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In this article we treat the discrete-time case. We will give an overview over the mainresults, without proving most of them. Nonetheless we attempt to present the geometricideas that lead to proofs which have appeared in [19]. An exception to this rule is Section 6,where new results are presented.In the following Section 2 we present the class of systems that are studied and state theproblem that is to be investigated. Section 3 presents a brief review of the dynamics of thetime-invariant case in order to motivate the following discussion of time-varying systems. InSection 4 we introduce accessibility and discuss the related regularity properties of controlsequences. This leads to the introduction of universally regular controls. In Section 5 thedynamics of the projected system are analyzed. In order to do this control sets are introducedand their most important properties are discussed. This leads to the concept of main controlsets and their associated indices. In Section 6 invariance principles of main control sets arestudied. The section culminates in the result that justi�es the �gure of speech that controlsets extend generalized eigenspaces: For each main control set and each in�nite controlsequence there exists a linear subspace of dimension equal to the index of the control setsuch that the evolution of this subspace remains in the closure of the control set, if at allpossible, which is determined by the dimension of the kernel of the transition matrices givenby the control sequence. In the �nal Section 7 it is explained how the results on control setsmay be employed for the analysis of Floquet and Lyapunov exponents.2 Problem statementLet K = R; C and let ~U � Km be open and connected. For an analytic mapA : ~U ! K n�n ; (1)we consider a family of time-varying linear system of the formx(t + 1) = A(u(t))x(t) ; t 2 N (2)x(0) = x0 2 K n ;where u : N ! U � ~U . For t 2 N U t denotes the set of admissible �nite control sequencesu = (u(0); : : : ; u(t�1)), while UN is the set of in�nite control sequences u = (u(0); u(1); : : :).It will always be clear from the context whether u denotes an element of U , U t or UN .The evolution operator generated by a control sequence u 2 UN is de�ned by�u(s; s) = I ; �u(t+ 1; s) = A(u(t))�u(t; s) ; t � s 2 N : (3)With this notation �u(t; 0)x0 is the solution of (2) corresponding to the initial value x0 andthe control u at time t.For systems of the form (2) let �(x0; u) denote the Lyapunov exponent corresponding tothe initial value (0; x0) 2 N � K n and the sequence A(u(�)) 2 `1(N ; K n�n) determined byu 2 UN , i.e. the exponential growth rate of the corresponding solution:�(x0; u) = lim supt!1 1t log k�u(t; 0)x0k;2



while �(u) denotes the Bohl exponent determined by u 2 UN:�(u) = lim sups;t�s!1 1t� s log k�u(t; s)k :It is known that in general maxx0 6=0 �(x0; u) � �(u) where strict inequality is possible, see[11]. The interest in the Bohl exponent stems from the fact that its negativity characterizesexponential stability of the time-varying system given by the matrix sequence fA(u(t))gt2N.Floquet exponents are the Lyapunov exponents corresponding to periodic sequences u 2UN. For t 2 N , u 2 U t it is easy to see that the set of Floquet exponents determined by thet{periodic continuation of u is given by�F l(u) := f1t log j�j; � 2 �(�u(t; 0))g ; (4)where we continue to use the convention log 0 = �1. For a system of form (2) determinedby the map A and the set of admissible controls U the Floquet, Lyapunov and Bohl spectrumare the sets of all corresponding exponents, i.e.�F l(A;U) := [t�1;u2Ut �F l(u) ; (5)�Ly(A;U) := f�(x0; u) ; x0 2 K nnf0g; u 2 UNg ; (6)�Bo(A;U) := f�(u); u 2 UNg : (7)To the linear system (2) we associate a system on projective space whose controllabilityproperties determine the sets of characteristic exponents in a qualitative way. In the sequelPn�1K denotes the n � 1 dimensional projective space, and for W � K n , PW denotes thenatural projection ofWnf0g onto the projective space Pn�1K . With this notation the projectedsystem is given by �(t+ 1) = PA(u(t))�(t) ; t 2 N (8)�(0) = �0 2 Pn�1Ku 2 UN(�0):Naturally for each point in projective space this only makes sense if �(t) 6� KerA(u(t)).We therefore de�ne the admissible control values for � by U(�) := fu 2 U ;A(u)x 6= 0; x 6=0;Px = �g. The sets of admissible control sequences are denoted by U t(�); UN(�). Thesolution of (8) corresponding to an initial value �0 and a control sequence u 2 UN(�0) isdenoted by �(�; �0; u).Let Uinv be the set fu 2 U ; detA(u) 6= 0g, which is clearly the complement of a setde�ned by analytic equations in U . In the sequel we will have to make use of the existenceof invertible matrices A(u), so that we have to assume that Uinv 6= ;.The following general assumption will be made throughout the remainder of this article.Assumption 2.1 Let K = R; C and consider system (2). We assume that the map A in(1) and the sets U � ~U � Km are such that: 3



