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Abstract

We present a tutorial introduction to the approach to spectral theory of time-
varying linear systems via the analysis of the controllability properties of an associated
projected system. The necessary concepts of universally regular controls, control sets
and characteristic exponents are discussed. It is shown that to each main control set
and control sequence u there exists a subspace with dimension equal to the index of the
control set whose projected forward evolution does not leave the closure of the control
set.

1 Introduction
The question as to which exponential growth rates a linear system
o(t) = A(u(t))z(t), teR or xz(t+1)=A(u(t))z(t), teN
z(0) =29 € R"

A:U— R™™

can exhibit has attracted much attention in recent years. For continuous time systems Flo-
quet, Lyapunov and Morse spectra have been studied by Colonius and Kliemann [8],[9],[10].
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In this article we treat the discrete-time case. We will give an overview over the main
results, without proving most of them. Nonetheless we attempt to present the geometric
ideas that lead to proofs which have appeared in [19]. An exception to this rule is Section 6,
where new results are presented.

In the following Section 2 we present the class of systems that are studied and state the
problem that is to be investigated. Section 3 presents a brief review of the dynamics of the
time-invariant case in order to motivate the following discussion of time-varying systems. In
Section 4 we introduce accessibility and discuss the related regularity properties of control
sequences. This leads to the introduction of universally regular controls. In Section 5 the
dynamics of the projected system are analyzed. In order to do this control sets are introduced
and their most important properties are discussed. This leads to the concept of main control
sets and their associated indices. In Section 6 invariance principles of main control sets are
studied. The section culminates in the result that justifies the figure of speech that control
sets extend generalized eigenspaces: For each main control set and each infinite control
sequence there exists a linear subspace of dimension equal to the index of the control set
such that the evolution of this subspace remains in the closure of the control set, if at all
possible, which is determined by the dimension of the kernel of the transition matrices given
by the control sequence. In the final Section 7 it is explained how the results on control sets
may be employed for the analysis of Floquet and Lyapunov exponents.

2 Problem statement

Let K = R, C and let U € K™ be open and connected. For an analytic map
AU — K™, (1)
we consider a family of time-varying linear system of the form

z(t+1) = A(u(t))z(t), teN (2)
z(0) = =z €K,

where u: N — U C U. For t € N U' denotes the set of admissible finite control sequences
u = (u(0),...,u(t—1)), while U" is the set of infinite control sequences u = (u(0), u(1),...).
It will always be clear from the context whether u denotes an element of U, U! or UV,

The evolution operator generated by a control sequence u € U is defined by

Qu(s,s) =1, P@,(t+1,s)=A(u(t))®,(t,s), t>seN. (3)

With this notation ®,(¢,0)z, is the solution of (2) corresponding to the initial value z, and
the control u at time ¢.

For systems of the form (2) let A(zg, u) denote the Lyapunov exponent corresponding to
the initial value (0,z9) € N x K" and the sequence A(u(-)) € ¢*°(N, K"*") determined by
u € UY, i.e. the exponential growth rate of the corresponding solution:

1
)\(xUJ U) = lim sup ; log ||q)u(t7 O)xUHJ

t—o00



while #(u) denotes the Bohl exponent determined by u € U™M:

1
B(u) = lim sup ;

s,t—s—oo L — S

log [|[®u(t, )| -

It is known that in general max,, .o A(zo,u) < f(u) where strict inequality is possible, see
[11]. The interest in the Bohl exponent stems from the fact that its negativity characterizes
exponential stability of the time-varying system given by the matrix sequence {A(u(t))}ien-

Floquet exponents are the Lyapunov exponents corresponding to periodic sequences u €
UN. Fort € N, u € U it is easy to see that the set of Floquet exponents determined by the
t—periodic continuation of u is given by

7r(u) = {3 0g N} A € o(®4(1,0))}, (4)

where we continue to use the convention log0 = —oo. For a system of form (2) determined
by the map A and the set of admissible controls U the Floquet, Lyapunov and Bohl spectrum
are the sets of all corresponding exponents, i.e.

