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Abstract: Supply networks are complex dynamical systems. Already the perturbation of a
single production process can put the timely satisfaction of customer demand at risk. In this
paper we model supply networks as multiclass queueing networks and present an approach to
robust capacity allocation with respect to perturbations of the production processes. To this
end we consider the fluid model of a multiclass queueing network and use its stability radius to
measure the robustness. The stability radius reflects the smallest perturbation that destabilizes
the network. Based on results concerning this measure we set up an optimization problem for
the capacity allocation.
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1. INTRODUCTION

Supply networks are shaped by several factors (e.g. techno-
logical innovation, logistics services available world-wide)
and have become global. These large-scale networks com-
prise external suppliers, distributed manufacturing plants,
sales centers and transportation assets. In addition to
the structural complexity, the underlying procurement,
manufacturing and distribution processes are dynamic.
Furthermore, the evolution of internal and external param-
eters that determines structural and dynamic properties of
global supply networks is not certain. Hence the resulting
behavior of the network is often complex and uncertain.
Especially the long-term planning has to anticipate cus-
tomer demand as well as the dynamics of the supply
network that have a significant impact on the performance
and sustainability of the network. A robust and sustainable
supply network engineering is given by the capability of
the network to cope with several possible future scenarios
in an efficient manner. In this context not only locations
and transportation links of the supply chain have to be
properly chosen but also production capacities at each
location for the processed products. Stochastic program-
ming and robust optimization are two methods in order
to set up a robust plan. Nevertheless the planning result
strongly depends on the arbitrarily chosen deterministic
future scenarios.

In this paper we present a new approach to robust ca-
pacity allocation for stochastic production processes in
supply networks on the long term. To this end we assume
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that the production processes of the supply network can
be modeled as a multiclass queueing network. Based on
this starting point we consider the fluid approximation
of the dynamic and uncertain multiclass queueing net-
work. The deterministic fluid model facilitates stability
and robustness analyses for such networks. In particular
we use the stability radius to quantify the robustness. The
stability radius is given by the smallest perturbation that
destabilizes the network. During the process of capacity
allocation we aim to maximize the robustness of a supply
network in regard to perturbations of the production pro-
cesses. Hence, we seek for a sustainable capacity allocation
that enables the network to handle unexpected reduced
production capacities (e.g. machine breakdown or strike)
or an additional workload. Based on findings regarding
the stability radius we set up a mathematical program
that allows to find an optimal capacity allocation to the
production processes.

The outline of the paper is as follows. In Section 2 a
brief literature review of applied planning systems and
methods, including supply network engineering, is given.
Section 3 introduces the modeling concept of fluid net-
works. This modeling approach captures the essence of
multiclass queueing networks on the long term. Stability
and robustness analysis of fluid networks are discussed in
Section 4. Based on the findings regarding the stability
radius an optimization program is formulated in Section 5.
The program aims to maximize the robustness of a mod-
eled supply network by adjusting the allocated capacity
to the production processes. This section is followed by
the computational analysis in Section 6. At the end of the
paper we present some conclusions and an outlook.



2. ADVANCED PLANNING SYSTEMS AND
METHODS

A sustainable creation of value is paramount aim of global
supply networks and mainly determined by the network
engineering. This goal is fostered by Advanced Planning
Systems (APS) - applied to such networks. The underlying
structure of APSs is illustrated by the Supply Chain
Planning Matrix in Figure 1 (Rohde et al. (2000)).
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the integration of production and transportation systems do not consider current capabilities, 
level of utilisation of resources and transit-/lead-times. This limitation has special relevance in 
supply chains, where components of production and logistics must be properly integrated so 
that efficiency, responsiveness and flexibility could be achieved and sustained.  

