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Abstract

The generalized spectral radius, also known under the name of
joint spectral radius, or (after taking logarithms) maximal Lyapunov
exponent of a discrete inclusion is examined. We present a new proof
for a result of Barabanov, which states that for irreducible sets of
matrices an extremal norm always exists. This approach lends itself
easily to the analysis of further properties of the generalized spectral
radius. We prove that the generalized spectral radius is locally Lip-
schitz continuous on the space of compact irreducible sets of matrices
and show a strict monotonicity property of the generalized spectral
radius. Sufficient conditions for the existence of extremal norms are
obtained.

1 Introduction

In recent years discrete inclusions have attracted the interest of researchers
from quite distinct fields. They occur in the theory of wavelets, where dis-
crete inclusions can be used to determine Hoelder exponents of compactly
supported wavelets, see Daubechies and Lagarias [1], Heil and Strang [2],
and references therein. For discussions of applications in the theory of Mar-
kov chains, iterated function systems, hysteresis nonlinearities we refer to
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references given in the papers [3, 4, 5]. For stability analysis of numerical
algorithms using this framework we refer to Guglielmi and Zennaro [6]. And
this list is, of course, far from complete.

Given a set of matrices M⊂ Kn×n, where K = R, C, we are interested in
the asymptotic behavior of solutions of the discrete inclusion

x(t + 1) ∈ {Ax(t) | A ∈M} , t ∈ N (1)

x(0) = x0 ∈ Kn .

This problem has been studied from an abstract point of view in [7, 8, 9,
3, 10, 4, 11, 12, 13, 14, 5, 15]. Infinite dimensional versions of this problem
have been studied in [4, 16]. A more general spectral theory for a wide class
of discrete inclusions can be found in [17], see also [18] for continuous time
analogues.

This author was first interested in stability of discrete inclusions from
a control theory point of view. A discrete inclusion of the form (1) may be
interpreted as a model for time-varying uncertainty of a nominal system x(t+
1) = Ax(t). One problem area in this direction consists in the calculation
of stability radii. Given an increasing family of sets U := {Mγ | γ ≥ 0} the
problem is to determine the smallest γ > 0 such that (1) defined by Mγ is
not exponentially stable, see also [19].

A recurrent problem is the question whether M has left convergent pro-
ducts or is product bounded. The first of these properties means that for any
sequence {A(k)}k∈N ∈MN it holds that

A(k)A(k − 1) · · ·A(0)

is convergent for k → ∞. Product boundedness means that there is a con-
stant C > 0 such that ‖A(k)A(k− 1) · · ·A(0)‖ < C for all possible products
of matrices in M. This property is also called absolute stability in [9] and
nondefectiveness in [6].

The property of left convergent products has been studied in [1, 11, 12].
In particular, this property is characterized in a number of ways for finite
sets of matrices by Vladimirov et al. [5], where also results on general sets
of matrices are obtained, which are not quite as far-reaching.

One of the main tools in the study of discrete inclusions consists of the
generalized (or joint) spectral radius. This approach originates with Rota
and Strang [7], who defined the joint spectral radius and Daubechies and
Lagarias [1], who did the same for the generalized spectral radius. We now
define these two numbers. Associated to the set M we can consider the sets
of products of length t

St := {A(t− 1) . . . A(0) | A(s) ∈M , s = 0, . . . , t− 1} ,
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and the semigroup given by

S :=
∞⋃

t=1

St .

Let ‖ · ‖ be some operator norm on Kn×n and define for t ∈ N

ρt(M) := sup{r(St)
1/t | St ∈ St} , ρ̂t(M) := sup{‖St‖1/t | St ∈ St} .

(2)
The joint spectral radius, respectively the generalized spectral radius are now
defined as

ρ(M) := lim sup
t→∞

ρt(M) , ρ̂(M) := lim
t→∞

ρ̂t(M) .

However, there is no need to insist on different notation as Theorem 4 in
Berger and Wang [3] states that for bounded M we have ρ̂(M) = ρ(M),
so that we will simply use the notation ρ(M). Alternative proofs for this
equality can be found in [20, 14]. Note also that for all t ≥ 1

ρt(M) ≤ ρ(M) ≤ ρ̂t(M) . (3)

In a paper by Lagarias and Wang [10] the by now famous “finiteness
conjecture” was formulated, which states that for a finite set of matrices M
there always exists a t ≥ 1 such that

ρ(M) = ρt(M) .

It has recently been shown by Bousch and Mairesse [21], that this conjecture
is false. But in special cases it can be shown to hold, see [4, 10].

The calculation of the generalized spectral radius has been treated using
different approaches. While Gripenberg [22] and Maesumi [23] reduce the
number of matrix products that have to be evaluated to obtain upper, re-
spectively lower bounds given by ρ̂t, ρt, an optimal control approach is used
in [19]. Simple computational results cannot be really expected as Kozyakin
[9] has shown that ρ is not an algebraic function on the vector space of k-
tuples of n × n matrices and the determination of ρ is NP-hard by a result
of Tsitsiklis and Blondel [24].

In this paper we show two further properties of the generalized spectral
radius, namely local Lipschitz continuity on the set of irreducible compact
sets of matrices and a monotonicity property. Our approach is based on
a further important idea in the analysis of exponential stability of discrete
inclusions that was introduced by Barabanov [8]. Recall that M ⊂ Kn×n is
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called irreducible if only the trivial subspaces {0} and Kn are invariant under
all matrices A ∈M. Otherwise M is called reducible.

An immediate consequence of irreducibility of M is that ρ(M) > 0,
because in this case the semigroup S is irreducible and does therefore not
consist of nilpotent elements by the Levitzky theorem [25]. Note that this
implies in particular, that we can always normalize an irreducible set of
matrices M to ρ(M)−1M which is a set with generalized spectral radius
equal to 1.

The fundamental contribution of Barabanov consists of the following re-
sult.

Theorem 1.1 If M is compact and irreducible, then there exists a norm v
on Kn such that

(i) for all x ∈ Kn, A ∈M it holds that

v(Ax) ≤ ρ(M)v(x) ,

(ii) for all x ∈ Kn there exists an A ∈M such that

v(Ax) = ρ(M)v(x) .

