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Abstract. We analyze controllability properties of the inverse iteration and the
QR-algorithm equipped with a shifting parameter as a control input. In the case of
the inverse iteration with real shifts the theory of universally regular controls may
be used to obtain necessary and sufficient conditions for complete controllability in
terms of the solvability of a matrix equation. Partial results on conditions for the
solvability of this matrix equation are given. We discuss an interpretation of the
system in terms of control systems on rational functions. Finally, first results on
the extension to inverse Rayleigh iteration on Grassmann manifolds using complex
shifts is discussed.

For many numerical matrix eigenvalue methods such as the QR algorithm
or inverse iterations shift strategies have been introduced in order to design
algorithms that have faster (local) convergence. The shifted inverse iteration
is studied in [3,4,15] and in [17,18], where the latter references concentrate on
complex shifts. For an algorithm using multidimensional shifts for the QR-
algorithm see the paper of Absil, Mahony, Sepulchre and van Dooren in this
book.

In this paper we interpret the shifts as control inputs to the algorithm.
With this point of view standard shift strategies as the well known Rayleigh
iteration can be interpreted as feedbacks for the control system. It is known
(for instance in the case of the inverse iteration or its multidimensional ana-
logue, the QR-algorithm) that the behavior of the Rayleigh shifted algorithm
can be very complicated, in particular if it is applied to non-Hermitian ma-
trices A [4]. It is therefore of interest to obtain a better understanding of the
underlying control system, which up to now has been hardly studied.

Here we focus on controllability properties of the corresponding systems
on projective space for the case of inverse iteration, respectively the Grass-
mannian manifold for the QR-algorithm. As it turns out the results depend
heavily on the question whether one uses real or complex shifts. The control-
lability of the inverse iteration with complex shifts has been studied in [13],
while the real case is treated in [14].

* This paper was written while Fabian Wirth was a guest at the Centre Automa-
tique et Systémes, Ecole des Mines de Paris, Fontainebleau, France. The hospi-
tality of all the members of the centre is gratefully acknowledged.
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In Section 1 we introduce the shifted inverse power iteration with real
shifts and the associated system on projective space and discuss its forward
accessibility properties. In particular, there is an easy characterization of the
set of universally regular control sequences, that is those sequences with the
property, that they steer every point into the interior of its forward orbit. This
will be used in Section 2 to give a characterization of complete controllability
of the system on projective space in terms of solvability of a matrix equation.
In Section 3 we investigate the obtained characterization and interpret it in
terms of the characteristic polynomial of A. Some concrete cases in which it
is possible to decide based on spectral information whether a matrix leads
to complete controllable shifted inverse iteration are presented in Section 4.
An interpretation of these results in terms of control systems on rational
functions is given in Section 5. In Section 6 we turn to the analysis of the
shifted QR algorithm. We show that the corresponding control system on the
Grassmannian is never controllable except for few cases. The reachable sets
are characterized in terms of Grassmann simplices. We conclude in Section 7.

1 The shifted inverse iteration on projective space

We begin by reviewing recent results on the shifted inverse iteration which
will motivate the ideas employed in the case of the shifted QR algorithm. Let
A denote a real n X n-matrix with spectrum o(A) C C. The shifted inverse
iteration in its controlled form is given by

(A — )"z (t)
I(A —w )~ a(t)]| 7

z(t+1) = teN, (1)
where u; ¢ 0(A). This describes a nonlinear control system on the (n — 1)-
sphere. The trajectory corresponding to a normalized initial condition ¢ and
a control sequence u = (ug,u1,-..) is denoted by @(¢; 2o, u). Via the choice
uy = x*(t)Az(t) we obtain from (1) the Rayleigh quotient iteration studied
in [3], [4].