2.1. Production and Transportation Scheduling Problem 

Resources and their employment level have to be better considered in production and 
transportation systems so that decision making in the dynamic and competitive environment 
of supply chains is enhanced. These systems are nowadays managed by advanced planning 
systems (APS’s). The current underlying structure of APS’s can be illustrated by the Supply 
Chain Planning Matrix (Figure 1).  
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Figure 1 – Supply chain planning matrix (Rohde et al., 2000) 

The matrix comprises modules for the planning tasks that are characterised by time horizon 
and involved business functions. The degree of detail increases and the planning horizon 
decreases by shifting from the long-term to the short-term. In order to align the processes at 
different locations and business functions, planning tasks on the strategic (strategic network 
planning) and tactical level (master planning) are usually carried out by a central planning 
entity. Due to the large amount of data that needs to be considered and the large number of 
decisions, the operational planning is normally carried out independently in a sequential way 
by each location and business function (Fleischmann et al., 2004). These individual planning 
tasks are performed by model-based decision systems that often include the utilisation of 
mathematical models or heuristics for determining optimal solutions. So far, these models do 
not take dynamic environments or perturbations appropriately into account (Scholl, 2001). 
For instance, a breakdown of a machine or a transportation vehicle can be considered as 
internal perturbations. Traffic jams are examples of external perturbations that extend the 
travel time between locations. 

Fig. 1. Supply Chain Planning matrix.

The matrix comprises modules for the planning tasks that
are characterized by time horizon and involved business
functions. The degree of detail increases and the planning
horizon decreases by shifting from the long-term to the
short-term. These consecutive modules allow to handle the
complexity of an overall planning process (Fleischmann
et al. (2004)). The modules are often based on mathe-
matical programming formulations or heuristics that as-
sume deterministic planning information (Scholl (2001)).
However, it can be shown that such approaches fail to
cope with a dynamic environment and the considerable
uncertainty of the underlying planning information (Lan-
deghem and van Vanmaele (2002)). Stochastic program-
ming and robust optimization address uncertainty of rel-
evant parameters (Mulvey et al. (1995)) and are used for
robust planning. They are based on a set of deterministic
future scenarios of relevant parameters (Helfrich and Cook
(2002)) instead of point estimates. In this context a plan is
considered robust as it remains close to a desired solution
for each scenario. These approaches are applied to net-
work design problems (Klibi et al. (2010)) and (Pan and
Nagi (2010)). Nevertheless, the obtained planning results
depend on the arbitrarily chosen scenarios.

In this paper we present an approach to supply network
design that maximizes the robustness of a supply network
in regard to perturbations of the production processes.
This approach incorporates knowledge about the dynamic
behavior of supply networks as well as a consideration of
uncertainty. The dynamics of such complex networks can
be modelled by multiclass queueing networks. A queueing
network is said to be stable if the total number of products
in the network remains bounded over all time. This means
that the long-run input rate of the network equals the long-
run output rate. For a precise definition of the stability
of multiclass queueing networks see Bramson (2008). Dai
(1995) and Bramson (2008) presented an approach to
investigate the stability of queueing networks using the so-
called fluid limit model. The fluid approximation model
is a continuous deterministic analogue of the discrete

stochastic model. The stability of a corresponding fluid
limit model implies the stability of the original queueing
network. In comparison to a queueing model the stability
of a fluid model can be determined more easily.

Since the evolution of relevant external and internal pa-
rameters is not known prior we embed a measure for
robustness of a fluid model with respect to perturbations
of the process rates into our approach. The stability radius
of a network quantifies the size of perturbations that are
guaranteed not to destroy stability. Hence it allows to
prepare a network precisely for unexpected events of a cer-
tain magnitude. First results and capabilities concerning
this measure were presented in Scholz-Reiter et al. (2010).
There the concept of the stability radius for dynamical
systems (Hinrichsen and Pritchard (2005)) is adapted to
the case of fluid network models.