GE(rn; u)
Lrj<rn GE(rj; u)

Figure 1: Time-invariant dynamics(i) Uinv 6= ;.(ii) intU is connected, U is bounded.(iii) U � clintU � ~U .3 The Time-Invariant CaseTo understand the dynamics of the projected system let us brie
y recall how the projec-tion of a time-invariant system behaves on Pn�1K : Eigenspaces and generalized eigenspacesare invariant and points whose spectral decomposition consists of several (generalized) eigen-vectors are attracted to those generalized eigenspaces whose corresponding eigenvalues havethe greatest modulus. From now on we use the following notation for t 2 N , u 2 U t,� 2 �(�u(t; 0)) and r = j�j let GE(r; u) := L�2�(�u(t;0));j�j=r GE(�; u), where GE denotesthe generalized eigenspace. Fix t 2 N , u 2 U t and consider the time-invariant systemx(t + 1) = �u(t; 0)x(t) :The qualitative behavior of this system is depicted in Figure 1, for the projection onto thesphere. Identi�cation of opposite points yield the behavior on Pn�1K .4
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Figure 2: The e�ect of a regular control.4 Forward Accessibility and RegularityA fundamental assumption in our approach is that the projected system is forward accessible:For � 2 Pn�1K and a time t 2 N we de�ne the forward orbit a time t to be the set of pointthat can be reached from �, i.e.O+t (�) := f� 2 Pn�1K ; 9 u 2 U t(�) with � = �(t; �; u)g :The forward orbit of � is then de�ned by O+(�) := St2N O+t (�) : The backward orbit of �at time t is given by O�t (�) := f� 2 Pn�1K ; 9 u 2 U t(�) with � = �(t; �; u)g which leads to ade�nition of O�(�) analogous to that of the positive forward orbit.De�nition 4.1 (Accessibility) The system (8) is called forward accessible from � ifintO+(�) 6= ; and forward accessible if it is forward accessible from all � 2 Pn�1K .If we assume forward accessibility this means that for each � 2 Pn�1K there exists a t 2 Nsuch that intO+t (�) 6= ;. If we consider the the mapFt(�; �) : U t(�)! Pn�1K ; Ft(�; u) := �(t; �; u) ; (9)it follows by Sard's theorem that for some u0 2 U t(�) the rank of the linearization of Ft(�; �)in u0 must be full, i.e. equal to n � 1. We denote this rank by r(t; �; u0) and call a pair(�; u) 2 Pn�1K � intU t regular, if u 2 intU t(�) and r(t; �; u) = n � 1. A control u 2 intU tis called universally regular, if (�; u) is a regular pair for all � 2 Pn�1K . We denote regularforward orbits that is the set of points reachable from � such that � and the applied controlsequence form a regular pair by Ô+t (�) etc. Some properties of the regular forward orbitsare studied in [2] for analytic invertible systems and similar arguments are applicable here.In particular the regular forward and backward orbits are open and if the regular forwardorbit at time t is nonempty then its closure coincides with that of the orbit at time t.Regular pairs are interesting because if (�; u) is a regular pair then using local surjectivitywe obtain that �(t; �; u) 2 intO+t (�) and on the other hand by the implicit function theorem� 2 intO�t (�(t; �; u)), see Figure 2. In the case when � is a �xed point under a control u5