We will in particular be interested in the existence of extremal norms,
that is norms with the property that ‖A‖ ≤ ρ(M) for all A ∈M. It follows
from the result by Kozyakin that an extremal norm exists for M if and only
if ρ(M)−1M is product bounded, [9, Theorem 3]. A further characterization
is obtained in [15, Section 3]. As the question whether a pair of matrices is
product bounded is undecidable by a recent result of Blondel and Tsitsiklis
[26] we do not expect to obtain an easily checkable criterion and so our
condition is just sufficient but not necessary.

The paper is organized as follows. In Section 2 we present the class of
systems that is studied; as our methods work just as well for semigroups
generated by continuous time systems we briefly introduce the necessary
concepts. In Section 3 we introduce our main technical tool, which we call
the limit semigroup and which is obtained as the ω-limit set of the semigroup
normalized to a generalized spectral radius equal to 1.

In Section 4 we use the result of the previous section to show that ρ is lo-
cally Lipschitz continuous on the set of compact irreducible sets of matrices.
In Section 5 we show that the generalized spectral radius is a strictly incre-
asing function under a natural growth condition on a function with values
in the compact sets of matrices. This result is motivated by the problem of
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calculating time-varying stability radii and its consequences will be discussed
in a forthcoming paper.

Finally, in Section 6 we show the existence of extremal norms under a
nondefectiveness condition, which generalizes the corresponding result for
the spectral radius of a matrix. Note, that we found it useful to use a
slightly different sense of the word nondefective than found in the literature.
In [15] “nondefective” just means that an extremal norm exists.

2 Preliminaries

Let K = R, C. Given a set ∅ 6= M⊂ Kn×n we consider the discrete inclusion

x(t + 1) ∈ {Ax(t) | A ∈M} , t ∈ N (4)

x(0) = x0 ∈ Kn .

A sequence {x(t)}t∈N is called a solution of (1) with initial condition x0 if
x(0) = x0 and if for all t ∈ N there exists an A(t) ∈M such that x(t + 1) =
A(t)x(t). We continue to use the notation introduced in Section 1.

As all our arguments are also valid in continuous time, we will just con-
sider an irreducible semigroup S ⊂ Kn×n with an associated time scale
T = N, R+ := [0,∞). To be concrete, in the case T = R+ we assume
that the semigroup is generated by a differential inclusion

ẋ ∈ {Ax(t) | A ∈M} , (5)

where M ⊂ Kn×n is compact. In the latter case the elements of St, t ∈ R+

are the evolution operators ΦA(·)(t, 0) corresponding to measurable functions
A : R+ →M and the time-varying differential equation

ẋ(t) = A(t)x(t), a.e.

For a semigroup defined by (5) the quantities ρt(S), ρ̂t(S), t ∈ R+ can be
defined analogously to (2) and make obviously sense.

We will denote the corresponding limit by ρ(S). We call this quantity
the maximal Lyapunov exponent if we consider differential inclusions (alt-
hough in the literature this name is normally reserved for log ρ(S)). There
is abundant literature on the theory of Lyapunov exponents of differential
inclusions, see e.g. [27, 18] and references therein.

If we fear that there is a chance of confusion we will denote the generalized
spectral radius given by a set M via the discrete inclusion (1) by ρ(M, N)
and the maximal Lyapunov exponent by ρ(M, R+).
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Note that given a semigroup (S, R+) we can always associate a discrete
inclusion by defining M := S1. Under our assumptions it is an easy exercise
to check that ρ(S, R+) = ρ(M, N). In the sequel, we will always tacitly
assume that S is generated by a discrete inclusions of the form (4) or a
differential inclusion of the form (5), if we just speak of a semigroup (S, T).

Definition 2.1 Let K = R, C, T = N, R+ and let (S, T) be a semigroup in
Kn×n. A norm v on Kn is called Barabanov norm corresponding to S if

(i) v(Sx) ≤ ρ(S)tv(x) , for all x ∈ Kn, t ∈ T, S ∈ St,

(ii) for all x ∈ Kn, t ∈ T there is an S ∈ clSt such that

v(Sx) = ρ(S)tv(x) .

A norm v on Kn is called extremal for S if for the corresponding operator
norm it holds that

v(S) ≤ ρ(S)t , for all t ∈ T, S ∈ St .

We will investigate further conditions guaranteeing the existence of ex-
tremal norms in Section 6.

We will also consider the behavior of the generalized spectral radius as a
function of the set M. As we only have to consider compact sets M⊂ Kn×n,
we introduce

K(Kn×n) := {M ⊂ Kn×n | M compact, nonempty} .

The space K(Kn×n) becomes a complete metric space if it is endowed with
the usual Hausdorff metric defined by

H(M,N ) := max{max
A∈M

dist (A,N ), max
B∈N

dist (B,M)} .

Note that with respect to this topology the set

I(Kn×n) := {M ∈ K(Kn×n) | M irreducible}

is open and dense in K(Kn×n).

3 The limit semigroup

In this section we present an alternative and we hope less intricate proof
of Barabanov’s result. We need the following property of irreducible semi-
groups.
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Lemma 3.1 Let K = R, C, T = N, R+ and let (S, T) be an irreducible
semigroup in Kn×n. Then there are ε > 0 and τ ∈ T such that for all
z ∈ Kn, A ∈ Kn×n there is an S ∈

⋃
1≤t≤τ St with

‖ASz‖ ≥ ε‖A‖‖z‖ .

Proof: Assume the assertion is false, so that there are εk → 0, τk →
∞, τk ∈ T, zk ∈ Kn, Ak ∈ Kn×n such that for all S ∈

⋃
1≤t≤τk

St we have

‖AkSzk‖ < εk‖Ak‖‖zk‖ . (6)

Without loss of generality we may assume that ‖zk‖ = ‖Ak‖ = 1. Thus we
may assume zk → z, Ak → A with ‖z‖ = ‖A‖ = 1. Then irreducibility of S
implies that there exists an S∗ ∈ S with

‖AS∗z‖ = ε∗ > 0 ,

otherwise {Sz | S ∈ S} is contained in the kernel of A. This, however,
contradicts irreducibility of S as Kn 6= ker A due to ‖A‖ = 1. For all k large
enough we have S∗ ∈

⋃
1≤t≤τk

St and

‖AkS
∗zk‖ ≥ ε∗/2 ,

which contradicts (6). This concludes the proof. �
Given our irreducible semigroup (S, T) we define the limit semigroup S∞

by

S∞ := {S ∈ Kn×n | ∃tk →∞, Stk ∈ Stk such that ρ(S)−tkStk → S} . (7)

We note the following properties of S∞.

