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Abstract

This note introduces a stability radius for discrete-time linear time-varying systems
on Banach spaces under structured time-varying perturbations of multi-output feedback
type. Additive perturbations are considered which can be represented as a series of
infinitely many perturbation terms. We derive counterparts to some results established
for time-varying differentiable systems in [5], [7] and apply the results to periodic systems.

Notation
X, U,Y;,UY Banach spaces over K =R or K = C with norms || - || x etc.
L(X,)Y) Banach space of bounded linear operators from X to Y pro-
vided with the operator norm ||.||¢(x,v)
Nto :{tEN, togt}
%(ty,00;Y) set of square summable Y-valued sequences (y(t))sen,,
Y 1/2
IO - (£ wiz) oo<n<uso
=l
1%°(tg, 00;Y) set of bounded Y-valued sequences (y(t))sen,
D open unit disk of C



1 Introduction

Let X be a Banach space over the field K = R or C. We consider time-varying linear discrete-

time systems of the form

st +1) = At)z(t), teN (1.1)

where A(-) = (A(t))en € L(X)Y is a sequence of linear operators on X. Such a system is called

exponentially stable, if the associated evolution operator
O(t,t) =1Ix, P(t,s)=At—1)---A(s), s,teN, t>s (1.2)

satisfies

Jo(t, S)lecx) S B0, steN, t>s (1.3)

for some constants ¢, > 0, f < 1. In this case A(-) is a bounded sequence in L(X), i.e.
A(F) € 1°(N, L(X)).

Stability problems for (time—varying) discrete-time systems in Banach spaces have received
some attention over the last few years, see [18],[16], [17], [24], [12] and references therein. Several
authors have noted the possibility of studying functional differential systems, periodic systems
and sampled-data systems in this context, see [13], [16], [4]. For these applications it is essential
that discrete-time systems on infinite dimensional spaces are considered.

In this paper we will investigate the robustness of exponentially stable systems (1.1) under
various types of perturbations acting on the generator A(-) € ¢*(N,L(X)). Over the last
decade, problems of robust stability and robust stabilization have been very prominent in
control theory. Most of the literature deals with the time—invariant finite dimensional case. For
state space systems of the form & = Az or z(t+1) = Az(t) (A € L(K")) linear perturbations

of the form

(a) A~ A=A+ A, Ae€L(K") (unstructured perturbations)
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(b) A~ Ap = A+ DAE, A€ L(K%, K (simple structured perturbation)
N

(¢c) A~ Ax = A+ Y DiNE;, Ay € L(K%,K%)  (multi-perturbations).
i=1

have been considered, where D, E, D;, E; are given operators defining the perturbation struc-
ture. A typical question is to determine the stability radius of a given system under these
perturbations, i.e. the largest real number rx such that no perturbation A of operator norm
|A|] < rx destabilizes the system. In the complex case (K = C) a fairly complete theory of
the stability radius r¢ is available for perturbations of the form (a), (b), see the survey [6] and
references therein, where also results concerning stability radii of discrete-time systems can be
found. For extensions to infinite dimensional systems described by semigroups of operators on
a complex Banach space, see [15]. Time—varying and non-linear perturbations of time-invariant
linear systems have been considered in [9], [11].

The problem of calculation of the real stability radius has been recently solved in the simple
structured case [20]. However, when it comes either to real perturbations of more complicated
structure, see [6], or in the complex case to perturbations of the form (c) of time-invariant
systems or to any type of perturbations of time—varying systems the theory is far from complete.
For time-varying (differentiable or discrete time) systems as well as for multi-perturbations of
time-varying systems no computable formulae are available for the complex stability radius.
There are lower bounds which can be significantly improved by scaling techniques, see [3] and
[5], respectively. These scaling techniques were combined to analyze the robustness of time—
varying differentiable systems under time—varying multi-perturbations in [8] for the finite and
[7] for the infinite dimensional case. To our knowledge analogous questions have not yet been
investigated for discrete-time systems.

Our motivation to consider infinite dimensional systems (1.1) comes partly from applica-

tions to periodic and delay systems and partly from recent results for continuous time evolution



systems on Banach spaces [15]. Contrary to the finite-dimensional case there are basic differ-
ences between continuous time and discrete-time linear systems in the infinite dimensional
context. Here an important special feature of the discrete-time case is that the generator A(?)
has the same domain of definition as the evolution operator ®(¢, s) whereas there is usually a
gap between these domains of definition in the continuous time case. As a consequence it is not
necessary to admit unbounded structure operators D;, E; in (c¢). Moreover exponential stability
implies boundedness of {A(t);¢ € N} in £(X) and so it is natural to assume that the structure
operators D;(t), F;(t) are bounded in time. Therefore the technical difficulties arising from the
double unboundedness of D;(-), F;(-) (see [7]) are not present in the discrete-time case. Most
importantly, the solvability problem for the perturbed equation disappears so that — contrary
to the continuous time case — the stability problem can be studied in its own right without
intervention of the existence problem for the perturbed evolution operator.

We proceed as follows. In the next section we present a detailed problem formulation
and collect some preliminary results concerning Bohl exponents and Bohl transformations. In
Section 3 we derive a discrete-time counterpart of a lower estimate for r¢ [5], we demonstrate by
an example that this lower estimate is in general not tight and describe a scaling technique for
improving the lower bounds. Once the right framework is set, the proofs are not more difficult
than in the finite dimensional case and simpler than for infinite dimensional continuous time
evolution systems [7]. In Section 4 we consider the exponential stability of time-invariant
systems (1.1) under multi-perturbation of the form (c¢). A formula for r¢ involving the u-
function [6] is extended to infinite-dimensions and to an infinite series of perturbation terms.
In Section 5 some recent results concerning time-varying, nonlinear and dynamic perturbations
[9] are also extended to the infinite dimensional context. In Section 6 the previous results are

applied to obtain stability conditions for periodic perturbed discrete-time systems.



2 Problem Formulation and Preliminary Results

Throughout the paper we assume that A(-) € [*°(N;L(X)) is a given sequence of operators
on the Banach space X such that the system (1.1) is exponentially stable. An important
problem in robustness analysis is that of determining the extent to which exponential stability
is preserved under various types of parameter perturbations. Let U;,Y;,7 € N be Banach spaces

over K and suppose that A(-) is subjected to affine perturbations of the form

AQ) ~ AC) + 2 Di() A Ei() (2.1)

where for all 7 € N we assume D;(+) € I®(N; L(U;, X)), Ei() € I®°(N; L(X,Y;)) are given and
A;(+) € I°(N; L(Y;,U;)) are unknown uniformly bounded sequences of perturbation operators.