such that (�; u) is a regular pair this implies that � 2 V := intO+t (�)\ intO�t (�), from whichfollows that V is a region of complete controllability, i.e. it is possible to steer from any�1 2 V to any �2 2 V by �rst steering from �1 to � and then to �2.Proposition 4.2 Let K = R; C . For � 2 Pn�1K there exist u� 2 intU t; t 2 N such that (�; u�)is a regular pair and � = �(t; �; u�) (10)if and only if there exists an open neighborhood V of � such that V � Ô+t (�) \ Ô�t (�).Condition (10) interpreted for the linear system states that � is an eigenspace of�u(t; 0). The statement of the previous proposition may be extended to sums of gen-eralized eigenspaces corresponding to eigenvalues of the same modulus once it is de�nedwhen such a subspace should be called regular. For two �nite control sequences u1 2 U t1 ,u2 2 U t2 we de�ne the concatenation (u1; u2) to be the sequence in U t1+t2 given by(u1; u2) = (u1(0); : : : ; u1(t1 � 1); u2(0); : : : ; u2(t2 � 1)).De�nition 4.3 Let K = R; C , t 2 N, u 2 U t, � 2 �(�u(t; 0)) n f0g, j�j = r. We call thesum of generalized eigenspaces PGE(r; u) regular if u can be partitioned as u = (u1; u2) withu1 2 U t1 , u2 2 intU t2 , t = t1 + t2 and it holds that(�; u2) is a regular pair for every � 2 P�u1(t1; 0)GE(r; u) : (11)Proposition 4.4 Let K = R; C , t 2 N, u 2 U t. If for � 2 �(�u(t; 0)); j�j = r > 0 the spacePGE(r; u) is regular then there exists an open set W such thatPGE(r; u) � W � \�2PGE(r;u)Ô+(�) \ Ô�(�) : (12)Thus regular generalized eigenspaces are important for the analysis of the projected system.As every eigenspace to a universally regular control is regular the following consequence ofresults shown in [16] is of interest.Proposition 4.5 Let K = R; C . For the projected system (8) the following statements areequivalent.(i) System (8) is forward accessible.(ii) There exists a t� 2 N such that for all t > t� the set of universally regular controlsequences is generic in intU t.The set of universally regular u 2 U t will be denoted by U treg. It follows from the results in[16] that if intO+t (�) 6= ; for all � 2 Pn�1K then t� � tn. Note that U treg is open for all t 2 N .Remark 4.6 Let us point out that we use the term generic for sets that are the complementof closed subanalytic sets of lower dimension in the real case or proper analytic subsets inthe complex case, see [17], [15]. 6



5 Control SetsAs we have seen in the previous section there exists a region of complete controllabilityaround a regular generalized eigenspace. On the other hand if � lies in a region of completecontrollability then it is an eigenspace for an appropriate control sequence. This is whythe study of exponential growth rates in particular Floquet exponents leads to the studyof controllability questions for the projected system. For this we introduce the followingde�nition.De�nition 5.1 (Control set) Let K = R; C . Consider system (8). A set ; 6= D � Pn�1Kis called a precontrol set, if(i) D � clO+(�); 8� 2 D.(ii) For every � 2 D there exists a u 2 UN(�) and an increasing sequence (tk)k2N � Nsuch that �(tk; �; u) 2 D for all k 2 N.A precontrol set D is called control set, if furthermore(iii) D is a maximal set with respect to inclusion satisfying (i).A control set C is called invariant control set, ifclC = clO+(�); 8� 2 C : (13)In the continuous time case complete controllability holds in the interior of control sets.This is false for forward accessible discrete time systems as shown in an example in [2]. Forthis reason the concept of the core of a control set has been introduced, which is a set thatbehaves as the interior of a control set of a continuous time system.We give a de�nition of core that slightly di�ers from the original de�nition in that we requirea regularity condition to hold. So to contrast it it might be called regular core of a controlset. It should, however, be noted that for the systems studied in [2] core and regular core ofa control set coincide. An example of a discrete time systems of the form (8) for which coreand interior of a control set di�er is presented in [19].De�nition 5.2 (Regular core) Let K = R; C . Let D � Pn�1K be a control set with intD 6=;. The (regular) core of D is de�ned ascore(D) := f� 2 D; Ô+(�) \D 6= ; and Ô�(�) \D 6= ;g : (14)In view of the terminology we have just introduced Proposition 4.4 states that if a sum ofgeneralized eigenspaces PGE(r; u) is regular, then there exists a control set D such thatPGE(r; u) � core(D). Now we know by Proposition 4.5 that generically a �nite controlsequence u is regular, and thus most Floquet exponents correspond to eigenspaces thatproject to the core of some control set. It should be noted that it cannot be concluded thatthe projection of an arbitrary eigenspace corresponding to any control is contained in the7