Proposition 3.2 Let K = R, C, T = N, R+ and let (S, T) be an irreducible
semigroup in Kn×n. The set S∞ defined by (7) satisfies

(i) S∞ is compact and nonempty, S∞ 6= {0},

(ii) S∞ is a semigroup,

(iii) for T ∈ St, S ∈ S∞ we have

ρ(S)−tTS , ρ(S)−tST ∈ S∞ ,

(iv) for all t ∈ T, S ∈ S∞ there exist T ∈ S∞, A ∈ clSt as well as
R ∈ S∞, B ∈ clSt such that

S = ρ(S)−tTA = ρ(S)−tBR ,
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(v) for all S ∈ S∞ there exist R, T ∈ S∞ with

S = RT ,

(vi) S∞ is irreducible.

Proof: Without loss of generality we may assume ρ(S) = 1 in this proof.

(i) For A ∈ St it holds that r(A) ≤ ρ(S)t = 1, hence {At} is a bounded
sequence which has an accumulation point S. By definition S ∈ S∞.
To see that S∞ is closed it suffices to use a standard argument from
the construction of ω-limit sets.

In order to show that S∞ is bounded assume this is not the case and let
ε > 0 and τ ∈ T be the constants given by Lemma 3.1. Unboundedness
of S∞ implies that there exists some t ∈ T, S ∈ St with ‖S‖ > 2/ε.
Thus for x0, ‖x0‖ = 1 arbitrary, there is a T ∈

⋃
1≤t≤τ St with

‖STx0‖ > 2

and applying this argument repeatedly we obtain a sequence {Tk}k∈N ⊂⋃
1≤t≤τ St such that

‖STk . . . ST1x0‖ > 2k , k ∈ N .

This implies ρ̂kt+τk
(S) ≥ 21/(t+τ), where k ≤ τk ≤ kτ , a contradiction.

In particular, the last argument also shows, that S is bounded, on the
other hand from (3) we have that each St contains an element of norm
at least 1. Hence S∞ contains a nonzero element.

(ii) Let S, T ∈ S∞ and consider sequences sk, tk → ∞, Sk ∈ Ssk
, Sk → S

and Tk ∈ Stk , Tk → T . Then

‖ST − SkTk‖ ≤ ‖S − Sk‖‖T‖+ ‖Sk‖‖T − Tk‖ ,

which goes to zero as both terms go to zero for k → ∞. Hence ST ∈
S∞.

(iii) This is clear, as approximation of S by a sequence Sk implies approxi-
mation of TS and ST by TSk, respectively SkT .

(iv) Let tk → ∞, Sk ∈ Stk be sequences such that Sk → S. We can write
Sk = TkAk with Tk ∈ Stk−t, Ak ∈ St. Without loss of generality Ak →
A ∈ clSt and Tk → T ∈ S∞. This implies S = TA, as required. The
argument for the left factorization is exactly the same.
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(v) Let tk → ∞ be a sequence in T. By (iv) we can factorize for each k
S = AkTk with Ak ∈ clStk , Tk ∈ S∞. Now for suitable subsequences
we have Ak → R ∈ S∞, as we may approximate Ak by elements in Stk ,
and Tk → T , as S∞ is compact. This implies S = RT .

(vi) By (i), (ii) and (iii) we know that

S := S∞ ∪
⋃
t∈T

ρ(S)−tSt

is an irreducible semigroup of which S∞ is a closed nonzero semigroup
ideal. Now S∞ is irreducible by [28, Lemma 1].

�
We give an easy example for the above construction, that will turn out

to be of use in the remainder of the article.

Example 3.3 Consider the set

M :=

{[
0 1
0 0

]
,

[
0 0
1 0

]}
.

For T = N it is easy to see that

S2k =

{
0,

[
1 0
0 0

]
,

[
0 0
0 1

]}
,

whereas S2k+1 = M∪ {0}. Hence S∞ = M∪S2.

Given our irreducible semigroup (S, T) and the associated limit semigroup
S∞ we now define the function

v(x) := max
S∈S∞

‖Sx‖ (8)

and note that this defines the norm we are looking for.

Lemma 3.4 Let K = R, C, T = N, R+ and let (S, T) be an irreducible
semigroup in Kn×n. Then v is a Barabanov norm for S.

Proof:

(i) We first show that v is a norm. The properties v(0) = 0, v(λx) =
|λ|v(x) are clear. If x 6= 0 then v(x) 6= 0 as otherwise span {x} would
be in the kernel of all S ∈ S∞ contradicting irreducibility. The function
v(x) is finite as S∞ is compact and finally

v(x + y) ≤ max
S∈S∞

‖Sx‖+ ‖Sy‖ ≤ max
S∈S∞

‖Sx‖+ max
S∈S∞

‖Sy‖ .
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(ii) Without loss of generality let ρ(S) = 1. Let x ∈ Kn, S ∈ S be arbitrary,
then

v(Sx) = max
T∈S∞

‖TSx‖ ≤ max
T∈S∞

‖Tx‖ = v(x) , (9)

as TS ∈ S∞ for all T ∈ S∞. To prove the second statement assume
that Sx ∈ S∞ is such that v(x) = ‖Sxx‖, then by Proposition 3.2 (iv)
Sx factors into Sx = TA with T ∈ S∞, A ∈ clSt. Hence

v(Ax) = max
S∈S∞

‖SAx‖ ≥ ‖TAx‖ = v(x) ,

and so by (9) we have v(Ax) = v(x).

�
The existence of a Barabanov norm has many consequences as already

noted in [8]. For instance, it is immediate that ρ(M) = ρ(clM) and ρ(M) =
ρ(convM). In particular, we cite the following continuity result from [8]
which will be of use for us in the sequel. Alternatively, it has been noted by
Heil and Strang [2] that the continuity of the generalized spectral radius is a
direct consequence of the equality ρ(M) = ρ(M) = ρ̂(M). (The argument is
given for the case of pairs of matrices, but is easily seen to extend to general
compact sets of matrices.)

Lemma 3.5 The map M→ ρ(M) is continuous from K(Kn×n) to R+.

4 Lipschitz continuity of the generalized

spectral radius

In this section we intend to show that the generalized spectral radius is locally
Lipschitz continuous on the set of irreducible compact sets of matrices.