EFl(A, U) = U taFl(u), (5)
Sry(A,U) == {Awp,u); zp € K"\{0},u € UV}, (6)
Spo(A,U) = {Bu)ue UM, 7)

To the linear system (2) we associate a system on projective space whose controllability
properties determine the sets of characteristic exponents in a qualitative way. In the sequel
P! denotes the n — 1 dimensional projective space, and for W C K", PW denotes the
natural projection of W\ {0} onto the projective space Pjy *. With this notation the projected
system is given by

§(t+1) = PAu(t)é(), teN (8)
£0) = & ePyt
u € UN&).

Naturally for each point in projective space this only makes sense if £(t) ¢ KerA(u(t)).
We therefore define the admissible control values for € by U(§) := {u € U; A(u)x # 0,2 #
0,Px = £}. The sets of admissible control sequences are denoted by U(E), UN(E). The
solution of (8) corresponding to an initial value & and a control sequence u € UMN(&) is
denoted by &(+; &, u).

Let Ujp, be the set {u € U; det A(u) # 0}, which is clearly the complement of a set
defined by analytic equations in U. In the sequel we will have to make use of the existence
of invertible matrices A(u), so that we have to assume that Uy, # 0.

The following general assumption will be made throughout the remainder of this article.

Assumption 2.1 Let K = R, C and consider system (2). We assume that the map A in
(1) and the sets U C U C K™ are such that:
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Figure 1: Time-invariant dynamics

(11) intU is connected, U is bounded.

(iii) U C clintU C U.

3 The Time-Invariant Case

To understand the dynamics of the projected system let us briefly recall how the projec-
tion of a time-invariant system behaves on P ': Eigenspaces and generalized eigenspaces
are invariant and points whose spectral decomposition consists of several (generalized) eigen-
vectors are attracted to those generalized eigenspaces whose corresponding eigenvalues have
the greatest modulus. From now on we use the following notation for t € N, u € U,
A€ a(®y,(t,0)) and r = [N let GE(r,u) == @uco(@,t,0), = GE (1, u), where GE denotes
the generalized eigenspace. Fix t € N, v € U" and consider the time-invariant system

o(t+1) = Dy (t, 0)a(t) .

The qualitative behavior of this system is depicted in Figure 1, for the projection onto the
sphere. Identification of opposite points yield the behavior on PE .



Figure 2: The effect of a regular control.

4 Forward Accessibility and Regularity

A fundamental assumption in our approach is that the projected system is forward accessible:
For ¢ € Pi~" and a time ¢t € N we define the forward orbit a time t to be the set of point
that can be reached from &, i.e.

O} (&) = {n € Bx";3u € UH() with n = £(t:€,u)}

The forward orbit of ¢ is then defined by OF(€) := Uwen OF (€) . The backward orbit of &
at time ¢ is given by O; (§) := {n € P ';3u € U(n) with & = £(t;n,u)} which leads to a
definition of O~ (§) analogous to that of the positive forward orbit.

Definition 4.1 (Accessibility) The system (8) is called forward accessible from & if
intO" (&) # O and forward accessible if it is forward accessible from all € € P,

If we assume forward accessibility this means that for each ¢ € P! there exists a ¢t € N
such that intO; (€) # (0. If we consider the the map

Fi(&) U ) = PEt,  Fiéu) =E(t € u), (9)

it follows by Sard’s theorem that for some ug € U*(§) the rank of the linearization of Fy(¢,-)
in up must be full, i.e. equal to n — 1. We denote this rank by r(¢; £, uy) and call a pair
(&, u) € PEt x intU! regular, if u € intU'(€) and r(t;€,u) = n — 1. A control u € intU*
is called wniversally reqular, if (£,u) is a regular pair for all & € P4, We denote regular
forward orbits that is the set of points reachable from £ such that & and the applied control
sequence form a regular pair by @: (&) etc. Some properties of the regular forward orbits
are studied in [2] for analytic invertible systems and similar arguments are applicable here.
In particular the regular forward and backward orbits are open and if the regular forward
orbit at time ¢ is nonempty then its closure coincides with that of the orbit at time ¢.
Regular pairs are interesting because if (£, u) is a regular pair then using local surjectivity
we obtain that £(¢; &, u) € intO; (€) and on the other hand by the implicit function theorem
¢ € intO; (£(t;€,u)), see Figure 2. In the case when ¢ is a fixed point under a control u



such that (&, u) is a regular pair this implies that £ € V := intQ; (£) NintO, (£), from which
follows that V' is a region of complete controllability, i.e. it is possible to steer from any
n € V to any 1y € V by first steering from 7, to £ and then to 7.