3. DESCRIPTION OF THE FLUID MODEL

The following model description relies on (Bramson and
Dai (2001)) and (Ye and Chen (2001)). The considered net-
work consists of locations j with j ∈ J = {1, 2, ..., J} and
different classes of products k with k ∈ K = {1, 2, ...,K}.
Every class of product is processed exclusively at one
location. The mapping s : K → J determines which class
of product is processed by which location and generates the
so called constituency matrix C, with cjk = 1 if s(k) = j
and cjk = 0 else. For every location it is assumed that
the set C(j) = {k ∈ K : s(k) = j} is nonempty. Further
every class of product k has the exogenous arrival rate αk

and the process rate µk of products per time unit. After
a product of class k has been processed at location s(k) it
either leaves the network or becomes a product of another
class l, with l ∈ K. The constant plk denotes the proportion
of processed products of class l that become products of
class k. Hence 1−

∑K
l=1 plk is the proportion that leaves the

network. The corresponding K × K matrix P is referred
to as the transition matrix. It is assumed that P has
spectral radius strictly less than one, i.e. ultimately all
products leave the network. The initial amount of products
is represented through the K-dimensional vector Q(0).
The queue length of products k at time t is denoted by
Qk(t) and the total amount of time in the interval [0, t]
that location s(k) has devoted to processing products of
class k is denoted by Tk(t). The performance is described
by the K-dimensional queue length process {Q(t) : t ≥ 0}
and the K-dimensional allocation process {T (t) : t ≥ 0}.
The next step is to fix a policy that rules the order in
which the arriving products are processed at each location.
In this paper we use the head-of-the-line proportional
processor sharing discipline (HLPPS). Under this disci-
pline all nonempty product classes present at a location
are produced simultaneously proportional to their queue
length. Head-of-the-line means that a location processes
only one product of each type at any time. The allocation
rate Ṫk(t) for class k products is proportional to the total
queue length at location s(k) present at time t. That is,

Ṫk(t) =
Qk(t)∑

l∈C(j)Ql(t)
if

∑
l∈C(j)

Ql(t) > 0.

Note that even when the queue length of class k products
at location s(k) is zero, Ṫk(t) may still be positive. Finally



the idle time process Y = {Y (t) : t ≥ 0} is introduced,
i.e. Yj(t) denotes the cumulative time that location s(k)
idles in the interval [0, t]. With M = diag(µ) the dynamics
of the fluid network under HLPPS discipline can be
summarized as follows

Q(t) = Q(0) + α t− (I − PT )MT (t) ≥ 0, (1)
W (t) = CM−1Q(t), (2)
Y (t) = et− C T (t), (3)

0 = Ẏj(t)Wj(t) for all t ≥ 0 and for all j ∈ J , (4)

Ṫk(t) =
Qk(t)∑

l∈C(j)Ql(t)
if

∑
l∈C(j)

Ql(t) > 0. (5)

From equation (4) it follows that the idle time for a
product class k increases if and only if the workload Wj(t)
of location j is zero, i.e. the queues at location j are empty.
Networks with this property are called work-conserving.
Relation (1) is called the flow balance relation. Any pair
(Q(·), T (·)) that satisfies (1)-(5) is called a solution of the
HLPPS fluid network. The set of all feasible queue length
processes is denoted as

Q = {Q(·) : ∃T (·) : (Q(·), T (·)) is a solution }.

We use the following notations. For a ∈ Rn
+ define the

weighted 1-norm with weight a by ||x||a =
∑K

k=1 |ak xk|.
For the special case where a = (1 . . . 1)T we write || · ||1.
The total amount of products in the network at time t is
given by the sum of the queue length at time t for every
class, i.e. by ||Q(t)||1.
Example 1. Throughout the paper we consider an example
network of two locations that process three classes of
products. A schematic illustration is given in Figure 2.
The parameters for the test scenario are

α =

( 0.15
0.15
0.10

)
, µ =

( 0.6
0.9
0.5

)
, P =

( 0.25 0.15 0.20
0.05 0.25 0.15
0.20 0.25 0.10

)
,

C =
(

1 0 0
0 1 1

)
.