closure of a control set with nonempty interior. In fact, it is possible that any point of theprojective space may be a precontrol set, but the control sets with nonempty interior do notcover the whole projective space. For an example see [19] or in the continuous time case [8].Of particular interest are the invariant and the open control set. These are especially easyto characterize.Theorem 5.3 Let K = R; C . Assume that system (8) is forward accessible, then(i) There exists a unique invariant control set C � Pn�1K . It is given byC := \�2Pn�1K clO+(�) : (15)(ii) There exists a unique open control set C� � Pn�1K . It satis�esclC� = C� := \�2Pn�1K clO�(�) : (16)Moreover is holds that core(C�) = C�.The idea of the proof of part (i) is the following. We know there exists universally regularcontrols and that their generalized eigenspaces project to the cores of control sets. So inparticular for a universally regular u the (sum of) generalized eigenspace(s) PGE(j�nj; u) �core(C) for a control set C. By the dynamics depicted in Figure 3 C intersects the forwardorbit of every � 2 Pn�1K that is not contained in the projection of the sum of eigenspacescorresponding to smaller eigenvalues. As the projected system is forward accessible we canalways steer out of this sum and thus C intersects every forward orbit. Using the de�nitionof control sets it is then easy to show that (15) does not de�ne an empty set and that the setdescribed in this manner is an invariant control set. The proof of part (ii) follows a similarpattern.The representation (15), (16) show that any point may be steered to the invariant controlset, respectively may be reached from the open control set. This motivates the followingde�nition. Let D1; D2 be control sets in Pn�1K for the system (8). We de�neD1 � D2 :, There exist � 2 D1; t 2 N ; u 2 U t such that �(t; �; u) 2 D2 : (17)A priori this de�nes only a partial order on the control sets. What is however evident atthis point is the following.Proposition 5.4 Let K = R; C . Assume that system (8) is forward accessible.(i) C is the unique maximal control set with respect to the order "�" on the controlsets.(ii) C� is the unique minimal control set with respect to the order "�" on the controlsets. 8
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Figure 3: Construction of the invariant control set.

D1 D2
u� �(t; �; u)

Figure 4: Control ordered control sets.
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In order to obtain further results on the control set structure of the projected system thefollowing de�nition is useful. For every t 2 N , u 2 U t, we will from now on consider the setj�(�u(t; 0))j := fr1; : : : ; r�g, where ri = j�ij for �i 2 �(�u(t; 0)), r1 < : : : < r�. Consider thesequence j�1j � : : : � j�nj where each �i occurs as often as its the algebraic multiplicity. Wede�ne for i = 1; : : : ; n Qi(t) := [u2Utreg PGE(j�ij; u); Qi := 1[t=1Qi(t): (18)Furthermore for a map A : ~U ! Rn�n we introduce the following index which is a measureof what sets of rank de�cient matrices separate A(intU). De�ne the setsUi := fu 2 U ; dimKerA(u) � ig ; (19)and the singularity indexi(A;U) := minfi; intUi is pathwise connectedg : (20)Note that all the sets Ui are generic in U , as Ui � Uinv 6= ;. Moreover, K = C impliesthat i(A;U) = 0 as proper analytic subsets are nowhere separating in the complex case, see[13] Proposition 7.4. The signi�cance of the indices i > i(A;U) is explained in the followingproposition.Proposition 5.5 Let K = R; C . Assume that (8) is forward accessible. If i > i(A;U) thenQi is contained in a precontrol set. If i(A;U) = 0 then for each i = 1; : : : ; n the set Qi iscontained in a connected component of core(D) for some control set D.Remark 5.6 An example of a control set with core that is not connected is given in [19].The following theorem summarizes the main properties of control sets with nonempty core.Theorem 5.7 Assume that (8) is forward accessible and that i(A;U) � 1, then the followingstatements hold:(i) The number � of control sets D1; : : : ; D� with nonempty interior satis�es1 � � � n : (21)(ii) For every t > 0, u 2 U treg, r 2 j�(�u(t; 0))j there exists a control set Di 1 � i � �such that PGE(r; u) � core(Di) : (22)(iii) The core of the control sets D1; : : : ; D� consists of exactly those elements � 2 Pn�1Kwhich are eigenvectors to a nonzero eigenvalue of some �u(t; 0) where (�; u) is a regularpair. If U = Uinv the control may be chosen to be universally regular.10