If the initial condition zo for system (1) lies in an invariant subspace of
A then the same holds true for the entire trajectory ¢(t;xo,u), regardless
of the control sequence u. In order to understand the controllability proper-
ties from z it would then suffice to study the system in the corresponding
invariant subspace. Therefore we may restrict our attention to those points
not lying in a nontrivial invariant subspace of A, i.e. those x € R™ such that
{z,Az,... ,A" 1z} is a basis of R". Vectors with this property are called
cyclic and a matrix A is called cyclic if it has a cyclic vector, which we will
always assume in the following. To keep notation short let us introduce the
union of A-invariant subspaces

V(A) := U V.
AV CV,0<dimV<n
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Using the fact that the interesting dynamics of (1) are on the unit sphere
and identifying opposite points (which give no further information) we then
define our state space of interest to be

M :=RP" 1\ V(4), (2)

where RP" ! denotes the real projective space of dimension n—1. The natural
projection from R™ \ {0} to RP" ' will be denoted by P. Thus M consists of
the 1-dimensional linear subspaces of R™, defined by the cyclic vectors of A.
Since a cyclic matrix has only a finite number of invariant subspaces, V(A)
is a closed algebraic subset of R™. Moreover, M is an open and dense subset
of RP™!. The system on M is now given by

Et+1)=(A-ul)"'¢t), teN ®3)
£0) =6 €M,

where uy € U := R\ 0(A) (the set of admissible control values). We denote
the space of finite and infinite admissible control sequences by U? and UV,
respectively. The solution of (3) corresponding to the initial value & and a
control sequence u € UN is denoted by ¢(t;&,u). The forward orbit of a
point £ € M is then given by

Ot (&) :={ne M |3teNue U such that n = p(t;&,u)} .

Similarly, the set of points reachable exactly in time # is denoted by O} (€).
System (3) is called forward accessible [2], if the forward orbit O (€) of every
point £ € M has nonempty interior and uniformly forward accessible (in
time t) if there is a t € N such that int O (§) # 0 for all ¢ € M. Note
that int O (€) # 0 holds iff there is a ¢ € N such that int Of (£) # 0. Sard’s
theorem implies then the existence of a control u € U? such that

1 2Pt & u)

=n-—1.
ou "

A pair (§,u) € M x Ut is called regular if this rank condition holds. The
control sequence u € U! is called universally regular if (£,u) is a regular
pair for every £ € M. By [16, Corollaries 3.2 & 3.3] forward accessibility is
equivalent to the fact that the set of universally regular control sequences
Uy., is open and dense in U* for all ¢ large enough. (For a precise statement
we refer to [16].)

The following result shows forward accessibility for (3) and gives an easy

characterization of universally regular controls.

Lemma 1. System (3) is uniformly forward accessible in timen—1. A con-
trol sequence u € U' is universally regular if and only if there are n — 1
pairwise different values in the sequence ug, ... ,uz_1.-
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2 Controllability of the projected system

By the results of the previous section we know that every point in M has
a forward orbit with interior points and it is reasonable to wonder about
controllability properties of system (3). As usual, we will call a point £ € M
controllable to n € M if n € OF (). System (3) is said to be completely
controllable on a subset N C M if for all £ € N we have N C O (¢).

In order to analyze the controllability properties of (3) we introduce the
following definition of what can be thought of as regions of approximate
controllability in M C RP™™'. A control set of system (3) is a set D C M
satisfying

(i) D CclOt(¢) for all £ € D.
(i) For every £ € D there exists a u € U such that ¢(1;z,u) € D.
(iii) D is a maximal set (with respect to inclusion) satisfying (i).

An important subset of a control set D is its core defined by
core(D) :=={¢ €D | int O ()N D # 0 and int @+(§) ND #(}.

Here O (£) denotes the points n € RP™ ! such that there exist ¢ € N,
ug € int Ut such that o(t;n,u9) = € and (n,ug) is a regular pair. By this
assumption it is evident that on the core of a control set the system is com-
pletely controllable.

We are now in a position to state a result characterizing controllability of
(3), see [14].