1 21
2

3

Fig. 2. Fluid network with two locations under HLPPS
discipline.

4. STABILITY AND ROBUSTNESS ANALYSIS

This section provides the definition of stability for fluid
networks. Further, relevant variables as well as a necessary
and sufficient condition for the stability of fluid networks
under HLPPS discipline are introduced. In addition, in
this section the stability radius is defined and a theoretical
framework for the computation of the stability radius is
established.
Definition 1. A fluid network Q is said to be stable, if
there exists a finite time τ ≥ 0 such that Q(τ + ·) ≡ 0 for
any Q(·) ∈ Q with ||Q(0)||1 = 1.

Since fluid networks contain reentrant flows, the so-called
effective arrival rate for class k products, denoted λk, is
given by

λk = αk +
K∑

l=1

λl plk. (6)

As the spectral radius of P is assumed to be strictly less
than one, (6) can be written as λ = (I − PT )−1 α. The
nominal workload of location j is given by

ρj =
∑

k∈C(j)

λk

µk
. (7)

In vector form (7) can be written as ρ = CM−1λ and by
using the expression for λ the nominal workload can be
expressed as

ρ = CM−1 (I − PT )−1 α. (8)
Sometimes ρ is also referred to as the traffic intensity.
Clearly, a necessary condition for the stability of a fluid
network is that the nominal workload for every location j
is strictly less than one. By using the J-dimensional vector
e = (1, ..., 1)T this is

ρ < e. (9)
Here the inequality < has to be understood componen-
twise. Condition (9) is necessary for fluid networks un-
der any service discipline. However, a sufficient condition
depends on the service discipline, i.e. fluid networks may
be stable under some discipline but not under another,
see Kumar and Seidman (1990). The following theorem
states that condition (9) is also sufficient for HLPPS fluid
networks (Bramson (2008)).
Theorem 1. A HLPPS fluid network is stable if and only
if ρ < e.

The nominal workload for the test scenario in Example 1
is ρ = (0.472 0.829)T , which implies that the network is
stable. In this paper we aim to measure the robustness of
a given fluid network Q with respect to perturbations of
the process rates µ. Consequently, we are interested in the
the smallest process rates µ such that the fluid network
keeps the property of stability. To this end, we perturb
the process rate by subtraction of a vector δ ∈ RK

+ and
consider the fluid networkQ(δ) = (α, µ−δ, P, C). So we are
interested in the smallest perturbation that destabilizes
the network. Thus according to Scholz-Reiter et al. (2010)
we define the following.
Definition 2. Let a ∈ RK

+ be fixed. The a-weighted stabil-
ity radius of the fluid network Q with respect to pertur-
bations of the production rate is defined by

r(Q) = inf{ ||δ||a : Q(δ) is not stable }. (10)

Note that the stability radius is a property of a given
system. Consequently different values of α, µ, P or C
lead to different stability radii. Since the condition (9) is
necessary and sufficient for the stability for HLPPS fluid
networks the stability radius can equivalently be described
by the nominal workload condition (9). To be precise, let
M(δ) = diag(µ−δ) reflect the perturbed process rates and
let

ρ(δ) = CM(δ)−1 (I − PT )−1 α (11)
denote the perturbed nominal workload. Then the stability
radius can be expressed as



r(Q) = min { ||δ||a : ρ(δ) 6< 1 } . (12)
Here ρ(δ) 6< 1 means that there is at least one component
of ρ(δ) that is greater or equal to one. This reflects the
fact that for some location j the nominal workload is
at least one and thus the network is unstable. To give a
geometric interpretation of Definition 2 and the equivalent
representation (12) of the stability radius we focus on
location S2 from Example 1. That is, we consider one
location that processes two classes of products. For given

µ

µ3

2

Fig. 3. Illustration of the stability radius for one station
processing two product classes.

effective arrival rates λ2, λ3 the light grey domain in
Figure 3 represents the set of process rates that satisfy
condition (9), i.e.