(iv) For every t > 0, u 2 U t, r 2 j�(�u(t; 0))j there exists an j 2 f1; : : : ; �g withPGE(r; u)\ clDj 6= ;. Also for every t 2 N, u 2 U t and every j = 1; : : : ; � there existsan r 2 j�(�u(t; 0))j with PGE(r; u) \ clDj 6= ;.It has been shown that under the assumption of the previous theorem for every i 2f1; : : : ; ng there exists a control set D such that Qi � D :. From now on the followingterminology is used.De�nition 5.8 (Main control set) Let K = R; C . Assume that (8) is forward accessible.A control set D is called main control set if for every index 1 � i � n it holds thatQi \D 6= ; ) Qi � D :The result of the previous theorem may then be paraphrased by saying that in the casewhen i(A;U) � 1, i.e. in particular in complex or real invertible case, the only control setswith nonempty core are main control sets. Let us now examine further properties of maincontrol sets. Let n(�; u) denote the dimension of the generalized eigenspace of the eigenvalue� of �u(t; 0).Theorem 5.9 Assume that (8) is forward accessible, then the following holds.(i) If i(A;U) = 0 then the core of every main control set is connected.(ii) The main control sets are completely ordered with respect to the order "�".(iii) For each main control set D the numberm(D) = XPGE(�;u)�core(D) n(�; u) (23)is independent of u 2 U treg and t 2 N.De�nition 5.10 (Index of a main control set) Assume that (8) is forward accessible.For a main control set D � Pn�1K the number m(D) is called the index of the control set D.6 Invariance PrinciplesLet us now investigate which points do not leave a control set under the application of acontrol sequence u. To this end we recall the de�nition of !-limit sets.De�nition 6.1 (Limit sets) Let K = R; C , u 2 UN, � 2 Pn�1K . The positive !-limit set isde�ned by!+(�; u) := �� 2 Pn�1K ; 9ftkgk2N � N ; limk!1 tk =1 such that � = limk!1 �(tk; �; u)� : (24)11



The negative !-limit set is de�ned by!�(�; u) := �� 2 Pn�1K ; 9ftkgk2N � N ; limk!1 tk =1; 9f�kg � Pn�1K ;� = �(tk; �k; u) such that � = limk!1 �k� : (25)For t 2 N, u 2 U t, � 2 Pn�1K !+(�; u) (!�(�; u)) denotes the positive (resp. negative) !-limitset that is obtained by applying the t-periodic continuation of u.Note that with this de�nition we do not exclude the possibility that !-limit sets may beempty, e.g. if u 62 UN(�). For a discussion of the concept of !-limit sets we refer the readerto [1], Chapter 1.Proposition 6.2 Let K = R; C . Let u 2 U treg. Then for every control set D with nonemptyinterior we have that P(Mr GE(r; u)) � core(D) ; (26)where the sum is taken over all r 2 j�(�u(t; 0))j such that PGE(r; u) � core(D).Proof. Let 0 6= x 2 LrGE(r; u) as in (26). We represent x asx = x1 + : : :+ x� ;where xj 2 GE(rj; u) and r1 < : : : < r� . Let j; j be the smallest and largest indices suchthat xj 6= 0. Then !+(Px; u) � PGE(rj) � core(D), and !�(Px; u) � PGE(rj) � core(D).Using the fact that u 2 U treg it follows in a straightforward way that Px 2 core(D).Corollary 6.3 Let K = R; C . Let u 2 U treg and j�(�u(t; 0))j = fr1; : : : ; r�g where r1 <: : : < r�. If there exists a control set D and indices i; l such thatPGE(ri; u) � core(D) ;PGE(ri+l; u) � core(D) :Then P( lMj=0GE(ri+j; u)) � core(D) : (27)Proof. Let 0 6= xi 2 GE(ri; u) and 0 6= xi+l 2 GE(ri+l; u). For 0 < j < l it holds byProposition 4.4 that PGE(ri+j ; u) � core(D0) for some control set D0. Hence for 0 6= xi+j 2GE(ri+j; u) there exists an " > 0 such that P(xi+j + "xi) 2 core(D0) and P(xi+j + "xi+l) 2core(D0). Now !�(P(xi+j+"xi); u) � PGE(ri; u) � core(D) and thus D � D0. On the otherhand !+(P(xi+j + "xi+l); u) � PGE(ri+l; u) � core(D) and thus D � D0. Hence D = D0 bymaximality of control sets and the assertion follows from Proposition 6.2.An interesting subset in a control set D is the set of those points, whose trajectory doesnot leave the closure of the control set forward and backward in time.12