Proposition 4.2 Let K =R C. For £ € P! there exist ug € intU',t € N such that (£, ug)
1S a reqular pair and

§=¢&(6 €, ue) (10)
if and only if there exists an open neighborhood V' of & such that V C @: &N (’A); (€).

Condition (10) interpreted for the linear system states that £ is an eigenspace of
®,(t,0). The statement of the previous proposition may be extended to sums of gen-
eralized eigenspaces corresponding to eigenvalues of the same modulus once it is defined
when such a subspace should be called regular. For two finite control sequences u; € U,
uy € U™ we define the concatenation (uj,us) to be the sequence in U“T'2 given by

(w1, ug) = (u1(0), ..., ui(ts — 1),uz(0),. .., ua(tz — 1)).
Definition 4.3 Let K=R C, t € N, u € U', A\ € o(®,(¢,0)) \ {0}, |\ = r. We call the

sum of generalized eigenspaces PGE(r,u) regular if u can be partitioned as u = (uy, us) with
up € UM, uy € intU", t =t +ty and it holds that

(&, uy) is a reqular pair for every £ € PO, (t1,0)GE(r,u) . (11)

Proposition 4.4 Let K=R,C, t € N, u € U'. If for A € o(®,(t,0)), |\| =7 > 0 the space
PGE(r,u) is regular then there exists an open set W such that

PGE(ru)cWcC () O ()nO (€. (12)
EEPGE(r,u)

Thus regular generalized eigenspaces are important for the analysis of the projected system.
As every eigenspace to a universally regular control is regular the following consequence of
results shown in [16] is of interest.

Proposition 4.5 Let K = R C. For the projected system (8) the following statements are
equivalent.

(1) System (8) is forward accessible.

(11) There exists a t* € N such that for all t > t* the set of universally regular control
sequences is generic in ntU*.

The set of universally regular v € U' will be denoted by U!, . It follows from the results in

reg*
[16] that if intO} (€) # 0 for all £ € PE! then t* < tn. Note that U, is open for all ¢ € N.

reg

Remark 4.6 Let us point out that we use the term generic for sets that are the complement
of closed subanalytic sets of lower dimension in the real case or proper analytic subsets in
the complex case, see [17], [15]. u



5 Control Sets

As we have seen in the previous section there exists a region of complete controllability
around a regular generalized eigenspace. On the other hand if £ lies in a region of complete
controllability then it is an eigenspace for an appropriate control sequence. This is why
the study of exponential growth rates in particular Floquet exponents leads to the study
of controllability questions for the projected system. For this we introduce the following
definition.

Definition 5.1 (Control set) Let K = R,C. Consider system (8). A set ) # D C Pi*
15 called a precontrol set, of

(i) D C clO* (&), V€ € D.

(i) For every £ € D there exists a u € UN(E) and an increasing sequence (tg)gen C N
such that £(tx; €, u) € D for all k € N.

A precontrol set D 1is called control set, if furthermore
(111) D is a mazimal set with respect to inclusion satisfying (i).

A control set C is called invariant control set, if
clC = clO*(£),Vé e C . (13)

In the continuous time case complete controllability holds in the interior of control sets.
This is false for forward accessible discrete time systems as shown in an example in [2]. For
this reason the concept of the core of a control set has been introduced, which is a set that
behaves as the interior of a control set of a continuous time system.

We give a definition of core that slightly differs from the original definition in that we require
a regularity condition to hold. So to contrast it it might be called regular core of a control
set. It should, however, be noted that for the systems studied in [2] core and regular core of
a control set coincide. An example of a discrete time systems of the form (8) for which core
and interior of a control set differ is presented in [19].