{(µ2, µ3) ∈ R2
+ :

λ2

µ2
+
λ3

µ3
< 1}.

By Theorem 1, for any process rates in the interior of
the light gray domain the network is stable, while for
process rates on the boundary the network is unstable. So
(µ2, µ3) = (0.9, 0.5) of the example network is an interior
point of the light gray domain. Let B||·||a(x, r) denote
the neighborhood around x ∈ RK of radius r, where r
is measured with respect to the norm || · ||a. From this
perspective the stability radius can be described as the
radius of largest neighborhood around µ that is completely
contained in the interior of the light gray domain such that
at least one edge of B||·||a(µ, r) intersects the boundary of
the light grey domain. In Figure 3 the dark grey domain
illustrates the neighborhood B||·||a(µ, r). Based on this,
the stability radius can be calculated by the following
optimization problem

min
K∑

k=1

ak δk

such that CM(δ)−1 λ 6< e

0 ≤ δ ≤ µ.

(13)

The first constraint can also be expressed as
max
j∈J

ρj(δ) ≥ 1. (14)

To compute the stability radius we split the problem into J
subproblems as follows. We solve the optimization problem
(13) for each location j ∈ J individually and the smallest
solution in magnitude represents the solution to (13).

In the sequel we describe how to solve the optimization
problem for a single location j ∈ J . That is, for each
location j ∈ J the smallest perturbation rj(Q) that leads
to instability can be described by an optimization problem
of the form

min
∑

k∈C(j)

ak δk

such that
∑

k∈C(j)

λk

µk − δk
≥ 1

0 ≤ δk ≤ µk k ∈ C(j).

(15)

Consequently, the stability radius of the whole fluid net-
work Q is given by

r(Q) = min
j∈J

rj(Q). (16)

In the following we want to analyze the solution of the
optimization problem (15) for a single location. We recall
some concepts from Rockafellar (1970). For a set A ⊂ Rn

the boundary is denoted by ∂A. A set A ⊂ Rn is called
convex if (1−c)x+cy ∈ A whenever x, y ∈ A and c ∈ (0, 1).
A point x of a convex set A is called an extreme point
if there is no way to express x as a convex combination
(1− c)x+ cy such that x, y ∈ A are distinct and c ∈ (0, 1).
The set of all extreme points of A is denoted by ext(A).
The convex hull of a set A, denoted conv(A), is the smallest
convex set that contains A.
Proposition 2. Given a closed and convex set B ⊂ Rn and
let A ⊂ B be convex and compact such that ∂A∩∂B 6= ∅.
Then ext(A) ∩ ∂B 6= ∅.

Proof. The assertion is shown by contradiction. So
assume that ext(A) ∩ ∂B = ∅. This implies that
ext(A) ⊂ int(B). Further, by Minkowski’s Theorem ((Bor-
wein and Lewis, 2006, Theorem 4.1.8)) it holds that A =
conv(ext(A)) ⊂ int(B), which is a contradiction to ∂A ∩
∂B 6= ∅. �

To analyze the solution of the optimization problem (15)
we first regard the following situation. For given λ1, λ2 and
c > 0 consider the set

M = {x = (x1, x2) ∈ R2
+ :

λ1

x1
+
λ2

x2
≤ c}.

Note that M is closed and convex and the boundary ∂M
equals the set of extreme points ext(M). The minimal
distance r from x = (x1, x2) ∈ M to the boundary ∂M
can be described by

r = max{δ : B||·||a(x, δ) ⊂M}
Further, it holds for every ε > 0 that B||·||a(x, r+ ε) 6⊂M
and this implies that ∂M ∩ ∂B||·||a(x, r + ε) 6= ∅. By
Proposition 2 it holds that

∂M ∩ ext
(
B||·||a(x, r + ε)

)
6= ∅.

This is used to analyze the optimization problem
min a1 δ1 + a2 δ2

such that
λ1

x1 − δ1
+

λ2

x2 − δ2
= c

0 ≤ δk ≤ xk k = 1, 2.

