the eigenvalues A € o(A) with |A| = r(4).

Property 1. The set M C KC(R"*™) is said to have Property 1ifn =1,2 or
if there exists an A € M such

r(A) < p(M), or rankPs #2, or o((I — P4)A) # {0}.

In the following statement we denote the affine subspace generated by a
set M C R"*" by aff M while int . o¢ denotes the interior with respect to
this affine subspace.
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Proposition 1. Let My, My € I(R"*") satisfy My # Ms and

My Cint 4 pm,conv Moy . (5)
Assume that My has Property 1 then

p(Mi) < p(M>).

3 The discrete time case

In discrete time the situation turns out to be particularly simple. In fact, if
Property 1 holds then we can immediately conclude the following linearization
principle.

Theorem 2. Let T = N and consider the discrete-time system (1b) and
the perturbed system (2) along with its linearization (4). If for some a* <
rry(Ao, (4;)) the set M(a*) is irreducible and satisfies Property (1), then

Ly (Ao, (Ai)) = ru(fo, (fi)) = Ty (Ao, (As)) -

Proof. The assumptions guarantee that the map a — p(a) is strictly increas-
ing on [a*, 00). This implies 1, (Ao, (4;)) = Fry (Ao, (4;)). The assertion now
follows from Lemma 1.

Corollary 1. Let T = N and consider the discrete-time system (1b) and the
perturbed system (2) along with its linearization (4). If the point x* = 0 is
exponentially stable for the unperturbed system

z(t+1) = fo(x(t))
then
7Ly (Ao, (Ai)) = ru(fo, (fi)) = Ty (Ao, (A1) -

Proof. There exists a similarity transformation 7" such that all A;,i =0,... ,m
are similar to matrices of the form

TAT-! = |

0 ... 0 4]

where each of the sets M; := {A}; |i=0,...,m},j =1,...,dis irreducible.
It holds that p(a) = maxj—1,.. 4 p(M;(c)).

Thus it is sufficient to consider the blocks individually to determine ry,,,
resp. 7,. Under the assumption of exponential stability we have r(4y) < 1.
Hence for each j we have 7(AY;) < 1 and the set M;(a) has Property 1 for all

a > 0 such that p(M;(a)) > r(Ap). Now the result follows from Theorem 2.
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Corollary 2. Let T = N. The stability radius of linear systems with respect
to time-varying perturbations rr, is continuous on the set

{(Ao,..., Am) € (R™™)™ [ r(Ao) #1}.
Furthermore, the set

{(Agy .-+, Ap) € (R | pp (Ao, ooy Am) # Fry(Aoy ooy Am)}
is contained in a lower dimensional algebraic set.

Proof. It was shown in [7] that r1,, 7, are upper respectively lower semicon-
tinuous on (R"*™)™*+1 The preceding Corollary 1 shows that these two func-
tions coincide if 7(Ap) < 1, which shows continuity in this case. If r(A4p) > 1
the statement is obvious as both functions are equal to 0.

The second statement now follows because a necessary condition for the
condition 71y (Ao, ..., Am) # Fry(Ao,... ,Am) is 7(Ap) = 1. The latter con-
dition defines a lower dimensional algebraic set.

The result for the linear stability radii extends to the case of nonlinear
systems as follows. First, denote by C!(R™,R",0) the set of continuously
differentiable maps from R” to itself satisfying f(0) = 0. This space may be
endowed with the C' topology inherited from the topologies on the space
CH(R",R"), (see [6, Chapter 17]).

Corollary 3. Given n,m € N, the set W of functions (fo, f1,---,fm) €
CH(R™,R™,0)™ L for which

rat(fo, (fi)) = rry(Ao, (4i)) (6)

contains an open and dense subset of C1(R™, R"™,0)™ " with respect to both
the coarse and the fine C* topology.

Proof. This is immediate from the definition of the C! topology.

4 Continuous time

A natural question is if statements similar to those of Theorem 2 and Corol-
lary 1 hold in continuous time. The fundamental tool for this results is the
monotonicity property given by Proposition 1. This statement is unfortu-
nately in general false in continuous time, as any subset M; of the skew-
symmetric matrices generates a linear inclusion whose system semigroup is
a subset of the orthogonal group and for which the maximal Lyapunov ex-
ponent is therefore equal to 0. Taking a set My which contains M; in its
interior (with respect to the skew-symmetric matrices) does not yield a Lya-
punov exponent larger than one, so that the strict monotonicity property
fails to hold. This example leaves still some hope that maybe a statement
corresponding to Corollary 1 remains true in continuous time. The following
example shows that even such expectations are unfounded.
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Ezample 1. Consider the matrices
0 d
Ald) := {—d 2+ d} '
It is easy to see that A*(d) + A(d) < 0 for all d € (—o00,2). Hence for
D C (—00,2) it is immediate that k(D) < 0 as the Euclidean unit ball is
forward invariant under the associated time-varying linear system. On the

other hand while v(A(0)) = 0, we have y(A(d)) < 0 for all d € (0,2), see
Figure 1.
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Fig. 1. The spectral abscissa of A(d) in dependence of d.