To this end we begin by an investigation of the variation of Barabanov
norms under changes of M. For irreducible M we will need to know how
much the original norm is deformed under the definition (8). Denoting by
vM the norm given by M we introduce the quantities

c−(M) := min{vM(x) | ‖x‖ = 1} , (10)

c+(M) := max{vM(x) | ‖x‖ = 1} . (11)

Of course, these constant also depend on the choice T = N or T = R+, but
we suppress this dependence. Note that for any A ∈ Kn×n we have for the
induced operator norm that

c−(M)

c+(M)
‖A‖ ≤ vM(A) ≤ c+(M)

c−(M)
‖A‖ .
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Theorem 4.1 Let P ⊂ I(Kn×n) be compact and let T = N or T = R+.
Then there is a constant C > 0 such that

1 ≤ c+(M)

c−(M)
≤ C , for all M∈ P .

Proof: Fix a time set T ∈ {N, R+} and consider the corresponding
semigroups generated by the sets M ∈ P . Assume to the contrary that
there exists a sequence {Mk} ⊂ P such that

c+(Mk)

c−(Mk)
→∞ .

Without loss of generality we may assume that Mk →M ∈ P . We denote
by vk the Barabanov norm given by the set Mk and the time set T.

For every k choose a Sk ∈ S∞,k (the limit semigroup corresponding to
(Mk, T)) such that ‖Sk‖ = c+(Mk) and denote

S̃k :=
Sk

‖Sk‖
.

Then we may assume that S̃k → S̃ with ‖S̃‖ = 1.
Now let x0 ∈ Kn, ‖x0‖ = 1 be arbitrary. We will show that

c+(Mk)/vk(x0) is bounded by a constant independent of x0, which proves
the assertion.

Let ε > 0, τ ∈ T be the constants for S (the semigroup generated by
(M, T)) guaranteed by Lemma 3.1. Then by convergence of the sets Mk

there exists a k0 ∈ N such that for every k ≥ k0 and some Rk ∈ Stk,k, 1 ≤
tk ≤ τ we have

‖S̃Rkx0‖ ≥
ε

2
.

Note, that k0 is chosen independently of x0. For all k ≥ k0 we now define

Tk := ρ(Sk)
−tkSkRk ∈ S∞,k ,

and obtain for the norm vk defined through S∞,k that

vk(x0) ≥ ‖Tkx0‖ = ρ(Sk)
−tk‖SkRkx0‖ =

c+(Mk)

ρ(Sk)tk
‖S̃kRkx0‖

≥ c+(Mk)

ρ(Sk)tk

(
‖S̃Rkx0‖ − ‖S̃ − S̃k‖‖Rkx0‖

)
≥ c+(Mk)

ρ(Sk)tk

(ε

2
− ‖S̃ − S̃k‖‖Rk‖

)
.

The last term converges to zero be the definition of S̃ and as the set of all
products of length at most τ is uniformly bounded over P . Furthermore, by
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continuity of ρ we have that ρ(Sk) ≤ ρ(S) + ε for k ≥ k1 ≥ k0, k1 sufficiently
large. This implies that for all k large enough we have

c+(Mk)

vk(x0)
≤ 4

ε
max{1, ρ(S) + ε}τ .

This shows the assertion because again we have chosen k1 independently of
x0. �

As an application of Theorem 4.1 we can sharpen Lemma 3.5. We first
just treat the discrete time case.

Corollary 4.2 The generalized spectral radius is locally Lipschitz continuous
on I(Kn×n).

Proof: Let P ⊂ I(Kn×n) be compact with respect to the Hausdorff
metric. Fix M,N ∈ P arbitrary and let v denote the Barabanov norm with
respect to M. In the Hausdorff metric induced by our original norm ‖ · ‖ we
have

H(M,N ) =: a ,

which implies the in the Hausdorff metric Hv induced by v it holds that

Hv(M,N ) ≤ c+(M)

c−(M)
a ≤ Ca ,

where C is a constant only depending on P which exists by Theorem 4.1.
Hence for all x ∈ Kn, A ∈ N it holds that there exists a B ∈ M with
v(A−B) ≤ Ca and thus

v(Ax) ≤ v(Bx) + v((A−B)x) ≤ (ρ(M) + Ca) v(x) .

Hence ρ(N ) ≤ ρ(M) + Ca and by symmetry we obtain

|ρ(N )− ρ(M)| ≤ CH(M,N ) ,

as desired. �
We cannot expect that the generalized spectral radius ρ(·) is Lipschitz

continuous on K(Kn×n) as already standard perturbation theory of eigenva-
lues tells us that, generally, if an eigenvalue splitting occurs at an eigenvalue
with modulus equal to the spectral radius then the spectral radius will be-
have like a Puiseux series, that is, not Lipschitzean at the splitting point.
An example for this phenomenon is given by

Aε :=

[
1 1
ε 1

]
,

the spectral radius of which for ε > 0 is given by r(Aε) = 1 +
√

ε.
We note that the result translates immediately to continuous time.
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Corollary 4.3 The maximal Lyapunov exponent is locally Lipschitz conti-
nuous on I(Kn×n).

Proof: The map
M 7→ S1(M, R+)

is locally Lipschitz continuous on Kn×n. We have already noted that

ρ(M, R+) = ρ(S1(M), N) .

Now the assertion is immediate from Corollary 4.2. �

5 Strict monotonicity of the generalized

spectral radius

In this section we will consider a further aspect of the generalized spectral
radius under variation of the generating set M. The methods we use here
are restricted to the discrete time case, so that all results in this section are
to understood with respect to the discrete inclusion (1). Whenever we treat
different set of matrices M1,M2 in this section, we denote the semigroups
generated by M1 and M2 by S(Mi), i = 1, 2. On the other hand, the
respective limit semigroups and Barabanov norms are denoted by S∞,1,S∞,2

and v1, v2 in order to avoid overloaded notation.
The results of this section are based on the following observation used by

Radjavi [28], which we state for the sake of completeness and because it not
formulated independently in Radjavi’s paper. When we speak of a projection
P ∈ Kn×n, we mean some matrix satisfying P 2 = P . Orthogonality is not
required.

Lemma 5.1 Let S ⊂ Kn×n be an irreducible semigroup. Then for every
projection P ∈ Kn×n with rank P ≥ 2 the set

PSP := {PSP | S ∈ S}

is irreducible on Im P .