(17)

Consequently, the application of Proposition 2 implies
Proposition 3. If r is a solution to (17) it holds that

λ1

x1 − r
+
λ2

x2
= c or

λ1

x1
+

λ2

x2 − r
= c.



The next step is to generalize the above proposition to the
setting

min a1 δ1 + . . .+ an δn

such that
λ1

x1 − δ1
+ . . .+

λn

xn − δn
= c

0 ≤ δk ≤ xk k = 1, 2, . . . , n.

(18)

Lemma 4. If r is a solution to (18) it holds that
δ1 = r or . . . or δn = r.

Proof. Assume that (r1 r2 . . . rn)T is a solution to (18),
i.e. r = ||(r1 r2 . . . rn)T || and

λ1

x1 − r1
+

λ2

x2 − r2
+ . . .+

λn

xn − rn
= c.

The statement is shown by induction. For n = 2 the
claim is valid by Proposition 3. In the inductive step we a
Assume that the claim is true n and consider the case for
n+ 1. Then it holds that

λ1

x1 − r1
+

λ2

x2 − r2
+ . . .+

λn+1

xn+1 − rn+1
= c.

By hypothesis it holds that r1 = r or . . . or rn = r.
Without loss of generality, let r1 = r. Hence

λ1

x1 − r1
+

λn+1

xn+1 − rn+1
= η − λ2

x2
− . . .− λn

xn
.

So by applying Proposition 3 it follows that r1 = r or
rn+1 = r, which shows the assertion. �
Remark 1. The significance of the previous results lies in
the fact that the stability radius can be computed by
solving an optimization problem and its solution can be
obtained in the following way: Consider every location
separately. Then perturb the process rate of exactly one
product class and solve the corresponding optimization
problem. Finally take the minimum of all results.

5. OPTIMIZATION MODEL FOR THE CAPACITY
ALLOCATION

In this section we formulate an optimization model to
maximize the robustness of a supply network. This is based
on the optimization problem (13). For given α, P and C
the capacity allocation to process rates µ is flexible within
given bounds and allows to maximize the stability radius
with the weight a = e.

Sets
K Product classes (k, l, n ∈ K)
J Locations (j ∈ J )
C(j, k) Set, that determines which product class k is

processed at which location j

Parameters
αk External arrival rate of class k products
zj Maximal process rate of location j that is available

for processing all assigned product classes
Cj,k Constituency matrix, that determines which prod-

uct class k is processed by a certain location j
Pl,k Routing matrix that determines the proportion

of product class l which becomes product class k
after being processed

Il,k Identity matrix of product classes
R Inverse matrix of (I − PT )
L Large scalar (big M)

Variables
µk Process rate of class k products at the assigned

location
∆ Perturbation of the process rate of each product

class in the case that the other product classes
are not disturbed (measure for the stability
radius)

ρj,k Nominal workload of location j in the case
that the process rate µk of product class k is
perturbed

CMj,k,n Auxiliary matrix CM−1

Aj,k,n Auxiliary matrix CM−1(I − PT )−1

Binary variables

Xj,k Binary variable denoting that location j has
nominal workload ρj,k = 1 if the process rate
µk of product class k is perturbed

Mathematical model

In (19) and (20) two auxiliary matrices are calculated.
Equation (19) implements the idea of Remark 1. Hence,
the matrix CMj,k is created n times, each time the process
rate µk is disturbed if and only if k = n.
CMj,k,n = Cj,k(µk −∆ · δk,n)−1 (j ∈ J ; k, n ∈ K) (19)

Here we use the notation of the Kronecker delta

δn,k =
{

1 if n = k

0 else .

Aj,k,n describes the relation between the arrival rate α and
the nominal workload ρ, see (8).

Aj,k,n =
∑

l

CMj,l,nRl,k (j ∈ J ; k, n ∈ K) (20)

ρj,n is the nominal workload of location j if the process
rate of product class n is disturbed.