To ensure convergence we will assume that

o [e.e]

sup Y | Di(®)l|zw, x) <00, sup sup D [|Ei(t)z[ls; < oo, sup [|Ai(t)|lcevu) < oe.
teN ;1 teN ze X, ||z||=1 ;=1 i,teN

(2.2)

This assumption on the structure operators is automatically satisfied in the case of finitely

many perturbation operators where U; = Y; = {0},7 > N for some N € N. In that case, (2.1)

has the form
A() ~ A() + 3 Di() A Ei(-). (2.3)

In order to rewrite the perturbed system equation
o(t+1) = [A{) + D Di(t)A;()E;(t)| z(t), teN (2.4)
i=1
we introduce the vector spaces

U={w) e [[Us Solull <oo}, V={w)el[¥: Solult <o} (25

1€EN i=1 1€EN i=1



U and Y are Banach spaces with respect to the norms ||(w;)|lo = (52, [|usl|?)"/? and ||(3:)|ly =

(222 |lwill3.)'/? respectively. We define for all ¢ € N bounded linear operators

Dt):U—X 5  (t)ienr iDz(t)uz

Then (2.4) takes the simpler form

2(t+1) = [A() + DOADE®)] (1), teN. (2.7)

By (2.2) we have D(-) € I*(N,L(U, X)), E(-) € I°(N,&(X,Y)),A(-) € I®(N,L(Y,U)). The

size of the “block diagonal” perturbation operator A(-) is measured by the [*°—norm

[A()|loo = sup sup [|A; ()] c(vi,vs)- (2.8)
teN €N
Note that
1A@)] = Sup 12 (@)l cei,vny = [A@) ey (2.9)
2

is the operator norm of A(t) € L(Y,U).
Our aim is to determine the minimal size ||A(+)||« of a block diagonal disturbance A(-) of the

form (2.6) which destabilizes the system (2.7).

Definition 2.1 The stability radius of (1.1) with respect to time-varying perturbations of struc-

ture (D;(-), F;(+))ien is defined by

r(A; (D, E)) = inf{||AC)||loo; Ai(+) € I°(N; L(Y;,Us))and (2.4) is not exponentially stable}
(2.10)
where we set inf () = oo.
Suppose A(t) = A € L(X), Di(t) = D; € L(U;, X), Ei(t) = E; € L(X,Y;), i € N. The
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stability radius of (1.1) with respect to constant perturbations of structure (D;, F;);en 1s defined

by
ke (4; (Di, E;)) = inf{||All; A; € L(Y;,U;) and (2.4) is not exponentially stable}.  (2.11)

In the unstructured case (N = 1in (2.3) and Dy = Fy = Ix) r¢.(A) = r¢.(4; (Ix, Ix)) is the
distance of A from the set of not exponentially stable operators in the normed space L(X).

The following time-invariant examples show that a wide class of Hilbert-Schmidt operators
of fixed structure can be represented in the form %1:\1 D;A;E; where D;, E;,i € N are rank one

operators satisfying assumption (2.2). A similar construction is applicable for nuclear operators

in Banach spaces.

Example 2.2 Assume X is a Hilbert space over C and {e;};cn is an orthonormal basis of X.

A family (1;;)ijen With 3 [7;;]? < oo defines a Hilbert-Schmidt operator via
i,jEN

A= Z ;€ X €

i,jEN
where e; ® e; € L(X) is the rank one operator defined by = — (zlej)e; [14]. Consider a
time-invariant linear system
z(t+1)=Az(t), teN
A can be interpreted as an infinite-dimensional matrix with entries n; ;. Suppose we need to
model independent uncertainties for certain entries of A, i.e. there is a subset K C N x N
containing the indices of the uncertain entries. To each k£ € K we associate a scaling factor ¢

describing the relative uncertainty of the entry k of A. We define for all k = (ig, ji) € K
Dy :C— X, a— acge;,
where ¢; € C with ¥ |cx|? < oc.
kEK

Ey: X = C, z— (zlej,).
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The unknown perturbations d; are linear operators on C, i.e. complex numbers. If we set

0; s =c¢;; = 0if (4,7) € K the perturbed operator is of the form
J J

A+ > DybEr= > (mij+cijoijei®e;, (6) € I®(K,C). (2.12)

keEK 2,JEN

Hence the perturbed operators will be Hilbert-Schmidt operators. The set of constant pertur-
bations A with ||A|| < p consists of all Hilbert-Schmidt operators of the form > dicre, ® e,
kEK

satisfying

sup [dx| < p.
keK

In the general time-varying case it is very difficult to determine the stability radius rx. We will
only be able to derive lower bounds for rg. In the remaining part of this section we present
some preliminary results which will help us to improve the bounds by scaling techniques.

The largest exponential growth rate of system (1.1) is given by the discrete time version of
the (upper) Bohl exponent [2] (named generalized spectral radius in [17]). In the following
definition we do not assume (1.1) to be exponentially stable and let (A(t));en be an arbitrary

sequence in L(X).

Definition 2.3 (Bohl exponent) Given a sequence (A(t))wen in L(X) the (upper) Bohl ex-

ponent of the system (1.1) is
BAC) = inf{B;3es > 11> 5> 0= |0(t, 5)]| < cs"~}. (213)
B(A(+)) may be infinite, but if ||A(¢)|| < « for all ¢ € N then it follows from (1.2) that
@Gt s)Il < [[ A = DI+ [[A(s)]| <77, (2.14)

hence B(A(-)) < v.Thus B(A(-)) is finite if and only if (A(t));en is bounded. The Bohl exponent
B:1°(N; L(X)) — R, has the following properties.
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Proposition 2.4 Let (A(t))en € I°(N; L(X)). Then

(i) B(A()) = limsup || (¢, s)||7

§,t—8—00

(1) The function B : (I°(N; L(X)), || - |lo) = Ry is upper semicontinuous.
(i11) If A(t) = A € L(X) is constant in t € N then

B(A) = Jim [|A"|"* = r(A)

t—o0

15 the spectral radius of A.
(iv) The following statements are equivalent:

(a) (1.1) is exponentially stable.