Proof: Assume the assertion is false for some projection P with rank P ≥
2 and let X ⊂ Im P be the nontrivial invariant subspace of PSP (with respect
to Im P ). Then we have for x ∈ X, S ∈ S that

Sx = SPx = PSPx + (I − P )SPx ∈ X + Im (I − P ) .
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The subspace on the right has dimension strictly less than n as X is a proper
subspace of Im P and Im P and Im (I − P ) are complementary subspaces.
This shows that

Y := span {SX | S ∈ S} ,

defines an invariant subspace of S of dimension less than n. Also Y 6= {0} as
otherwise X is in the kernel of every S ∈ S contradicting irreducibility. Thus
Y is a nontrivial invariant subspace of S, which contradicts our assumptions.
�

Note, that we cannot conclude that PSP is a semigroup unless P ∈ S.
Even in this case if we consider a semigroup S generated by M and assume
that M thus also the semigroup PSP are irreducible, this does not imply
that PMP is irreducible.

For the statement of the following lemma recall that a projection P is
called reducing for A if PA = AP . A reducing eigenprojection correspon-
ding to a subset Λ ⊂ σ(A) is a reducing projection with the property that
Im P is equal to the sum of the generalized eigenspaces corresponding to the
eigenvalues λ ∈ Λ.

Lemma 5.2 Let K = R, C. Let M∈ I(Kn×n) contain more than one point.
Assume that for some A ∈ M we have r(A) = ρ(M) and let P be the
reducing eigenprojection of A corresponding to the eigenvalues with modulus
r(A). If one of the following properties is satisfied

(i) P = I,

(ii) K = R and rank P ≥ 3,

(iii) K = C and rank P ≥ 2

then for every x ∈ Im P and every T ∈ S∞ such that

vP (x) := max
S∈S∞

‖PSx‖ = ‖PTx‖

there exists an S ∈ S∞ and a factorization S = ρ(M)−1UAV , U, V ∈ S∞
such that Sx = PTx and

{PUBV x | B ∈M}

contains more than one element.

Proof: Let A ∈ M and an eigenprojection P of A satisfy the as-
sumptions. Assume ρ(M) = 1 and fix x ∈ Im P . Choose T ∈ S∞ with
vP (x) = ‖PTx‖.
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The assumptions guarantee that P ∈ S∞ as a subsequence Akl of the
powers of A converges to P . Then for fixed k > 0 we have

P = lim
l→∞

Akl = Ak lim
l→∞

Akl−k = ( lim
l→∞

Akl−k)Ak .

Thus the matrix Sk := liml→∞Akl−k is the inverse of Ak on Im P (which has
to exist as A restricted to Im P is an isomorphism). Note that ker Sk = ker P ,
PSk = SkP and that by construction Sk ∈ S∞, k ≥ 1.

The idea is now to base the factorization on the equality PTx = PPTx =
SkA

kPTx. Assume for the moment that there exists an integer k such that
the set

{SkPRkPTx | Rk ∈ Sk} (12)

contains more than one element and denote the smallest integer with this
property by l. Then there exists Rl ∈ Sl such that

SlPRlPTx 6= SlPAlPTx = PTx .

If l = 1 then we are done by defining U = S1P, V = PT and S = S1PAPT =
UAV . Otherwise writing Rl = BRl−1 with Rl−1 ∈ Sl−1, B ∈M the assump-
tion that l be minimal implies that

PTx = Sl−1PAl−1PTx = Sl−1PRl−1PTx = SlAPRl−1PTx = SlPARl−1PTx ,

so that the set
{SlPBRl−1PTx | B ∈M}

contains more than one element and the assertion is shown by defining U =
SlP, V = Rl−1PT and S = SlPARl−1PT = UAV . By construction and
Lemma 3.2 it follows that U, V ∈ S∞.

It remains to be shown that some k exists, such that the set in (12)
contains more than one element. Assume this is false, so that for all k ≥ 1
we have

SkPAkPTx = SkPRkPTx , for all Rk ∈ Sk .

Then, as Sk restricted to Im P is an isomorphism,

PAkPTx = PRkPTx , for all Rk ∈ Sk .

Consequently, PAkP and PRkP coincide on

Y := span {PTx, APTx, . . . , AnPTx} ⊂ Im P

for all Rk ∈ Sk. If P = I this implies Aky = Rky for y ∈ Y,Rk ∈ Sk. As Y is
an A-invariant subspace and by irreducibility we have Y = Kn, but then M
necessarily consists just of the matrix A in contradiction to the assumption.
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If P 6= I we can conclude that any A-invariant subspace of Y is invariant
for the set PSP . If Y 6= Im P then Y is a proper invariant subspace of Im P
for PSP . Otherwise, proper A-invariant subspaces of Y = Im P must exist
in the case K = C if rank P ≥ 2 and in the case K = R if rank P ≥ 3. But the
existence of proper invariant subspaces of Im P for the set PSP contradicts
irreducibility of S by Lemma 5.1. This shows the assertion. �

As a preparation for the main result of this section we also need the
following preparatory lemma.

Lemma 5.3 Let K = R, C. If n > 1 and the set M ⊂ Kn×n is convex and
satisfies

rank A = 1 , ∀A ∈M ,

then M is reducible.

Proof: Assume to the contrary that an irreducible set M with the given
properties exists. Fix A ∈ M and let 0 6= x ∈ ker A. By irreducibility there
is a matrix B ∈M such that Bx 6= 0. Then for λ ∈ (0, 1)

Im (λA+(1−λ)B) = span {(λA+(1−λ)B)x} = span {(1−λ)Bx} = Im B .

By continuity it follows that Im A = Im B. Take C ∈ M arbitrary, then
either Cx = 0 and then the above argument shows that Im C = Im B or
Cx 6= 0 from which we conclude that Im C = Im A. Hence, the images of all
A ∈M coincide, contradicting irreducibility. �

The main result of this section is the following proposition which states
that the generalized spectral radius of a set of matrices M2 is strictly greater
than that of a set of matrices M1, if M1 is contained in the interior of the
convex hull of M2 where the interior is taken relative to the affine subspace
generated by M2. Note that this result is a bit surprising because a similar
statement for the maximum of the spectral radii is false, see for instance [29,
Example 12].

In the following statement we use the following notation. For X ⊂ Kn

the affine subspace generated by X is denoted by aff X, that is, the smallest
affine subspace containing X. The relative interior with respect to aff X is
denoted by int aff X . The convex hull of X is denoted by conv X. To be more
specific, the notation

Y ⊂ int aff Xconv X

has the following meaning: Given an affine basis of aff X, that is, a minimal
set of vectors x0, . . . xm ∈ Kn such that

aff X =

{
x0 +

m∑
j=1

αj(xj − x0) | αj ∈ K

}
,
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then for every y ∈ Y there is some ε > 0 such that{
y +

m∑
j=1

αj(xj − x0) | |αj| < ε

}
⊂ conv X .