De�nition 6.4 Let K = R; C . For t 2 N ; u 2 U tinv a control set D de�neD(u) = f� 2 Pn�1K ;!+(�; u); !�(�; u) � clDg: (28)For universally regular control sequences the set D(u) is particularly easy to characterize.Theorem 6.5 Let K = R; C , t 2 N, u 2 U treg. ThenD(u) = P(Mr GE(r; u)) ; (29)where the sum is taken over all r 2 j�(�(t; u))j with PGE(r; u) � core(D).Proof. Clearly, if � 2 P(LrGE(r; u)) de�ned by equation (29) then !+(�; u); !�(�; u) �P(LrGE(r; u)) � core(D) by Proposition 6.2. Let 0 6= x 2 K n be such that Px 2D(u)nP(LrGE(r; u)). Let x = �Xj=1 xj ;where xj 2 GE(rj; u). Now if j0 is such that xj0 6= 0 and Pxj0 62 core(D), then byCorollary 6.3 it holds that rj0 > max r := frj;PGE(rj ; u) � core(D)g or rj0 < r :=minfrj;PGE(rj ; u) � core(D)g. In the �rst case we obtain!+(Px; u) � P(Mr>rGE(r; u)) ;but P(Mr>rGE(r; u)) \ cl(D) = ; :Hence Px 62 D(u). In the second case!�(Px; u) � P(Mr<rGE(r; u)) ;and also Px 62 D(u).To summarize we have obtained the following picture of the control structure of thesystem on projective space. For a map A and a set of admissible controls U such that thesystem on Pn�1K is forward accessible and i(A;U) � 1, there exist a sequences of controlsets D1: : : : :D� and associated indices m(D1); : : : ; m(D�), with P�j=1m(Dj) = n. Morespeci�cally if we write �j = jXl=1m(Dl)for j = 1; : : : ; � then �j[i=�j�1+1Qi j core(Dj) ;13



where equality holds if U = Uinv. So the numbers from 1 to n are partitioned into � non-interlacing subsequences which represent the indices i such that Qi � core(Dj):1; : : : ; �1| {z }D1 ; �1 + 1; : : : ; �2| {z }D2 ; �2 + 1; : : :| {z }: : : : : : ; : : : ; : : : ; ���1| {z }: : : : : : ; ���1 + 1; : : : ; n| {z }D� :The order between the main control sets is simply re
ected in the order of the subsequences.In case there are control sets with nonempty core that are not main control sets this canbe extended in a natural way by considering indices that do not correspond to main controlsets, but to control set clusters, see [18].With this notation we may formulate the the following invariance principle which alsomotivates the interpretation of control sets and their indices as an extension of eigenspacesand their dimension.Theorem 6.6 Let K = R; C , u 2 UN and d(u) := maxt2N dim ker �u(t; 0). Let �1; : : : ; �� bethe indices for the control set structure as described above.(i) For every main control set Dj with �j�1 > d(u) there exists a linear subspace Xj(u)satisfying dimXj(u) = m(Dj) = �j � �j�1 ;for all t 2 N it holds that P�u(t; 0)Xj(u) � clDj :(ii) If d(u) > 0 and a main control set Dj exists such that �j�1 < d(u) < �j then thereexists a linear subspace Xj(u) satisfyingdimXj(u) = �j � d(u) ;for all t 2 N it holds that P�u(t; 0)Xj(u) � clDj :Proof. Fix u 2 UN . Let T 2 N be large enough such that dim ker �u(t; 0) = d(u) forall t � T . Choose u� 2 U t�reg, for some t� 2 N . For any t � T consider the controlsequence vt := (u[0;t�1]; u�), where u[0;t�1] denotes the �rst t entries of the sequence u. Denotej�(�vt(t + t�; 0))j = fr1; : : : ; r�g, with 0 � r1 < : : : < r�. For those indices k with rk > 0consider the sums of generalized eigenspaces PGE(rk; vt). By Proposition 4.4 it follows thatPGE(rk; vt) � core(D) for some control set D. Hence we obtain for D thatQi \D 6= ; for i = k�1Xl=1 rl + 1; : : : ; kXl=1 rl :For every main control set D as speci�ed in (i) it follows that there exists a linear subspaceX(u; t) satisfying dimX(u; t) = m(D) ;PX(u; t) � core(D) ;�vt(t+ t�; 0)X(u; t) = X(u; t) :14