(b) BA()) <1

(c) Iy >0Vs e NVao € X : 3 |0t 8)zo||2 < 72|20
t=s

Proof: The proof of the above statements can be found in [17], except for the equivalence of

(iv)(c) to the exponential stability of (1.1), which can be found in [18]. O
The Bohl exponent of (1.1) is said to be strict if “limsup” in (i) can be replaced by “lim”.

Remark 2.5 a) To verify the exponential stability of (1.1) via Proposition 2.4 (iv) it is sufficient
to prove (iv)(c) for all s € Ny, where t5 € N is any given initial time.

b) If A(-) = A € L(X) is constant we obtain from Proposition 2.4 the well-known spectral
characterization of exponential stability: x(t + 1) = Ax(t) is exponentially stable if and only if

r(A) < 1, i.e. the spectrum of A lies in the open unit disk D. O

Definition 2.6 Given Banach spaces X,Y over K, two sequences (A(t))ien and (B(t))en in

L(X,Y) are called asymptotically equivalent if tli)I?o ||A(t) — B(t)]| = 0.
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Proposition 2.7 Let K =R, C. Assume (1.1) is exponentially stable and (D;(-))ien, (Fi(+))ien
satisfy (2.2). Let (B(t))ien, (Fi(t))ten, (Gi(t))ien be sequences in L(X), L(U;, X) L(X,Y;), re-
spectively, such that (2.2) is satisfied. The operators constructed via (2.6) will be denoted
by D(-), E(-), F(-),G(-), respectively. If (A(t))ien,(D(t))ien and (E(t))ien are asymptotically

equivalent to (B(t))en, (F(t))ien, (G(t))ien, respectively then
z(t+1) = B(t)z(t), teN
15 exponentially stable and
ri(4; (Di, E)) = re(B; (F, Gi))-

Proof: In [17] it is shown that the Bohl exponents of asymptotically equivalent systems co-
incide. Hence the first assertion follows from Proposition 2.4(iv). For any fixed block diagonal
perturbation A(-), (D(t)A(t)E(t))wen is asymptotically equivalent to (F(t)A(t)G(t))ien, be-
cause

IDOAMGE®R) — FOADGO)] <

1D() = FOIIABE@ |+ [ F@ADIEER) = G@)]l-

Thus the Bohl exponents of the perturbed systems are equal, if the perturbations are equal.

This implies the second assertion. o

Note that in the preceding Proposition (2.7) it is not sufficient to assume that for every i €
N (D;(t))ten, (Fi(t))wen are asymptotically equivalent to (Fj(t))ien resp. (Gi(t))ien. Simple
counterexamples can be constructed using the perturbed Hilbert-Schmidt operators of Example

2.2.

Definition 2.8 A sequence (T'(t))ien of invertible transformations T(t) € L(X) is said to be

a Bohl transformation if (T(t))ien and (T(t)™')ien are both uniformly bounded in L(X).
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Let us briefly discuss the effect of Bohl transformations on the stability radius. If we set

2(t) = T(t)"'z(t) the nominal system equation (1.1) can be rewritten as
Ft+1) =T+ 1)"TART @) (t).
The associated evolution operator is
B(t,s) = T(t)1®(t, s)T(s). (2.15)

The perturbed system equation can be rewritten

Ft+1) =T+ 1) TADT()2(t) + i[T(t + 1) DA [E: ()T (1))2(t), teN. (2.16)

i=1
The following proposition summarizes some elementary properties of discrete-time Bohl trans-

formations.

Proposition 2.9 (i) The Bohl transformations form a group with respect to (pointwise) mul-

tiplication.
(i) The Bohl exponent is invariant with respect to Bohl transformations.
(433) If c; = (;(t))sen € (K*)N, i € N are scalar Bohl transformations and we denote
Dy(a)(t) = Di(t)eu(t) ™", Ei(a)(t) = ai(t)Ei(t), t >0 (2.17)

fori € N, then

(iv) If T(-) € (N, L(X)) is a Bohl transformation and

~

At) =Tt +1)TAR)T(), D;=T(t+1)"'Di(t), Ei(t)=E#)T(t), te N

then

r(4; (D, E;)) = T]%g(A; (Du Ez)) (2.18)



Proof: (i) follows applying Proposition 2.4 (ii).(ii) is obvious. (iii) is an immediate conse-
quence of A;(t) = a;(t) 7' A;(t);(t). To prove (iv) note that T'(-) being a Bohl transformation,

(2.16) is exponentially stable if and only if (2.4) is. This implies (2.18). o

Remark 2.10 (a) Note that (D;(«), Ei(«)) defined in the above Proposition 2.9 does not nec-
essarily satisfy (2.2) even though the initial data did, and vice versa. This is because for t € N
the set {;(t);7 € N} need not be bounded. However, the notion of the stability radius is still
appliquable for such a system, as a perturbation A will either destabilize both the original and
the transformed system or not.

(b) The Bohl transformations described in Proposition 2.9(iv) transform the whole state space
system (A, D, E), whereas the scalar Bohl transformations in Proposition 2.9(iii) act on the
structure operators (D,E) only, which is a quite different concept. Arbitrary Bohl transforma-

tions applied to the structure operators only, will in general change the stability radius. o
3 Complex stability radius for time-varying systems

Throughout this section we assume that K = C, (1.1) is exponentially stable with evolution
operator ®(t, s) and D;(-) € I°(N; L(U;, X)), Ei(+) € I°(N; L(X,Y;)), i € N are given bounded

operator sequences satisfying (2.2). The solution of (2.4) with initial value z(ty) = x¢ is
t—1
z(t) = D(t,to)zo + Y ®(t,k + 1)D(k)A(k)E(k)z(k) , t € N, (3.1)

k=to

where D(k), A(k), E(k) are defined by (2.6).