In the real case we were just able to show the assertion for the (generic)
case described in the following assumption, although the natural conjecture
is that it is always true. In the sequel PA denotes the reducing projection of
A corresponding to the eigenvalues of modulus r(A).

Assumption 5.4 Let K = R, n ≥ 3 and M∈ K(Rn×n). Assume that there
exists an A ∈M such that

r(A) < ρ(M) , or rank PA 6= 2 , or σ((I − PA)A) 6= {0} .

Proposition 5.5 Let K = R, C. Assume M1,M2 ∈ I(Kn×n) satisfy M1 6=
M2 and

M1 ⊂ int affM2convM2 . (13)

If K = R and n ≥ 3 assume furthermore that M1 satisfies Assumption 5.4
then

ρ(M1) < ρ(M2) .

Remark 5.6 Note that in the extremal case that M2 is a singleton set, our
assumption (13) does not guarantee that M1 6= M2, so that an assumption
forcing the two sets to differ is necessary. �

Proof: First note that the case n = 1 is trivial, as then ρ(M) =
max{|a| | a ∈M}. So assume n ≥ 2.

Assume the assertion is false, so that ρ(M1) = ρ(M2) = 1 can be assu-
med without loss of generality. Note that this assumption implies in particu-
lar, that S∞,1 ⊂ S∞,2. Also we will assume, that M1,M2 are convex, which
we may do without loss of generality as ρ(M) = ρ(convM).

The proof is carried out in two steps. First we show that the assertion is
true if for some S ∈ S(M1) we have r(S) < 1. Then we prove the assertion
for the case that r(S) = 1 for all S ∈ S(M1).

So assume that r(S) < 1 for some S ∈ S(M1). Fix x ∈ Kn with v1(x) =
1. Let t be minimal such that v1(S

tx) < 1 and v1(S
t−1x) = 1. Such a t exists

for all x, v1(x) = 1 by our assumption on the spectral radius of S. Factorizing
S = Ak · · ·A0, Aj ∈M1, j = 0, . . . k there is some l = 0, . . . , k such that

v1(
l−1∏
j=0

AjS
t−1x) = 1 and v1(

l∏
j=0

AjS
t−1x) < 1 .
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Denoting y = Al−1 · · ·A0S
t−1x it follows that v1(y) = 1, v1(Aly) < 1. By

construction of the norm v1, however, there is some B ∈ M1, such that
v1(By) = 1. Now for the convex set Y = {Ay | A ∈ M2} we have by
assumption (13) that

{By,Aly} ⊂ {Ay | A ∈M1} ⊂ int aff Y Y ,

because the map A 7→ Ay is linear and therefore maps open sets in affM2

to open sets in aff Y . This implies that for some ε > 0 small enough we have
Aly + (1 + ε)(B−Al)y ∈ Y . Now as By lies on the boundary and Aly in the
interior of the unit ball with respect to v1, it follows that

1 < (1 + ε)v1(By)− εv1(Aly) ≤ v1(Aly + (1 + ε)(B − Al)y) .

Thus for some C ∈ M2 we have Cy ∈ Y and v1(Cy) > 1, whence
v1(CAl−1 · · ·A0S

t−1x) > 1. Using a standard compactness argument it fol-
lows that there exists a constant c > 1 such that for every x ∈ Kn with
v1(x) = 1, there is an S ∈ S(M2) such that

v1(Sx) > cv1(x) .

By induction we obtain an unbounded solution of the discrete inclusion de-
fined by M2, which contradicts ρ(M2) = 1. This completes the proof in the
first case.

So assume now that r(S) = 1 for all S ∈ S(M1). This implies that
r(S) = v1(S) = 1 for all S ∈ S(M1) and it follows from [13, Theorem 2.5]
that

σ(S) ⊂ {0} ∪ {z ∈ C | |z| = 1} , ∀S ∈ S(M1) . (14)

In particular, this shows that we have already completed the proof in the case,
that there is a matrix A ∈ M1 with r(A) < ρ(M1) or r(A) = ρ(M1) but
σ((I − PA)A) 6= {0}. For S ∈ S(M1) let PS denote the reducing projection
corresponding to the nonzero eigenvalues.

First note that rank PA has to be constant on M1, because a drop in the
rank of PA means that an eigenvalue decreases in modulus under variation of
A ∈M1. This decrease has to be continuous asM1 is convex which produces
an eigenvalue of modulus in the interval (0, 1) and this in contradiction to
(14). Then it follows by induction that rank PS is constant on S(M1) because
each of the sets Sk(M1) is pathwise connected. Now by Lemma 5.3 and
irreducibility we can exclude the case rank PA = 1 for some A ∈M1.

Thus we have to treat the cases

(i) K = C, rank PA ≥ 2 for all A ∈M1,
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(ii) K = R, rank PA ≥ 3 for all A ∈M1,

(iii) K = R, n = 2, rank PA = 2 (and hence PA = I) for all A ∈M1 .

Note that in all these cases we can apply Lemma 5.2 to any of the reducing
projections PA, A ∈M1.

We fix a strictly convex norm ‖ · ‖ on Kn, A ∈M1 and show that in the
cases (i)-(iii) we have for x 6= 0, x ∈ Im PA

‖x‖ ≤ w1(x) := max
S∈S∞,1

‖PASPAx‖ < max
S∈S∞,2

‖PASPAx‖ =: w2(x) . (15)

This implies for some c > 1 that w2(x) > c‖x‖, x ∈ Im PA, x 6= 0 by a
compactness argument. By compactness of S∞,2 it follows in particular that
for x0 ∈ Im PA, ‖x0‖ = 1 there exists an S1 ∈ S∞,2 with

‖PAS1PAx0‖ ≥ c

and arguing inductively there are S1, . . . , Sk ∈ S∞,2 with

‖PASkPA · · ·PAS1PAx0‖ ≥ ck . (16)

However, PA ∈ S∞,1 ⊂ S∞,2 and the latter set is a semigroup, so that for
each k the matrix product in (16) is an element of S∞,2. This implies that
S∞,2 is unbounded, a contradiction to Proposition 3.2 (i).