Definition 5.2 (Regular core) Let K=R C. Let D C P¥" be a control set with intD #
(). The (regular) core of D is defined as

core(D) := {£ € D; @+(§) ND#Q and O ()N D #0}. (14)

In view of the terminology we have just introduced Proposition 4.4 states that if a sum of
generalized eigenspaces PGE(r,u) is regular, then there exists a control set D such that
PGE(r,u) C core(D). Now we know by Proposition 4.5 that generically a finite control
sequence u is regular, and thus most Floquet exponents correspond to eigenspaces that
project to the core of some control set. It should be noted that it cannot be concluded that
the projection of an arbitrary eigenspace corresponding to any control is contained in the



closure of a control set with nonempty interior. In fact, it is possible that any point of the
projective space may be a precontrol set, but the control sets with nonempty interior do not
cover the whole projective space. For an example see [19] or in the continuous time case [8].
Of particular interest are the invariant and the open control set. These are especially easy
to characterize.

Theorem 5.3 Let K =R, C. Assume that system (8) is forward accessible, then

(i) There exists a unique invariant control set C C PE~t. It is given by

C:= ) cdO*(¢). (15)

—1
£ePr

(ii) There exists a unique open control set C— C Py, It satisfies

dC™=C":= [ O (). (16)

gepPp!
Moreover is holds that core(C~) = C~.

The idea of the proof of part (i) is the following. We know there exists universally regular
controls and that their generalized eigenspaces project to the cores of control sets. So in
particular for a universally regular u the (sum of) generalized eigenspace(s) PGE(|\,|,u) C
core(C') for a control set C. By the dynamics depicted in Figure 3 C' intersects the forward
orbit of every ¢ € P ! that is not contained in the projection of the sum of eigenspaces
corresponding to smaller eigenvalues. As the projected system is forward accessible we can
always steer out of this sum and thus C' intersects every forward orbit. Using the definition
of control sets it is then easy to show that (15) does not define an empty set and that the set
described in this manner is an invariant control set. The proof of part (ii) follows a similar
pattern.

The representation (15), (16) show that any point may be steered to the invariant control
set, respectively may be reached from the open control set. This motivates the following
definition. Let D;, Dy be control sets in P! for the system (8). We define

D, < Dy :& There exist £ € Dy, t €N, u € U’ such that £(t;€,u) € Ds. (17)

A priori this defines only a partial order on the control sets. What is however evident at
this point is the following.

Proposition 5.4 Let K =R, C. Assume that system (8) is forward accessible.

(i) C is the unique mazimal control set with respect to the order ”<” on the control
sets.

(11) C~ is the unique minimal control set with respect to the order "<” on the control
sets.
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Figure 3: Construction of the invariant control set.
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Figure 4: Control ordered control sets.



In order to obtain further results on the control set structure of the projected system the
following definition is useful. For every t € N, u € U*, we will from now on consider the set
lo(®y(t,0))| :=={r1,...,r.}, where r; = |\;| for \; € o(®,(¢,0)), r1 < ... <r,. Consider the
sequence |\ < ... < |\, where each \; occurs as often as its the algebraic multiplicity. We
define fori=1,...,n

Qit) = U PGE(ML W), @ :[’j Qilh). (15)

ueUt

reg

Furthermore for a map A : U — R™" we introduce the following index which is a measure
of what sets of rank deficient matrices separate A(intU). Define the sets

Ui = {u e U; dimKerA(u) < i}, (19)
and the singularity index
1(A,U) := min{i; intU; is pathwise connected} . (20)

Note that all the sets U; are generic in U, as U; D U, # (. Moreover, K = C implies
that i(A,U) = 0 as proper analytic subsets are nowhere separating in the complex case, see
[13] Proposition 7.4. The significance of the indices i > i(A4, U) is explained in the following
proposition.

Proposition 5.5 Let K =R C. Assume that (8) is forward accessible. If i > i(A,U) then
Qi 1s contained in a precontrol set. If i(A,U) = 0 then for each i = 1,...,n the set Q; is
contained in a connected component of core(D) for some control set D.

Remark 5.6 An example of a control set with core that is not connected is given in [19]. m

The following theorem summarizes the main properties of control sets with nonempty core.