If y(t) = y(t,to, o) is the associated output then

y(t) = yolt) + § E(t)®(t,k +1)D(k)A(k)E(k)x(k) , te€ N, (3.2)

where yo(-) = E(-)®(-, to)xo is in 12(N;,,Y) (because of (1.3)). Consider the system

z(t+1) = A@)z(t)+D)u(t), teN,
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y(t) = E()x(t). (3-3)

The input-state and input-output operators of this system at time ¢y are given, respectively, by

(M, ) () = tjf &tk + 1)D(k)ulk), teN, (3.4)
(L u) (t) = E E@M)®(t, k +1)D(k)u(k), teN,. (3.5)

In particular (Mg, u)(to) = 0, (Ly,u)(to) = 0.
Because of (1.3), M,, Ly, define bounded linear operators from (?(N,,,U) into I?(N,, X) and

I>(N;,,Y), respectively. Using these operators we can rewrite (3.1), (3.2) as

(5 to, To) = @(+, to)zo + (M, Aty y(-; 20, 20)) (¢) (3.6)
y('> thZO) = yO("tO"TO) + (Lto Atoy("tﬂ’xo)) () (37)

where
Ay, : ZQ(NtO;Y) — ZQ(NtO; U) (3.8)

is the multiplication operator defined by A(-). Clearly the operator norm of A is uniformly

bounded in t; € N

[As]l < [[Allee = sup [A(D)] cv.0)- (3.9)
teN
Theorem 3.1 Let (1.1) be exponentially stable and (D;(t))ien, (Ei(t))ien bounded sequences in
L(U;, X), respectively L(X,Y;), i € N such that (2.2) is satisfied. Then

re(A; (D, Ey)) > ri6(A; D, E) > Ly ||t for all ty € N (3.10)

Proof: The first inequality follows since the perturbed system (2.4) can be written in the
form (2.7) with block diagonal A(t) using (2.6) where (2.9) holds for the norm. In order to
prove the second inequality, let £y € N be given and (A(%))en any bounded sequence in L(Y, U)
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such that [|Allo < || ||7!. We have to show that the system (2.7) is exponentially stable. Let

®A(-,-) be the evolution operator generated by
za(t+1) = [A(t) + D()AR)E(t)]|za(t).
By Proposition 2.4(iv)(c) and Remark 2.5 it is sufficient to show
Fya > 0Vt € N;, Vg € X ||xA('§t6’x0)||l2(Nt6,X) < yallzoll- (3.11)

Now |[[Ly, ||, Mg, [|Asll are nonincreasing in ¢y € N, hence Ly Ay is a contraction on
L3(ty, 00;Y) and

Ly A [l < M [ Ao =2 0 <1, £ > o,
By Banach’s fixed point theorem there exists a solution y(-) € I*(Ny,Y) of
y(-) = o5t @) + (Liy Ay () (-)- (3.12)
Moreover

IE() llooy |0l
11—«

Iyl vy < (1= @) lyo (5 26, o)l vy < (3.13)

where ~ is chosen as in Proposition 2.4(iv)(c). Since (3.7) has a unique solution y(+;ty, zo) in

Yo (for all ty € N) we have y(-) = y(-;t), 29). It follows from (3.6) (with ¢, instead of #;) and

(3.13) that
122 (5 20 2o) ey, ) < Yllzoll + [IMo [[[|ANloolly (5 20, z0) g, )
Y
< 7+ IMo [l Al [ EC)loo = | loll - ¥ty = 20, 20 € X.

Thus (3.11) is satisfied.

Even for time-varying systems with a single perturbation, equality does in general not hold

in (3.10) as the following example illustrates.
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Example 3.2 Consider a scalar system of period two,

ot +1) = [a(t) + d(£)8(8)e(D)]2(t) (3.14)
where
| 1 teven | ap™ teven | a7t teven
“(t)_{agcg todd ’ d(t)_{ g todd ’ e(t)‘{ i todd

and ag,a; € C*, |apa;| < 1. The scalar Bohl transformation defined by

. a; teven
a(t) _{ 2l todd (3.15)

transforms (3.14) to the perturbed system
E(t+1) = (agay + d(t)8(t)é(t))z(t) (3.16)

where

5 1 t even A 1 t even
d(t) o { aflao todd ’ e(t) o { a0*1a1 todd -

As d(t)é(t) = 1 the stability radius of (3.16) satisfies r&(aoar; d, €) = rb(aoar; 1,1) = 1 — |agay|.
It follows from (2.18) that r&(a;d, e) = 1—|apa;|. On the other hand, the input-output operator
of (3.14) has norm ||Ly,|| > |a1/ae|. Note that because of periodicity ||Ly,|| is constant in t,.
Choosing ag = 1/(2a;) where a; — oo we obtain a family of periodic systems (3.14) with
fixed stability radius r& = 1/2 and ||Ly, || — oco. Thus the lower bound tgi_r)noo L, || 2 = || Lot

becomes arbitrarily bad. o

We will now apply scaling techniques to improve the lower bound obtained in Theorem 3.1, see
[3], [5],[6]. Let

a(-) = (o) € B
where B C (C*)N is the set of all scalar Bohl transformations. By Proposition 2.9 (iii)

re(4; (Di, Ey)) = re(4; (Di(a), Ei(a)))- (3.17)
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We denote by L, M? the operators given by (3.4), (3.5) with D(-), E(-) replaced by

D(a)(-), E(a)(-), see (2.17). For example,
t—1
(L u)(t) =D Et)a(t)®(t, k + 1)D(k)a(k) u(k).
k=0
As a direct consequence of Theorem 3.1 and (3.17) we obtain the following result.

Corollary 3.3 Under the assumptions and with the notations of Theorem 3.1, if a(-) € BN is

such that D(a)(-), E(a)(-) satisfy (2.2) then
re(4; (Di, By)) > L |71 for all o> 0. (3.18)

In order to illustrate the improvement achievable by using the scaling technique we return to

Example 3.2.

Example 3.4 Applying the scalar Bohl transformation

at) =

{ ap”' teven (3.19)

a;”! todd
to the structure operators of system (3.14) as described in (2.17) we obtain the input output

operator of the time invariant system (a,a1,1,1). A short computation yields

(Leu)(f) = ,; e(®)a(t)B(t, k + 1)d(k)a(k) “u(k) = g(aoal)tklu(k)
and so |Lg||™"' =1 — |agai| = r&(a;s d,e). o

We have not found a counterexample to disprove the following conjecture, which is the

discrete-time counterpart to a conjecture in [5].
Conjecture 3.5 Given an exponentially stable system with simple structured perturbation
z(t+1)=[A(t) + D(t)A(t)E(t)]x(t)

then

re(4; (D, E)) = sup{|[L§ | *; a(-) € B, D(a), E(a)satisfy (2.2), t, € N}.
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Remark 3.6 (a) For single perturbation time-invariant systems in Hilbert spaces, this is triv-
ially true because in this case 7¢(4; (D, E)) = ||Lg|| ™", see Corollary 5.4 in Section 5.
(b) In the case K = R this conjecture cannot hold as even in finite dimensions it is possible

that, r3(4; (D, E)) > r&(A: (D, E)) = [Lo||~* > |[L&||"" for all a(-) € B (see [6]). 5
4 Complex stability radius of time-invariant systems

We now study stability radii for time-invariant systems. We will start by studying stability
radii of time-invariant systems for complex structured multi-perturbations and then turn to the
simpler case of perturbations which can be described via a single additive term. If not stated
otherwise we will assume K = C. As before, X, U;, Y; are Banach spaces and A € L(X), D; €
L(U;, X), E; € L(X,Y;),i € N are given linear operators. We define the Banach spaces U,Y by
(2.5) and the time-invariant linear operators D € L(U, X), E € L(X,Y) by (2.6).