Thus it remains to show that (15) holds if Lemma 5.2 is applicable. First
note, that because of PA ∈ S∞,1 we have w1(x) ≥ ‖PAx‖ = ‖x‖ for all
x ∈ Im PA.

Also due to (13) it holds that whenever we have a set of the form

D := {PAUBx | B ∈M2} ,

then

max{‖PAUBx‖ | B ∈M2} > max{‖PAUBx‖ | B ∈M1} ,

unless D is a singleton set. The reason for this lies in assumption (13), the
linearity of the map B 7→ PAUBx and the strict convexity of our norm.

Fix 0 6= x ∈ Im PA and let S ∈ S∞,1 be such that

‖PASx‖ = w1(x) .

By Proposition 3.2 (iv) and Lemma 5.2 we can factorize S = UAV with
U, V ∈ S∞,1 such that the set

{PAUBV x | B ∈M2} (17)
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consists of more than one element. Then it follows

w2(x) ≥ max{‖PAUBV x‖ | B ∈M2}

> max{‖PAUBV x‖ | B ∈M1} = w1(x) .

This completes the proof. �

Remark 5.7 It is worth pointing out, that the proof of the above result
would be much simplified if we knew, that there exists a strictly convex
Barabanov norm v1 for M1. In this case (assuming ρ(M1) = 1) we would
conclude immediately from (13) and strict convexity of v1 that for each x 6= 0
there is some A ∈ M2 such that v1(Ax) > v1(x), which implies ρ(M1) <
ρ(M2). To show that such an approach is not possible, let us demonstrate
that for some irreducible sets of matrices no Barabanov norm is strictly
convex.

In fact, we return to the set M introduced in Example 3.3. As we have
already calculated S∞, we see immediately, that for any norm w the corre-
sponding Barabanov norm is given by

v

([
x1

x2

])
= max

{
w

([
x1

0

])
, w

([
0
x2

])}
.

This norm is not strictly convex. �

Before we note a consequence for strictly increasing function with values
in K(Kn×n) we need the following remark. If a bounded set M ⊂ Kn×n is
reducible, then after a suitable change of coordinates all matrices A ∈ M
are of the form

A =



A11 A12 . . . . . . A1d

0 A22 A23 . . . A2d

0 0 A33
...

...
. . . . . .

...

0 . . . 0 Add


, (18)

where each of the sets Mii := {Aii; A ∈ M}, i = 1 . . . d is irreducible. By
Lemma 2 (c) in [3] it holds that

ρ(M) = max
i=1,...,d

ρ(Mii) . (19)

Corollary 5.8 Let f : R+ → K(Kn×n) be a function such that f(θ1) ⊂ f(θ2)
satisfy (13) for all θ1 < θ2 ∈ R+. Then
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(i) there exists a θ0 ∈ R+ such that ρ ◦ f is constant on [0, θ0) and
strictly increasing on [θ0,∞),

(ii) if for some θ > 0 the set f(θ) ∈ I(Kn×n) is irreducible and satisfies
additionally Assumption 5.4 if K = R, n ≥ 3, then θ0 ≤ θ,

(iii) if f is continuous then ρ ◦ f is continuous,

(iv) if f is locally Lipschitz continuous then ρ ◦ f is locally Lipschitz
continuous on [0,∞) \ F , where F contains at most n− 1 points.

Proof: (i) The interval (0,∞) can be partitioned into at most n intervals
on which the invariant subspaces of f(θ) are constant. That is, there are
numbers 0 = a0 < a1 < ak−1 < ak = ∞, k ≤ n such that on (aj, aj+1), j =
0, . . . , k − 1 all matrices A ∈ ∪θ∈(aj ,aj+1)f(θ) are of a fixed block-diagonal
structure of the form (18), where for each θ ∈ (aj, aj+1) and each i = 1, . . . , d
the set Mi(θ) := {Aii|A ∈ f(θ)} is irreducible. The assumptions do not
guarantee that the family Ui := {Mi(θ) | θ ∈ (aj, aj+1)} is strictly increasing.
Nevertheless, we know that

convMi(θ1) ⊂ int affMi(θ2)convMi(θ2) ,

for θ1 < θ2 ∈ (aj, aj+1). This implies that the only possibility for Ui not to
be increasing at θ0 ∈ (aj, aj+1) is that Ui is a singleton set. Furthermore, if
ρ(Mi(θ1)) < ρ(Mi(θ2)) for some θ1, θ2, then for B ∈Mi(θ1) we have r(B) <
ρ(Mi(θ)) for all θ ≥ θ2, so that all Mi(θ), θ ≥ θ2 satisfy Assumption 5.4,
and so ρ(Mi(θ)) is strictly increasing on (θ2, aj+1).

Hence, for the map ρi : θ 7→ ρ(Mi(θ)), θ ∈ (aj, aj+1) there are three
possibilities

(i) ρi is constant on (aj, aj+1),

(ii) ρi is strictly increasing on (aj, aj+1),

(iii) there is a constant θ0 ∈ (aj, aj+1) such that ρi is constant on (aj, θ0)
and strictly increasing on (θ0, aj+1).

Due to (19) the same is true for ρ ◦ f on (aj, aj+1). Now it follows that if
there are θ1 < θ2 ∈ R+ with ρ◦f(θ1) < ρ◦f(θ2) then ρ◦f is strictly increasing
on [θ2,∞), because in θ2 the maximum of the joint spectral radii is attained
in one of the functions ρi. In this i-th block ρi is thus strictly increasing on
(θ2, aj+1) and merging of blocks does not change the fact that Assumption 5.4
is fulfilled. As the assumptions guarantee that ρ ◦ f is increasing the only
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possibility for this function to be constant is on an interval of the form [0, θ0).
This shows the first assertion.

(ii) is an immediate consequence of Proposition 5.5, while (iii) follows
from Lemma 3.5.

(iv) If f is Lipschitz continuous then by Corollary 4.2 ρi is locally Lipschitz
continuous on the intervals (aj, aj+1) and thus also the maximum of these
functions is locally Lipschitz continuous. Thus F contains at most the points
a1, . . . , ak−1, and of these there are at most n− 1.

�

6 Extremal norms

We now investigate conditions for the existence of extremal norms. For this
we need a notion of “defectiveness” of the generalized spectral radius in
the case that M is reducible, which in some sense generalizes the notion
of a defective eigenvalue with a modulus equal to the spectral radius. We
intend to generalize the well known result that for a matrix A there exists
an operator norm v with

v(A) = r(A) ,

if and only if all eigenvalues λ ∈ σ(A) with |λ| = r(A) are nondefective.
Unfortunately we are not able to recover the “only if” part of this statement.