ρj,n =
∑

k

Aj,k,nαk (j ∈ J ;n ∈ K) (21)

Equation (22) enforces that the nominal workload of
location j is greater or equal to one, if and only if exactly
the process rate of product class n is disturbed.

ρj,n ≥ 1− (1−Xj,n)L (j ∈ J ;n ∈ K) (22)
Equation (23) ensures that the nominal workload does not
exceed 1.

ρj,n ≤ 1 (j ∈ J ;n ∈ K) (23)
Condition (24) guarantees that the nominal workload of
exactly one location equals one for a perturbation with
exactly one strictly positive component∑

j

∑
n

Xj,n = 1. (24)

The total capacity of each location j is bounded by zj .∑
k∈C(j,k)

µk ≤ zj (j ∈ J ) (25)

The objective function (26) maximizes the perturbation
∆ that can be subtracted from the processing rates before
the whole network becomes unstable. The stability radius
is thus the solution of the problem:

max ∆ . (26)



6. COMPUTATIONAL ANALYSIS

We implemented the optimization model from Section 5 in
GAMS 22 with the solver DICOPT and applied the intro-
duced test case. The maximal process rate for the locations
is z = (1 1.4)T and L = 1000. In the case that the produc-
tion capacity allocation is pre-given (µ = (0.6 0.9 0.5)T )
the stability radius of the test case is ∆ = 0.135. Table
1 shows the nominal workload ρj,k of each location j in
regard to the disturbed process rate of product class k.
Column one shows for instance the workload of the two
locations if only process rate of product class 1 is disturbed
by ∆. Since the stability radius reflects the smallest per-
turbation that leads to instability Table 1 shows that the
network becomes unstable at location 2 if a perturbation
of magnitude ∆ = 0.135 is added to the process rate of
product class 3.

ρj,k k = 1 k = 2 k = 3
j = 1 0.610 0.472 0.472
j = 2 0.830 0.895 1.000

Table 1.

The allocation of available production capacity to the
different product classes at a certain production location
is performed by the mathematical program of Section 5.
In the following we set the maximal production capacity
of location 2 to 1.4, which equals the sum of the required
production capacities of product class 2 and 3 in the fixed
case. Furthermore we set the available production capacity
at location 1 to 1. The obtained capacity allocation by
the program is µ1 = 0.519, µ2 = 0.752 and µ3 = 0.648.
Moreover the stability radius takes a value of 0.236. The
workload of each of the production locations for the
individually disturbed process rates of the product classes
are given by Table 2.

ρj,k k = 1 k = 2 k = 3
j = 1 1.000 0.546 0.546
j = 2 0.798 1.000 1.000

Table 2.

Table 2 shows that the network becomes unstable if a
perturbation of magnitude 0.236 is added either to the
process rate of product class 1, 2 or 3. In this context it is
remarkable that the stability radius can be increase by 75%
without adding additional production capacity. Moreover,
the total required capacity can be reduced by 4% with
an advanced capacity allocation. These promising results
demonstrate the capabilities of our approach for a robust
capacity allocation.

7. CONCLUSIONS AND OUTLOOK

In this paper we have introduced a new approach to
robust capacity allocation at locations for sustainable
supply network engineering. In particular, we focused on
the question of measuring and maximizing the robustness
of a supply network. To this end we introduced a fluid
network model that provides a sufficient condition for the
stability of the corresponding multiclass queueing network.
We defined the stability radius of the fluid network as
a measure for the robustness of the supply network.
Using the fact that the stability of a fluid network under

proportional processor sharing discipline is equivalent to a
nominal workload strictly less than one, we formulated an
optimization scheme to maximize the stability radius. In
particular, the program chooses the process rates subject
to pre-given bounds. In the future combined sources of
perturbations (e.g. perturbation of arrival and process
rates) have to be considered as well as other service
disciplines. Furthermore the approach might be embedded
in other design and allocation problems.
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