For finite-dimensional systems Doyle [3] has introduced the p-function, which can be used
to characterize the complex stability radius for structured multi-perturbations in the finite

dimensional case [6]. To extend this result to Banach spaces we use the following definition:

Definition 4.1 An operator A € L(Y,U) is said to be ((Y;,U;))ien-block diagonal if there are

A; € L(Y;, U;) such that
A((yi)ien) = (Aiyi)ien, (Yi)ien € Y.
The p-function is defined on L(U,Y) by:
(M) = (inf{||A||; A is (Y, Us))ien-block diagonal, (I + MA) is not invertible in L(Y)})™".

Remark 4.2 In our notation we suppress the dependency of i on the block-diagonal structure,

as it is always clear from the context, which structure is considered. o
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Proposition 4.3 Consider the time-invariant system

1€EN

z(t), teN (4.1)

where r(A) < 1. Define the operator valued function G on the resolvent set p(A) = C\o(A) by
G(s)=E(sI —A)™'D, s¢& p(A).
Then (4.1) is stable if and only if (I — G(s)A) is invertible for all s € C\D. Furthermore

b4 (D ) = | s u(G(efw»]l.

wel0,27]
Proof: In the proof A will always denote a ((U;, Y;))ien-block diagonal operator.
Note that for operators S € L(Y,X),T € L(X,Y) the operator Iy — ST is invertible in
L(X) iff Iy — TS is invertible in L(Y) . To prove this assume Iy — ST is invertible and set
R = (Ix — ST)™'. Then check that (Iy — T'S)(Iy + TRS) = Iy = (Iy + TRS)(Iy — TS).
1. Assume (I — G(s)A) is invertible for all s € C\D. By the above remark this implies
(I — (sI — A)"'DAE) is invertible for all s € C\D, and so o(A + DAE) C D, i.e. A+ DAE

-1
sup ,u(G(s))] implies (I — G(s)A) is invertible for all

seC\DD

is exponentially stable. As [|A|l <

s € C\D we conclude that

1, (45 (Di, By)) > Li% u(G(s))] h .

2. Fix ¢ > 0 and choose s, € C\D such that [u(G(sp))]™" < [sup u(G(s))|™" +¢/2. By
seC\D
definition of u there is a A is such that |A]| < [sup u(G(s))]™" + ¢ and (I — G(sp)A) is not
seC\D
invertible. Then (I — (so — A)"'DAE) is not invertible. Hence sy € o(A + DAF) and the

perturbed system is not exponentially stable.

We conclude that

ree(4; (Di, Bi)) < lSUD M(G(S))]_l.

seC\DD
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3. It remains to show

sup u(G(s)) = sup p(G(e™)).

seC\D we[0,27)

To this end assume there is a A and a s € C\D such that (I — G(s)A) is not invertible. By 2.
this implies s € 0(A+ DAE). The function defined on [0, 1] by 7 — A+ D7AE is continuous in
the norm, and so the spectrum of A+ D7AFE depends upper semicontinuously on 7, see [10]. So
the set {7;7(A+ DTAFE) < 1} is open in [0, 1], but by assumption not equal to [0, 1]. If we set
10 = sup{7; (A + DTAFE) < 1}, then o(A + Dy AE) N 0D # () by [10] Thm. IV.3.16, because
(A + D1yAE) > 1. Hence there is an w € R such that e € (4 + D1yAFE). This means
(eI — A— D1yAE) is not invertible or equivalently (I — (eI — A)~'D71yAE) is not invertible

in £(X). From this we conclude that (I —G(e*)7yA) is not invertible. Since ||[7oA|l < ||A]| we

see that
sup u(G(s)) < sup u(G(e™)).
seC\D w€[0,27]
But then the two expressions must be equal. o

For time-invariant systems with a single perturbation (N = 1) on complex Banach spaces
the stability radius can be expressed by the norm of the transfer function, whereas if X, ¥ and
U are Hilbert spaces it can also be characterized via the input-output operator. To prove this

we use the following lemma, which is an extension of a result in [3] to Banach spaces.

Lemma 4.4 In the single perturbation case (N =1 in (2.3), i.e. U =U,Y =Y],A=A; €
L, 0h))

p(M) = [|M]. (4.2)

Proof: By assumption there is no constraint in the structure, i.e. A can be any operator in
L(Y,U). Now suppose A is such that (I + MA) is not invertible. Then ||M]|||A|| > [|MA] > 1
and hence ||A]| > ||M]|~'. But this implies p(M)~! > || M||~" or u(M) < ||M]|.
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To prove the converse inequality we may assume M # 0. Let {up}tnen C U, ||uy|| = 1 be a
sequence such that ||[Mu,| — ||M||. For each n € N define a functional on the linear subspace
generated by Mu,, by

aMu,—a ,aeC

and extend this to a functional f: Y — C with the same norm. Then define A, € L(Y,U) by
An(y) = f(y)uy so that we have ||A,|| = ||Mu,||~t. Setting v, = Mu, we have by construction
yn = M Ay, hence (I+M(—A,)) is not invertible and ||A,|| > u(M)~t. Since ||A,|| — || M]| 7!

this proves u(M) > || M||. o

Corollary 4.5 Suppose A(t) = A€ L(X), D(t) =D € L(U,X), E(t) = F € L(X,Y), where

r(A) < 1 and consider the associated transfer operator

G(s) = E(sIx — A) 'D, seC\o(A4)

and the input output operator L : I>(N,U) — I*(N,Y), defined by

t—1
(Lu)(t) = > EA™""*Du(k), teN (4.3)
k=0
Then
ree(4; D, E) = max 1G () Zw,vy- (4.4)

If X, Y, U are Hilbert spaces then

ree(4; D, B) = max [|G(s) |z ) = 1L (4.5)

|s|=1

Proof: The assertion for the transfer function follows from Proposition 4.3 and Lemma 4.4.
For Hilbert spaces U and Y it is well known that the norm of a shift-invariant Operator
L:?(N,U) — I*(N,Y) is equal to the H* norm of the associated transfer function, see [22],

or for a detailed exposition [23]. In our case this means max|s—1 ||G(s)||lcw,y) = |[Li|- o
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This result can be used to extend a known result for normal matrices [6] to normal operators
on a Hilbert space. If A is normal perturbation of spectra results for normal operators imply
T o(A) > 1 —1(A), see [19] or [10] Thm. IV.3.18, Problem V.4.8. It is then easy to show that

equality holds.