Theorem 5.7 Assume that (8) is forward accessible and that i(A,U) < 1, then the following
statements hold:

(1) The number k of control sets Dy, ..., D, with nonempty interior satisfies
1<k<n. (21)
(it) For everyt >0, u € Ul,,, 7 € |o(®yu(t,0))| there ewists a control set D; 1 < i <k
such that
PGE(r,u) C core(D;) . (22)
(iii) The core of the control sets Dy, ..., D, consists of exactly those elements & € P

which are eigenvectors to a nonzero eigenvalue of some @, (t,0) where (&, u) is a reqular
pair. If U = U, the control may be chosen to be universally reqular.

10



(iv) For every t > 0, u € U, r € |o(®y(t,0))| there exists an j € {1,...,k} with
PGE(r,u)NeclD; # 0. Also for everyt € N, uw € U and every j = 1,...,k there exists
an r € |o(®,(t,0))| with PGE(r,u) N clD; # 0.

It has been shown that under the assumption of the previous theorem for every i €
{1,...,n} there exists a control set D such that ; C D.. From now on the following
terminology is used.

Definition 5.8 (Main control set) Let K =R C. Assume that (8) is forward accessible.
A control set D s called main control set if for every index 1 < i < n it holds that

The result of the previous theorem may then be paraphrased by saying that in the case
when i(A4,U) < 1, i.e. in particular in complex or real invertible case, the only control sets
with nonempty core are main control sets. Let us now examine further properties of main
control sets. Let n(A, u) denote the dimension of the generalized eigenspace of the eigenvalue
A of @,(¢,0).

Theorem 5.9 Assume that (8) is forward accessible, then the following holds.
(i) If i(A,U) = 0 then the core of every main control set is connected.
(11) The main control sets are completely ordered with respect to the order "<”.

(111) For each main control set D the number

mD)= Y nhu (23)

PGE(A\u)C COTED)

is independent of u € U', andt € N.

reg

Definition 5.10 (Index of a main control set) Assume that (8) is forward accessible.
For a main control set D C P * the number m(D) is called the index of the control set D.

6 Invariance Principles

Let us now investigate which points do not leave a control set under the application of a
control sequence u. To this end we recall the definition of w-limit sets.

Definition 6.1 (Limit sets) Let K=R,C, u € UY, ¢ € P '. The positive w-limit set is
defined by

wh (& u) = {77 € Pi b Htrbeen CN, klim ty = 0o such that n = klim §(tk;§,u)} . (24)
—00 —00

11



The negative w-limit set 1s defined by
w6 ) = {77 € P Htudren C N, lim t = o0, 3{ne} C PL,
—00
& = &(tg; ik, u) such that n = klim nk} ) (25)
—00

ForteN,uc U, £ ePrt wh( u) (w™ (& u)) denotes the positive (resp. negative) w-limit
set that s obtained by applying the t-periodic continuation of u.

Note that with this definition we do not exclude the possibility that w-limit sets may be
empty, e.g. if u & UN(E). For a discussion of the concept of w-limit sets we refer the reader
to [1], Chapter 1.

Proposition 6.2 Let K=R,C. Let u € U!

reg- Lhen for every control set D with nonempty
interior we have that

P(@ GE(r,u)) C core(D), (26)

where the sum is taken over all v € |o(®,(t,0))| such that PGE(r,u) C core(D).

Proof. Let 0 # z € @, GE(r,u) as in (26). We represent x as
r=x1+...+x,,

where ©; € GE(r;j,u) and 1 < ... <r,. Let j,j be the smallest and largest indices such
that x; # 0. Then w*(Pz,u) C PGE(r;) C core(D), and w™ (Pz,u) C PGE(r;) C core(D).
Using the fact that u € U!,, it follows in a straightforward way that Pz € core(D). m

reg

Corollary 6.3 Let K = R C. Let u € Ul,, and |o(D,(t,0))] = {r1,...,r,} where r; <

reg
. < ry,. If there exists a control set D and indices 1,1 such that

PGE(r;,u) C core(D),

PGE(rit,u) C core(D) .