Using the de�nition of control sets it is easy to see that for all 0 � s � t�u(s; 0)X(u; t) � D : (30)As the GrassmannianGn;m(D)K , i.e. the space ofm(D)-dimensional subspaces of K n is compactwe may choose a subsequence (tk)k2N such thatX(u) := limk!1X(u; tk) (31)exists. It follows that X(u) � clD. Assume there exists a �t 2 N such thatP�u(�t; 0)X(u) 6� clD :Then for all m(D)-dimensional subspaces X in an appropriate neighborhood W of X(u) (inthe Grassmannian Gn;m(D)K ) it follows that P�u(�t; 0)X 6� clD. But for all t > �t it holds by(30) that �u(�t; 0)X(u; t) � D. This contradicts (31) so that the proof of (i) is completed.(ii) now follows as (i) while making the appropriate change of dimension of Xj(u).7 Characteristic exponentsUp to now we have described the control structure of a system on projective space. Withthe insight that has been gained let us now discuss properties of the set of characteristicexponents that may be deduced from our knowledge about the control sets. For a controlset D with nonempty core we de�ne the associated Floquet exponents to be�F l(D) := [t�1;u2Utf1t log r; r 2 j�(�u(t; 0))j; PGE(r; u) � core(D)and PGE(r; u) is regular g: (32)Let us begin by explaining how to obtain the Lyapunov exponent �(x0; u) from the trajectory�(�;Px0; u) of the projected system. For � 2 Pn�1K , u 2 U(�) de�neq(�; u) := log kA(u)xkkxk ; where x 6= 0; Px = �: (33)This is well de�ned as multiplication of x with a non-zero scalar does not alter the value ofq(�; u). For � 2 Pn�1K , t 2 N , u 2 U t(�) de�neJ(t; �; u) = t�1Xs=0 q(�(s; �; u); u(s)): (34)Then we obtain the following expression for Lyapunov exponents:Lemma 7.1 Let K = R; C . For x0 2 K n n f0g, u 2 UN it holds that�(x0; u) = ( lim supt!1 1tJ(t;Px0; u); if u 2 UN(x0):�1; otherwise: (35)15