Corollary 4.6 Suppose X is a Hilbert space over K (K = R or K = C), A(t) = A €

L(X), D(t) = Ix E(t) = Ix where A is normal and r(A) < 1. Then
ke (A) =1—r(A).

Proof: If K = R, regard A as an operator on the complexification X© of X (see [21]). As

[A[l = r(A) and [|A"™]] = [|A]|" [14] we have:

. . . > 1
w — wroo_ A -1 — —nw AN < n _
1G ()]l = ll(eIx = A)~]] ||n§:;e A" _nZ:;HAH = (4)

and so by Proposition 4.5: r¢,(A) > 1—r(A). On the other hand if we set A = 1;(7"/(;)4) Ae L(X)

then ||Al|=1—7(A) and A+ A = T(l—A)A is unstable. O

5 Wider Perturbation Classes

In the last section we have restricted ourselves to the consideration of constant linear distur-
bances. In this section we will again investigate robust stability of time-invariant systems but
with respect to wider perturbation classes. We consider perturbed system equations of the

following kind:

Yy ¢ z(t+1)=Az(t) + i D;N;(E;z(t));
Yaw 0 z(t+1)=Ax(t) + ;il D;A;(t)E;z(t);
Sve 0 z(t+1) =Az(t) + ;il D;N;(E;x(t),t);

Sw ot z(t+1) = Az(t) + i_oj DiNy(Eiz () (t).

=1
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As before we assume that (2.2) holds for ((D;, E;))ien. Furthermore U,Y and D, E; A denote
the Banach spaces resp. the operators constructed in (2.5),(2.6). Note that the disturbances
YA are exactly those which we considered in Sections 1 to 3.

The unknown perturbation operators N;, A;(+), N;(+), N; have the following properties

(i) N; : Y; = U;, N;(0) = 0, N; is continuous, uniformly Fréchet-differentiable at 0, i.e. for
every € > 0 there exists a § > 0 such that ||y|| < § implies || N;(y) — N/(0)y||/|ly|| < €
for all # € N and of uniformly finite gain, i.e. there exists v > 0 such that || N;(y)|| <

Yyl forall yeY;,ieN;

(i) A;(+) = (Ai(t))ten € 1°(N, L(Y;,U;)) and there exists v > 0 such that ||A;(¢)|] < « for all

teN i€eN;

(iii) V; : V; x N = U;, N;(0,t) =0 for all t € N, ¢ € N, and there exists v > 0 such that

IN:(, )|l < ylly|| for all y € Vi, t €N, i € N;

(iv) N; : 3(N;Y;) — 2(N; U;), N;(0) = 0, N; is causal and of uniformly finite gain, i.e. there

exists v > 0 such that ||N;(y(:)|lie < vlly()||;2 for all y(-) € I*(N;Y;), i € N.
The operator N; is said to be causal if for any y(-), w(-) € ?(N,Y;) and t € N:
w(t) =y(r), 7=0,---,t = Ni(y(-)){#) = Ni(w(-))(?). (5.1)

For any subset T C N, t € T and f: T — Y, we denote by m;f : T"— Y the map defined by

mf(T):{fg) ¢ 15 €T

The causality of N; is equivalent to
mNi(my () = mNi(y(-)) forall y(-) € P(NY;), teN.

As in (2.5),(2.6) we define U,Y and introduce the operators
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(i) N:V = U, N((yi)ien) = (Ni(¥:))ien
(i) A:Y xN—=U, A((y)ien, t) = (Di(t)yi)ien
(iii) NV X N—=U, N((4i)ien, t) = (Ni(%i, 1) )ien
(iv) N: PN Y) — PN U), N((wil))ienw) = (Ni(%i()))ien.

The perturbed systems Xy, Xap), Xnp), Xn can be interpreted as feedback systems with
unknown feedback operators N, A(t), N(t), N resp. , see Figure 1.

Let P.(K) denote the K-linear space of constant perturbations which are block diagonal with
respect to (U;, Y;) and satisfy (2.2). The sets of perturbations (i) — (iv) are K-linear spaces and

are denoted by P, (K), Py(K), P,;(K), P4(K) respectively. As perturbation norms we choose
(i) INlln = inf{y e Ry;;Vy € Y : [N(m)l| <~llyll}, N € Pa(K),
(i) [|Afle =sup [A@)], A € Py(K),
teN
(i) [ V]l = inf {y € Ri;Vy € YVE€ N [[N(y, )| <llyll}, N € Puy(K),

(iv) [INlla = inf{y € Ri;¥y(-) € P(N;Y) : [[N(y()) e < 2llyCllee}, N € Pa(K).

o(t) | z(t+1) = Az(t)+ Du(t) | y)

Figure 1: Feedback interpretation of the system Yy

There is an obvious norm preserving embedding of the space P.(K) into the normed spaces
P,(K) and P(K):
P.(K) C P,(K), P.(K) C Pi(K). (5.2)
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Similarly, there are norm preserving inclusions
P,(K) € Py(K), P,(K)C P(K), P,(K) C Py4(K). (5.3)

We explain this briefly for the latter embedding. Every N € P,;(K) defines a causal operator

Ne Pd(K) via

Ny()(t) =N(y(t),t), teN, y(-) e P(NY). (5.4)
In fact we have
NG = ZI; IN (@), DII* < INIZ My ()l (5.5)

so that N maps [2(N,Y) to [?(N,U) and is of finite gain |N||q < ||V||n:- To prove the converse
inequality, let ¢ > 0 and choose ty € N, yg € Y, yy # 0 such that
[IN (o, to)ll = (INne — €)ll%0l| -