For a set M of matrices of the form (18) let J := {1 ≤ i ≤ d | ρ(Mii) =
ρ(M)} denote the set of indices for which the generalized spectral radius is
attained.

Definition 6.1 A compact set of matrices M ⊂ Kn×n is said to have non-
defective generalized spectral radius if there is a basis of Kn such that every
matrix A ∈ M is of the from (18) and for all i ∈ J , i < j ≤ max J and all
A ∈M it holds that

Aij = 0 .

Note that instead of requiring “zero rows” to the right of Aii, i ∈ J we
could also have required “zero columns”, that is for i ∈ J , i < j ≤ max J ,
A ∈ M we have Aji = 0. These two notions are equivalent, as one form is
always similar to the other.

In particular, the above definition is satisfied if M is irreducible. Our
proof is based on the following lemma, which follows from [15, Proposition
3.3].

22



Lemma 6.2 Let Kn = Km
⊕

Kp and let M ∈ K(Kn×n) satisfy that every
A ∈M is of the form

A =

[
A11 A12

0 A22

]
,

with A11 ∈ Km×m, A12 ∈ Km×p, A22 ∈ Kp×p. Denote

M1 := {A11 | A ∈M} ⊂ Km×m , M2 := {A22 | A ∈M} ⊂ Kp×p .

(i) If ρ(M1) < ρ(M2) and there is an extremal norm v2 on Kp corre-
sponding to M2 then there exists an extremal norm w on Kn corre-
sponding to M.

(ii) If ρ(M1) > ρ(M2) and there is an extremal norm v1 on Km cor-
responding to M1 then there exists an extremal norm w on Kn corre-
sponding to M.

Now we are in a position to prove our main result on extremal norms.

Theorem 6.3 LetM⊂ Kn×n be compact with nondefective generalized spec-
tral radius. Then there exists an extremal norm for M on Kn.

Proof: Assume that we have chosen a basis such that all matrices A ∈M
are in the form (18), with Aii ∈ Kni×ni , i = 1, . . . , d. If d = 1 the result is
immediate from Theorem 1.1 so assume d > 1. Let J = {i1 < . . . < ik} ⊂
{1, . . . , d} be the set of indices satisfying ρ(Mii) = ρ(M). We will work
inductively backwards on the set J . In the first step consider the matrices

Mk :=





Aik−1+1,ik−1+1 ∗ . . . . . . ∗
0

. . . ∗ . . . ∗
0 0

. . . ∗ ...
...

. . . Aik−1,ik−1 ∗

0 . . . 0 Aik,ik



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
A ∈M


.

Note that ρ(Mk) = ρ(M) and all blocks except for the one in the right lower
corner have a generalized spectral radius strictly smaller than ρ(M). Thus
Lemma 6.2 (i) applies and there is an extremal norm wk on

ik⊕
i=ik−1+1

Kni
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corresponding to Mk. Now on
⊕ik

i=ik−1
Kni all matrices are of the form[

Aik−1,ik−1
0

0 Ak

]
, Ak ∈Mk .

Thus again applying Theorem 1.1 it is clear that there is an extremal norm
on

⊕ik
i=ik−1

Kni .
Now we may apply the same argument for the blocks corresponding to⊕ik

i=ik−2+1 Kni to successively obtain extremal norms by repeatedly applying

Lemma 6.2 (i). As a result we obtain an extremal norm on
⊕ik

i=i1
Kni . Now

the result follows after a further application of Lemma 6.2 (i) and (ii) to the
remaining blocks with indices smaller than i1, respectively larger than ik. �

Remark 6.4 Note that we cannot assume to be able to order the blocks in
an order such that the generalized spectral radii are increasing or decreasing
in (18) as this would imply properties of the invariant subspaces of M. For
instance for the set

M :=

{[
1
2

a
0 1

] ∣∣∣∣ a ∈ [0, 1]

}
the only nontrivial invariant subspace is span [1, 0]′ which is associated to the
eigenvalue 1/2. Hence no similarity transformation will transform M into a
set of matrices of the form [

1 ∗
0 1

2

]
.

This somewhat explains the awkward proof of Theorem 6.3. �

A further interesting feature of extremal norms is that they allow to make
the inequality in (3) more precise.

Lemma 6.5 Let K = R, C. Assume that M⊂ Kn×n is bounded.

(i) If there exists an extremal norm v for M, then there exists a constant
M > 0 such that for all t ≥ 1

| log ρ̂t(M)− log ρ(M)| < Mt−1 .

(ii) Otherwise there exists an M > 0 such that for all t ≥ 1

| log ρ̂t(M)− log ρ(M)| < M
1 + log t

t
.
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Proof: Let v be the extremal norm for M. As all norms on finite dimen-
sional vector spaces are equivalent it follows with (3) that

0 ≤ 1

t
log sup

St∈St

‖St‖ − log ρ(M) ≤ 1

t
log sup

St∈St

cv(St)− ρ(M) =
1

t
log c . (20)

This proves the assertion.
(ii) This follows from Lemma 2.3 in [19]. �

Remark 6.6 Note that we cannot expect a similar statement for the lower
bound ρt. If we return to our Example 3.3 then we see that in this case
ρ2k(M) = ρ(M) = 1 and ρ2k+1 = 0 for all k ∈ N. �

We also note the following consequence of local uniform convergence of
ρ̂(M) to ρ(M).

Corollary 6.7 Let P ⊂ I(Kn×n) be compact then there is a constant M > 0
such that for all M∈ P and all t ≥ 1 it holds that

| log ρ̂t(M)− log ρ(M)| < Mt−1 ,

i.e. ρ̂t converges locally uniformly to ρ on I(Kn×n).

Proof: Just note that the constant c in the proof of Lemma 6.5 (i) can
be chosen independently of M∈ P by Theorem 4.1. �

7 Conclusion

We have studied extremal norms for linear discrete and differential inclusions.
For the special case of irreducible inclusions we give a constructive procedure
for a special extremal norm. This approach yields Lipschitz continuity of the
generalized spectral radius and a monotonicity property as a byproduct. A
more general sufficient criterion guaranteeing the existence of an extremal
norm has also been presented. Furthermore, we have pointed out that the
convergence of ρ̂t to the generalized spectral radius is linear if an extremal
norm exists, in particular in the irreducible case.
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