The consequence of this is the following. If we define 49 = A(1/2) and

01
Ay = [—1 1] ’
then
1 3 _
0 <rpy(Ao, A1) < 3<3= Try(Ao, A1),

because at least Ag — 1/2A4; = A(0) is not asymptotically stable. While on
the other hand for oz < 3/2 the perturbation set is a strict subset of (—o0, 2)
and v(4p) = —(3 +v/5)/4 ~ —0.191 so that the unperturbed system is
exponentially stable.

While this example shows that we cannot expect a continuous time coun-
terpart to the discrete-time results of Section 3 we are able to show that the
property that the stability radius of the linearization determines the nonlin-
ear stability radius is true on certain open sets. We even conjecture that it
is true on an open and dense set, but this point remains open for the mo-
ment. The following theorem strengthens the result obtained in [9, Theorem
3.1 (i)]. Here the local Lipschitz continuity property of the maximal Lyapunov
exponent will play a vital role, as it will allow the application of the implicit
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function theorem for Lipschitz continuous functions. To this end we will need
the Clarke subdifferential of a function g, which we denote by dc1g(x). Here
we will not need the most general definition. For our purposes it is sufficient
to know that if we assume that g : RP — R is locally Lipschitz continuous
then

dci1g(x) = conv {c € RP

Jr,, = x:c= lim Vg(mk)} , (7)
k— o0

see [5, Theorem II.1.2], where we tacitly assume that the gradient Vg exists
in z; if we write \7g(z). Note that Lipschitz continuity of g implies that
it is differentiable almost everywhere by Rademacher’s theorem. For further
details we refer to [5].

The following lemma ensures that the theory of the Clarke generalized

gradient is applicable in our case.
lldll < a})

Lemma 2. The map

(Ao, ... Am,a) = K(Ao, ... ,Am,a) =k ({AO +) diA

i=1

is locally Lipschitz continuous on the set I(R"*™) X Rsg.

ldll < a}

is Lipschitz continuous. As the composition of Lipschitz continuous maps is
again Lipschitz continuous the claim follows from Theorem 1 (ii).

Proof. Note that the map

(Agy ..oy A, a) {Ao + ) diA;

i=1

Proposition 2. Let n,m € N. Fiz {A§,... , A%} € I(R™™™) and let
rLy(Ao, (4;)) < 0.

Consider the map & : (Ao, ... , Am,a) = k(M(a)) and denote
dcrak(z) == {ce R| I € (R™)™: (p),c) € Oaik(z)} .

If
inf Oci ok (A5, ..., Al oy (A5, (47))) >0, (8)

then rr, = 7y on a neighborhood of (Ao, ..., An) € (R¥™)™F1 and on this
neighborhood 71y is locally Lipschitz continuous.
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Proof. By Lemma 2 and (8) we may apply the implicit function theorem for
Lipschitz continuous maps [5, Theorem VI.3.1] which states that for every
(Bo, - - . , By) in a suitable open neighborhood of (4o, ... , Ap) € (R**")m+t
the map

a— k(M(By,...,Bn,a))

has a unique root and this root is a locally Lipschitz continuous function
of (By,...,Bp). In other words, this means that on this neighborhood the
functions rz, and rr, coincide and are locally Lipschitz continuous.

Conjecture 1. For fixed m > 1 the set £ C (R**")™*! given by

{(Ao, - s Am) [ 7y (Ao, (Ai)) = 7Ly (Ao, (i)}

contains an open and dense set. Furthermore, the Lebesgue measure of the
complement L€ is 0.

Remark 1. (i) The statement that the complement has measure zero is shown
in [9, Theorem 3.1 (i)].

(ii) With the help of Proposition 2 it is easy to identify open sets on
which rp, = 71, in the continuous time case. For instance, if A; = ¢l for
some ¢ = 1,...,m this implies that condition (8) holds. The problem is
whether this conditions holds generically.

5 Conclusion

In this paper it was shown that linearization at singular points can provide
information about the stability radius of a nonlinear system with respect to
time-varying perturbations. In discrete time this information is complete if
the nominal system is exponentially stable, while this is false in continuous
time.

The fundamental difference between discrete and continuous time lies in
the fact that the perturbation in discrete time is on the level of the systems
semigroup, whereas in continuous time the perturbations act on the level of
the Lie algebra of the system. This at least gives an indication that some
differences are to be expected.

We conjecture that also in continuous time the linearization provides suffi-
cient information at least on an open and dense set of systems. If Conjecture 1
can be proved to hold it is clear how to formulate results for the continuous
time case analogous to Corollaries 2,3.
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