Define y(ty) = yo and y(t) =0 for t € N, ¢ # ty. Then |ly(-)||;2 = ||yo|| and

IN@WED e = 1N (o, to) | = (1N llne — )lly()llez

so that ||N||g = || V]| ne-

For each of the perturbed equations ¥, YA, Y the initial condition z(ty) = xo determines
a unique solution z(t;tg,zo), t > to,t € N. In the case of equation ¥y it is necessary in
addition to specify an initial sequence ¢o(7), 0 < 7 < ty. If N € P4(K), to € N, zy € X and
wo = (p0(0), -+, po(to — 1)) € Y then z(-) = (x(t))i>t, is called a solution of Yy with initial

value (g, @) at time t, € N if it satisfies
z(t+1) = Ax(t) + DN(y,(-))(t), t>1 (5.6)
x(to) = Xy

where



This solution is uniquely determined and can be constructed recursively from (5.6) by causality

of N. We denote it by z(-; to, xo, ©o)-

Definition 5.1 Y is said to be globally asymptotically stable (g.a.s.) if it satisfies the two
conditions
(i) The origin is stable for Xy, i.e. for any € > 0 and ty € N there exists § = §(e,tg) > 0 such

that for xo € X, @y € Y0
lzoll <&, lleollzop—1) <0 = [l2(t;to, To, wo)|| < e forallt > t,.

(11) The origin 0 € X 1is globally attractive, i.e. for any (to,Zo, o) € N x X X Y% we have

tligloﬂﬁ(t; to, To, o) = 0.
The global asymptotic stability of Xn, YA, Xin() is defined as usual.

Definition 5.2 The stability radius of A with respect to perturbations of the structure

((Dy, E;))ien and the class Py is defined by

ri.a(A; (Dy, E;)) = inf{||N]|; N € P4(K), L is not g.a.s. }.

Stability radii with respect to perturbations of the classes P,(K), P;(K), P,:(K) are defined
in an analogous way; they are denoted by rg, (4; (D;, E;)), rg,(A; (D, E;)), 7k i (A5 (Di, Ey)),

respectively. Note that rﬂlgt (A; (D, E;)) = rk(A; (D;, E;)) as defined in Definition 2.1.

Proposition 5.3 Suppose K = R or C, A(t) = A € L(X) s time invariant with spectral

radius (A) < 1. Then
1o (A; (Dy, Ep)) > 1y, (A5 (Dy, Ei)) > 1y, (A5 (Ds, Ey)) > 1y (A5 (Dy, Ey)) > (5.7)
ricq(4A; (Di, B)) > ||L)|I 7.

where L is defined by (4.3).
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Proof: We first prove rg,, > rg,. Assume N € P,(K), | N||, < rg,. We must prove that ¥y
is globally asymptotically stable. By assumption N is Fréchet-differentiable at 0 and because
of (5.2) we have ||[N'(0)|| < rg, < rg.. Thus B = A+ DN'(0)E is exponentially stable and
R(z) = D(N(Ezx) — N'(0)Ex) satisfies |R(x)||/||z|| — 0 as x — 0. Then Theorem 5.6.1 and
Corollaries in [1] imply that the origin is stable.

Now suppose z(-) = x(-; 1, o) is any trajectory of Xy with z(ty) = zo and set y(t) = Ex(t),

t > tg. Define for t € N;i € N
Ai(t)(ay(t)) = aNi(y(t)), a€K

and extend this to an operator in L(Y;,U;) as in Lemma 4.4. This defines a A € P(K),
|Ally < |IN|ln < g, such that z(-) is a trajectory of Ya(. It follows that lim e z(t) = 0.
Hence Xy is g.a.s. .
In view of (5.2), (5.3), it only remains to show that r ,(A; (D;, E;)) > |[L||~". Suppose N €
P4(C) and || N]|g < [|L||7". T z(-) = z(- 5 t0, To, ) With tg € N, 7y € X, p € Y is any trajectory
of ¥ and y,(t) = Ex(t), t > to, we have

t—1

z(t) = A""zg+ > AT FDN(y, () k), t >t (5.8)

k=to

and, for any 7 € N, 7 > 1,

Y,(t) = EA™"z0 + [LN(my, ()] (1), to <t < T

By Proposition 2.4 (iv) there exists a constant ¢ > 0 such that for 7 € N, 7 > ¢

. 1/2
ol + (Z IIyw(t)HZ)

17 yolle <
t=to
< el + ellzoll + ILN 77y (D)l to,7)
where [|¢]| = [|¢l2(0,t0-1)- Now a = |[[L||||[N]|4 < 1 and so the above inequality implies
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cllzoll + [l

7 yollie < 14 T > 1p.
Hence y,(-) € 1?(N;y;Y) and
cllzoll + llell
2 < —m . .
gl < S0+ (5.9)

Taking norms in (5.8) we obtain

t—1

l=@) < 1A= Wlzoll + > 1A MIDN (DB, > to.
k=to

The right hand side of this inequality is a convolution of the sequences
at) = |A"C, t=t

22(to) := [[zoll ,  2(t +1) = [[DN(yo(-)) (DI, = to.

We have (21(t))ien, € I'(Ny,, R) and by (5.9) (22(t))sen,, € 1*(Nyy, R). Hence the convolution
21 % 2y is in 1?(Ny,, R) with norm ||z % 22||;2 < |21 ||22]]iz (see [21]). Using (5.9) it follows that

there exists K > 0 such that
()] < K([|zoll + lell) , T > to-

Here K only depends upon (A, D, E) and ||N||4. This shows the stability of ¥. Furthermore
we have z(-) € [?(N;,; X) and so limy_,, ||z(¢)|| = 0. This proves that Xy is g.a.s. . We conclude

that rg 4 > [|L|| 7" o

The compler stability radius is invariant under the above extensions of the perturbation class,
if the perturbation is of simple structure and the spaces X,U = U;,Y =Y, are Hilbert spaces.

In this case we have equality in (5.7).
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Corollary 5.4 Suppose X,Y,U are Hilbert spaces over C, A € L(X), D € L(U,X) , E €

L(X,Y), r(A) <1. Then

T(%l,c(A; (D7 E)) = T(%l,n(A; (D: E)) = T(%l,t(A; (D7 E)) = T(%l,nt(A; (D: E)) = T%J,d(A; (D7 E))

Proof: This is a consequence of the preceding Theorem 5.3 and Corollary 4.5. o
6 Application: Periodic Systems

In this section we will examine how the previous results can be applied to periodic discrete-time
infinite dimensional systems. We will restrict ourselves to simple structured perturbations, to
avoid overburdened notations. More complicated situations could be examined using the same
procedures, obtaining the same results.