Then l

P(D GE(ritj,u)) C core(D). (27)

§=0

Proof. Let 0 # x; € GE(r;,u) and 0 # x;1; € GE(riy,u). For 0 < j < [ it holds by
Proposition 4.4 that PGE(r;y;,u) C core(D’) for some control set D’. Hence for 0 # z;4; €
GE(riy;,u) there exists an € > 0 such that P(x;1; + ex;) € core(D') and P(z;4; + exiyy) €
core(D"). Now w™ (P(z;4; +¢cw;),u) C PGE(r;,u) C core(D) and thus D < D’. On the other
hand wt(P(z;y; + exiy), u) C PGE(riy, u) C core(D) and thus D > D'. Hence D = D' by
maximality of control sets and the assertion follows from Proposition 6.2. ]

An interesting subset in a control set D is the set of those points, whose trajectory does
not leave the closure of the control set forward and backward in time.

12



Definition 6.4 Let K=R,C. Forte N, u e U!

e @ control set D define

D(u) = {§ € P w* (& u),w™(§,u) C D}, (28)
For universally regular control sequences the set D(u) is particularly easy to characterize.

Theorem 6.5 Let K=R,C, t €N, uec U’ . Then

reg-
D(u) = B GE(r,w). (29)
where the sum is taken over all v € |o(®(t,u))| with PGE(r,u) C core(D).

Proof. Clearly, if £ € P(®, GE(r,u)) defined by equation (29) then w™ (&, u),w (£, u) C
P(®, GE(r,u)) C core(D) by Proposition 6.2. Let 0 # z € K" be such that Pz €
D(u)\P(®, GE(r,u)). Let

14
x=2xj,
j=1

where z; € GE(rj,u). Now if jy is such that z;, # 0 and Pz;, ¢ core(D), then by
Corollary 6.3 it holds that rj, > max7 := {r;; PGE(rj,u) C core(D)} or r;, < r :=
min{r;; PGE(r;,u) C core(D)}. In the first case we obtain

w (Pz,u) C P(P GE(r,u)),

r>T

but
P(G}_ GE(r,u))Ncl(D)=10.

Hence Pz ¢ D(u). In the second case

w (Pz,u) C P(P GE(r,u)),

r<r

and also Pz ¢ D(u). n

To summarize we have obtained the following picture of the control structure of the
system on projective space. For a map A and a set of admissible controls U such that the
system on Pj ! is forward accessible and i(A,U) < 1, there exist a sequences of control
sets Dy..... D, and associated indices m(Dy),...,m(Dy), with 37, m(D;) = n. More
specifically if we write

for j=1,...,k then

13



where equality holds if U = Uj,,. So the numbers from 1 to n are partitioned into x non-
interlacing subsequences which represent the indices 7 such that @; C core(D;):

Loy, + 1,00 o, o+ 1,000 o 1, 1+ 1,
WV’ ~ Y 7N v - ~ 7~
D1 ‘l)2 ............ Dli

The order between the main control sets is simply reflected in the order of the subsequences.
In case there are control sets with nonempty core that are not main control sets this can
be extended in a natural way by considering indices that do not correspond to main control
sets, but to control set clusters, see [18].

With this notation we may formulate the the following invariance principle which also
motivates the interpretation of control sets and their indices as an extension of eigenspaces
and their dimension.

Theorem 6.6 Let K =R,C, u € U" and d(u) := maxcy dim ker ®,(¢,0). Let pu1, ..., i be
the indices for the control set structure as described above.

1) For every main control set D; with ;1 > d(u) there exists a linear subspace X;(u
j j j
satisfying
dim X (u) = m(D;) = pj — pj-1,

for all t € N it holds that P®,(t,0)X;(u) C clD; .

(i) If d(u) > 0 and a main control set D; exists such that p1;_1 < d(u) < p; then there
exists a linear subspace X;(u) satisfying

dim X;(u) = pj — d(u),
for all t € N it holds that P®,(t,0)X;(u) C clD; .