The previous lemma shows that we may speak of the Lyapunov exponent correspondingto (�0; u) 2 Pn�1K �UN which we denote by �(�0; u). The Floquet spectrum is closely relatedto the structure of the control sets examined up to now. In order to explore this relationshipwe need a controllability property in the cores of control sets. Let K = R; C and considersystem (8) on Pn�1K . Consider the functionsh : Pn�1K � Pn�1K ! N [ f1g (36)h(�; �) := minft 2 N ; there is a u 2 U t such that �(t; �; u) = �g ;H :M �M ! R+ [ f1g (37)H(�; �) := inffmax1�s�t jJ(s; �; u)j; t 2 N ; u 2 U t such that �(t; �; u) = �g ;where min ; = inf ; =1.The previous de�nition is the discrete{time analogue of the �rst{time hitting map, as de�nedfor instance in [6], [7]. As we treat non{invertible systems as well it is important for us toobtain information not only on the time that elapses to steer from � to �, but also on the"cost" incurred in doing so. For the projected system (8) and the function q interpreted asa cost jq(�; u)j may be arbitrarily large if u is chosen such that A(u) is almost singular. Theessential point is that both these values may be simultaneously bounded if one tries to reacha compact subset of the core of a control set.Lemma 7.2 Let K = R; C and assume that system (8) is forward accessible. Let D � Pn�1Kbe a control set. Assume there are two non-void compact sets K1; K2 with K1 � D andK2 � core(D), then there are constants h 2 N ; H 2 R+ such thath(�; �) � h for all � 2 K1; � 2 K2 ; (38)H(�; �) � H for all � 2 K1; � 2 K2 : (39)This observation may be used in the proof of the following statement.Proposition 7.3 Let K = R; C and assume that (8) is forward accessible. For a control setD with core(D) 6= ; the set cl�F l(D) is an interval.The idea for a proof of this is simple: Take two Floquet exponents in �F l(D)and corresponding regular eigenspaces E(�1; u1); E(�2; u2). In order to show that[1=t1 log j�1j; 1=t2 log j�2j] � cl�F l(D) we may choose �0 2 PE(�1; u1) apply the controlu l times then choose a control v1 that steers to PE(�2; u2), apply the control u2 k times andsteer back to �0 via a control v2, see Figure 5. Using Lemma 7.2 we can bound the time andthe perturbation of the Floquet exponent due to the e�ect of v1 and v2. Thus for k; l large itis possible to approximate all rational convex combinations of 1=t1 log j�1j and 1=t2 log j�2j.The following theorem summarizes the properties of the Floquet spectrum.Theorem 7.4 Let K = R; C and assume that (8) is forward accessible. Let � be equal tothe number of main control sets. 16
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Figure 5: Construction of a dense set of Floquet exponents in the interval [j�1j; j�2j].(i) For each main control set Dj j = 1; : : : ; � the closed Floquet spectrum is an interval.We de�ne cl�FL(Dj) =: [�j; �j]; �j � �j : (40)(ii) If all control sets with nonempty interior are main control sets thencl�FL(A;U) = �[j=1[�j; �j]: (41)(iii) If there exist control sets with nonempty interior that are not main control setsthen there exists a constant �� 2 R such thatcl�FL(A;U) = �[j=1[�j; �j] [ [�1; ��]: (42)(iv) If for two main control sets Dj1 < Dj2 then�j1 � �j2; �j1 � �j2: (43)(v) For j = 1; : : : ; � it holds that#cl�FL(Dj) n �FL(Dj) � m(Dj) + 1; (44)It should be noted, that the spectral intervals corresponding to di�erent main control setsmay overlap, i.e. that the statement �i � �j, �i � �j in Theorem 7.4 does in no way excludethe possibility that �i > �j. In fact, it is even possible that �i = �j and �i = �j for i 6= j.This phenomenon is shown in an example in [19].17



u1 u2 u3
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Figure 6: Approximation of a Lyapunov exponent in the closure of the Floquet exponents.Theorem 7.5 Let K = R; C and assume that (8) is forward accessible.(i) Let D be a control set, with core(D) 6= ;. Assume that (�0; u) 2 Pn�1K � UN(�0) aregiven with !+(�0; u) � D. If there exists a t0 2 N with �(t0; �0; u) 2 core(D) then�(�0; u) 2 cl�F l(D).(ii) Let D be a control set, with core(D) 6= ;, thencl�F l(D) � �Ly(A;U): (45)For the proof of assertion (ii) take a sequence f�kg � �F l(D) such that �k ! ��. Denote theassociated control sequences and eigenspaces by uk and Ek. Then a trajectory with Lyapunovexponent �� may be constructed by �rst following the control u1 on the eigenspace E1 thensteering to E2 and applying the control u2 such that the Lyapunov exponent is up to "2 closeto �2, then steering to E3 and so forth, see Figure 6. If the sequence "k tends to zero then it ispossible to show that the constructed trajectory has indeed the desired Lyapunov exponent.A further question of interest, especially if stabilization and robust stability questions areconsidered, concerns the lower and upper bounds of the spectral sets that we have de�ned.For upper bounds this has been studied in [3], [5], [12], [14] in a more general case thenthe one presented here. A consequence of the results in these references is that supremaof Floquet, Lyapunov and Bohl exponents coincide, from which it is possible to infer thatalso in�ma of Floquet and Lyapunov exponent coincide. Barabanov [4] proved that to eachdiscrete inclusion given by a bounded set of matrices there exists a trajectory that realizesthe maximal Lyapunov exponent. As should be expected trajectories realizing extremalLyapunov exponents can be chosen to evolve in the invariant, respectively open control set,corresponding to the realization of the largest and the smallest exponent.Acknowledgment 7.6 The author wishes to express his thanks to F. Colonius, D. Hin-richsen and W. Kliemann for a number of helpful discussions and remarks.18
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