For periodic discrete-time systems on a Banach space X there is a natural way to construct a
time-invariant system. We will study the following situation: Assume X is a Banach space and

A(+) € I°(N, L (X)) is periodic with period p € Ny
Alt+p) = A) teN
Consider the periodic system
z(t+1)= A(t)z(t), teN (6.1)
and the perturbed system
z(t+ 1) =[A(t) + D(t)A(t)E(t)]=(t), teN (6.2)

where D(-) € I®°(N,L(U, X)), E(-) € I*(N,L(X,Y)) are again supposed to be periodic with

period p.
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Introduce the Banach space X := X? and the operator A defined on X by

0o ... . Alp—1)
A0) 0 ... o 0
A=| 0 A1) o (6.3)
0 A(p-2) 0 |
The corresponding time-invariant discrete-time system is given by
Z(t+1) = Az(t), teN (6.4)

The relation between A and A is the following: Given any trajectory {z(0),z(1),...} of (6.1)

the sequence

z(0) 0 0 z(p)
0 z(1) : 0
O ) O DA ] 6 7 0 3"
: : 0 :
0 | | 0 | L z(p—1)] | 0 |

is a trajectory of (6.4). Likewise trajectories of (6.1) with initial time 1 < ¢, < p — 1 can
be represented in a similar manner, where the entry in the initial vector of the trajectory of
(6.4) moves downward as t, increases. On the other hand any trajectory of system (6.4) is
nothing else but a vector of p trajectories of (6.1) with initial times from 0 to p — 1. Thus (6.1)
is exponentially stable if and only if (6.4) is. To redefine the structure operators D(t), E(t)
accordingly we define

D:U?P 5 X. E:X—Y?P

0o ... D(p—1)
DO) 0 ... ... 0
D=| 0 D() 0 . . , B =diag(E(0),...,E(p—1))

Now for every t € N let A(t) € L(Y?, UP) and assume that A is block-diagonal with respect to
the natural decomposition of Y? and U?. For k =0, ...,p — 1 we denote the k-th column of D,

the k-th row of E and the k — th entry in the diagonal of A by Dy, E), and A respectively.
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With these notations the perturbed equation corresponding to (6.3) is

p—1 .’f?() (t)
i(t+1) = [A+ DA®)E]2(t) = [A+ Y DeAv(t)Ey : =
£=0 jp—l (t)

[A(p = 1)+ Dlp~ DAL E(p — 1)] &1 (1)
[A(0) + D(0) Ao () E(0)] 2o (t)

(6.5)
[A(p = 2) + Do = DA, () Ep — 2)] #p2(t)
Any perturbation A(-) corresponding to (6.2) leads to a perturbation A as in (6.5) via
oo [ AR) t=Ip+k B
Ak(t)—{ 5 LT k=0,.,p—1, LteN
As also |A()|lso = ||A]lee We obtain
re(4; (D, B)) = rt(4; (Dy, Ey)). (6.6)

On the other hand if A destabilizes (6.5) then
A() = Ayy(t), ten

where k(t+1) = (k(t)+1) modp, 0 < k(0) < p—1 destabilizes (6.2) for some 0 < k(0) < p—1,
because these sequences are just the perturbations corresponding to one of the p trajectories

of (6.1) in the trajectory of (6.4). So that

~

re(4; (D, E)) = rg(A; (Dy, Ey)). (6.7)

In the periodic case it is natural to assume the disturbance operators A(-) to be periodic as

well. Then the system (6.5) turns out to be time invariant, and we obtain

Proposition 6.1 Assume (1.1) is a periodic system, where A(-), D(-), E(-) are all of period

p. Then the stability radius with respect to periodic perturbations satisfies

A

rep(4; (D, E)) = 1, (A; (D, Ey)) = l sup M(G(ei‘”))]_ (6.8)

w€[0,27]
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where G(s) is defined by

Eo(sI — A)"'Dy  Fy(sI — A)~'D, Eo(sI — A)™'D, ,
Ey(sT — A)~'Dy  Fy(sI — A)~'D, E\(sI — A)™'D, ,
E, 1(sI —A)'Dy E, 1(sI — A)~'D, E, (sI — A)~'D, 4

Proof: The right equation in (6.8) follows from Theorem 4.3. The left one by construction.

The above Poposition shows that robust stability analysis of a periodic system with single
structured perturbations is equivalent to robust stability analysis of a time-invariant system
with multi-structured time-invariant perturbations.

We will now express G(s) = E(sI — A)"'D in terms of the original data. Note that for
,j=0,...,p—1

A

Ej(sI — A)7'D; = E(5)Biy1,4(s)D(i)

where B ;(s) denotes the i,j-th block of (s]—A)~" corresponding to the decomposition X = X,
and the indices are to be read modulo p. If ®(¢, s) denotes the evolution operator (1.3) of (6.1),

it can be verified by direct computation that

o ST = (it p,d)) , 0=
Bij(s)=q 877 (" = (i +p,9) @i +p,5) , i<] (6.9)
sPHITT (P — ®(i +p, 1)) M (6,5)  , P>

fori,j = 0,...,p — 1;s € C\D. In this notation we make implicitly use of the fact, that

A(t+ p) = A(t),t € N. Thus we obtain the

Corollary 6.2 With the assumptions of Proposition 6.1 it holds

v (4 (D, E)) = [ sup u(G(eiW»]_ (6.10)

we0,27]
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where G(s) is defined by

and B, ; are defined by (6.9).

In view of Corollary 6.2 it is natural to ask if r¢.,(A; (D, E)) = r¢(A4; (D, E)) or if the stability
radius with respect to p-periodic perturbations is strictly larger, in general, than the robustness
of the system with respect to arbitrary time-varying perturbations. For time-invariant systems
with single perturbation structure in Hilbert spaces we have r¢ (4; (D, E)) = r¢(4; (D, E)).
If the same equality held in Hilbert spaces for (fl, (ﬁk, Ek)) Proposition 6.1 would imply

rt,(4; (D, E)) = re(A; (D, E)).
Acknowledgement: The authors wish to thank K.M. Przytuski for several useful discussions.
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