Proof. Fix u € UY . Let T € N be large enough such that dimker ®,(¢,0) = d(u) for
all ¢ > T. Choose u* € U,'fzg, for some t* € N. For any ¢ > T consider the control
sequence v; 1= (U[o,t—u, u*), where uo,+—1] denotes the first ¢ entries of the sequence u. Denote
|o (@, (t +t*,0))] = {r1,...,r}, with 0 < r; < ... < r,. For those indices k with rp > 0
consider the sums of generalized eigenspaces PGE(ry, v;). By Proposition 4.4 it follows that

PGE(rg,v;) C core(D) for some control set D. Hence we obtain for D that

k-1

k
QiND#Pfori=> r+1,....,> r.
=1

=1

For every main control set D as specified in (i) it follows that there exists a linear subspace
X (u, t) satisfying
dim X (u,t) =m(D),

PX (u,t) C core(D)
D, (t+t*,0) X (u, t) = X (u,t).
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Using the definition of control sets it is easy to see that for all 0 < s <t
®,(s,0) X (u,t) C D. (30)

As the Grassmannian G%’m(D), i.e. the space of m(D)-dimensional subspaces of K" is compact
we may choose a subsequence (tx)gen such that

X(u) = lim X (u,t) (31)

k—o0

exists. It follows that X (u) C clD. Assume there exists a ¢ € N such that
Pd,(t,0)X (u) ¢ clD.

Then for all m(D)-dimensional subspaces X in an appropriate neighborhood W of X (u) (in

the Grassmannian G5 ?)) it follows that P®,(f,0)X ¢ clD. But for all ¢ > 7 it holds by

(30) that ®,(¢,0)X (u,t) C D. This contradicts (31) so that the proof of (i) is completed.
(ii) now follows as (i) while making the appropriate change of dimension of X;(u). m

7 Characteristic exponents

Up to now we have described the control structure of a system on projective space. With
the insight that has been gained let us now discuss properties of the set of characteristic
exponents that may be deduced from our knowledge about the control sets. For a control
set D with nonempty core we define the associated Floquet exponents to be

1
Sn(D):= | {glogr; r € |o(®,(t,0))], PGE(r,u) C core(D)
t>1,ucUt
and PGE(r,u) is regular }. (32)

Let us begin by explaining how to obtain the Lyapunov exponent \(xg, u) from the trajectory
£(+;Pxg, u) of the projected system. For &€ € P, u € U(£) define

q(&,u) :=log %, where x # 0, Pr =¢. (33)

This is well defined as multiplication of x with a non-zero scalar does not alter the value of
q(& u). For € € Pt t €N, u € UHE) define

t—1

J(t & u) =3 qé(s; €, u), ul(s)). (34)

s=0
Then we obtain the following expression for Lyapunov exponents:

Lemma 7.1 Let K=R,C. Forxy € K\ {0}, u € UN it holds that

limsup,_, 1J(t;Pro,u),  if ue UN(m).

—00, otherwise. (35)

Mo, u) = {

15



The previous lemma shows that we may speak of the Lyapunov exponent corresponding
to (&, u) € Pg~" x U which we denote by A(&,u). The Floquet spectrum is closely related
to the structure of the control sets examined up to now. In order to explore this relationship
we need a controllability property in the cores of control sets. Let K = R, C and consider
system (8) on P} . Consider the functions

h:PrtxPrt = NU{oo} (36)

h(&,m) := min{t € N; there is a u € U* such that £(t;&,u) = n},
H:MxM-=R, U{co} (37)
H(&n) = inf{lrilaéct |J(s;&,u)|; te€N; ue U such that £(¢;&,u) =1},

where min () = inf () = oo.

The previous definition is the discrete-time analogue of the first-time hitting map, as defined
for instance in [6], [7]. As we treat non—invertible systems as well it is important for us to
obtain information not only on the time that elapses to steer from & to n, but also on the
7cost” incurred in doing so. For the projected system (8) and the function ¢ interpreted as
a cost |¢(&, u)| may be arbitrarily large if u is chosen such that A(u) is almost singular. The
essential point is that both these values may be simultaneously bounded if one tries to reach
a compact subset of the core of a control set.

Lemma 7.2 Let K = R,C and assume that system (8) is forward accessible. Let D C Pj*
be a control set. Assume there are two_non—voz’d compact sets Ky, Ky with Ky C D and
Ky C core(D), then there are constants h € N, H € R, such that

h(En) < T for all € € Ky, n € Ko, (38)
H(En) <H forallé € Ky, ne K. (39)
This observation may be used in the proof of the following statement.

Proposition 7.3 Let K = R, C and assume that (8) is forward accessible. For a control set
D with core(D) # 0 the set clX (D) is an interval.

The idea for a proof of this is simple: Take two Floquet exponents in X (D)
and corresponding regular eigenspaces E(Aj,uq), E(Ag,uz). In order to show that
[1/t1log |A1], 1/talog | As|] C clEm (D) we may choose & € PE(A,u;) apply the control
u [ times then choose a control vy that steers to PE(Ag, ug), apply the control us k times and
steer back to & via a control vy, see Figure 5. Using Lemma 7.2 we can bound the time and
the perturbation of the Floquet exponent due to the effect of vy and v,. Thus for k,[ large it
is possible to approximate all rational convex combinations of 1/t; log|A;| and 1/t5log |As].
The following theorem summarizes the properties of the Floquet spectrum.

Theorem 7.4 Let K = R C and assume that (8) is forward accessible. Let k be equal to
the number of main control sets.
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Figure 5: Construction of a dense set of Floquet exponents in the interval [|[A;], [A2]]-

1) For each main control set D; j =1,...,k the close oquet spectrum is an interval.
) Fi h trol set D; 1 the closed Fl t t t [
We define

cEpp(Dy) = oy, ], 05 < 0. (40)

(11) If all control sets with nonempty interior are main control sets then

K

CZEFL A U U O[J,ﬂj (41)

(111) If there exist control sets with nonempty interior that are not main control sets
then there exists a constant 3 € R such that

(A, U) = oy, 5] U [—o0, A]. (42)
7=1
(i) If for two main control sets D;, < D,, then
<y, 6]’1 < 63'2' (43)
(v) For j =1,...,k it holds that
#clpL (D)) \ Xpo(Dy) < m(Dj) +1, (44)

It should be noted, that the spectral intervals corresponding to different main control sets
may overlap, i.e. that the statement o; < «;, 8; < 8; in Theorem 7.4 does in no way exclude
the possibility that 3; > «;. In fact, it is even possible that o; = «; and 3; = 3; for i # j.
This phenomenon is shown in an example in [19].

17



Q Uy
Figure 6: Approximation of a Lyapunov exponent in the closure of the Floquet exponents.

Theorem 7.5 Let K =R, C and assume that (8) is forward accessible.

(i) Let D be a control set, with core(D) # (. Assume that (§,u) € Pt x UN(&) are
giwen with wt(&,u) C D. If there exists a ty € N with &(to; &, u) € core(D) then
)\(fo,u) € ClEFl(D)

(i1) Let D be a control set, with core(D) # 0, then

ClEFl(D) C ELy(A, U) (45)

For the proof of assertion (ii) take a sequence { Ay} C X (D) such that Ay — A*. Denote the
associated control sequences and eigenspaces by u, and Ej. Then a trajectory with Lyapunov
exponent \* may be constructed by first following the control u; on the eigenspace E; then
steering to Ey and applying the control us such that the Lyapunov exponent is up to €5 close
to Ay, then steering to 3 and so forth, see Figure 6. If the sequence ¢ tends to zero then it is
possible to show that the constructed trajectory has indeed the desired Lyapunov exponent.
A further question of interest, especially if stabilization and robust stability questions are
considered, concerns the lower and upper bounds of the spectral sets that we have defined.
For upper bounds this has been studied in [3], [5], [12], [14] in a more general case then
the one presented here. A consequence of the results in these references is that suprema
of Floquet, Lyapunov and Bohl exponents coincide, from which it is possible to infer that
also infima of Floquet and Lyapunov exponent coincide. Barabanov [4] proved that to each
discrete inclusion given by a bounded set of matrices there exists a trajectory that realizes
the maximal Lyapunov exponent. As should be expected trajectories realizing extremal
Lyapunov exponents can be chosen to evolve in the invariant, respectively open control set,
corresponding to the realization of the largest and the smallest exponent.

Acknowledgment 7.6 The author wishes to express his thanks to F. Colonius, D. Hin-
richsen and W. Kliemann for a number of helpful discussions and remarks.
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