Theorem 1. Let A € R**™ be cyclic. Consider the system (3) on M. The
following statements are equivalent:

(i) There erists a £ € M such that OF (£) is dense in M.

(1i) There exists a control set D C M with int D # .
(i5) M is a control set of system (3).

() System (3) is completely controllable on M.

(v) There exists a universally regular control sequence u € U such that

t—1
[[A-uD™" ereT. (4)

s=0

The unusual fact about the system we are studying is thus that by the
universally regular representation of one element of the system’s semigroup
we can immediately conclude that the system is completely controllable. Fur-
thermore, already the fact that there is a control set of the system implies
complete controllability on the whole state space M. On the other hand it is
worth pointing out, that if the conditions of the above theorem are not met,
then no forward orbit of (3) is dense in M.
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For brevity we will call a cyclic matrix A II-controllable (for inverse itera-
tion controllable), if A satisfies any of the equivalent conditions of Theorem 1.

We have another simple characterization of II-controllability in terms of
the existence of a universally regular periodic orbit through a cyclic vector v
of A. This may come as a surprise.

Corollary 1. Let A € R*"*™ be cyclic with cyclic vector v and characteristic
polynomial q4. Consider the system (3) on M. The following statements are
equivalent:

(i) the matriz A is II-controllable.
(11) There existt € N, u € UL, such that Pv is a periodic point for system

reg
(3) under the control sequence u.

3 Polynomial characterizations of II-controllability

As has already become evident in the last result of the previous section the
question of II-controllability is closely linked to properties of real polynomials.
We will now further investigate this relationship. Here we follow the ideas for
the complex case in [13] and discuss comparable results for the real case, see
[14].

In the following theorem we use the notation p A ¢ = 1 to denote the fact
that the two polynomials p, ¢ € R[z] are coprime.

Theorem 2. Let A € R™*" be cyclic with characteristic polynomial q. Con-
sider the system (3) on M. The following statements are equivalent:

(i) the matriz A is II-controllable.
(ii) For every B € I'y := {p(A) | p € R[z],p A ¢ = 1} there exist t € N,
u €U, a € R such that

i1
B:aH(A—usI),
s=0

t—1
ie. Ta =T% :={p(A) | p(z) = a [[ (z —us),us € RpAg=1,a e R*} .
=0

Pl
(iii) For every p € R[z],p Aq =1 there existt € N, u € U!

regr @& € R* such
that

p@)=a[[(z-u) mod ().

(i) There exists a monic polynomial f with only real roots and at least n — 1
pairwise different roots, a € R* and r(z) € R[z] such that

f(2) = a+r(2)q(2). ()
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Remark 1. From (5) it is easy to deduce the following statement: If for a cyclic
matrix A with characteristic polynomial ¢ there exists a monic polynomial f
with only real roots that are all pairwise distinct such that (5) is satisfied, then
there is a neighborhood of A consisting of II-controllable matrices. The reason
for this is that, keeping a and 7(z) fixed, small changes in the coefficients of
g will only lead to small changes in the coefficients of f, and the assumption
guarantees that all polynomials in a neighborhood of f have simple real roots.

As an immediate consequence of Theorem 1 we obtain a complete char-
acterization of the reachable sets of the inverse power iteration given by

Et+1) =(A-uD)7'EE#), teN,  £0)=&eRP", (6)

for II-controllable matrices A € R"*™. This extends a result in [13] for
real matrices.

Corollary 2. Let A be II-controllable with characteristic polynomial qa, then
(i) for each & = Px € RP™ ! we have

of¢e=p ( v U vV,
zeV,AVCV z¢V,AVCV

Aot =P () V =Pspan{z, Az, A’z,..., A" "z},
zeV,AVCV

() There is a one-to-one correspondence between

a) The forward orbits of system (6).

b) The closures of the forward orbits of system (6).
¢) The A-invariant subspaces of R™.

d) The factors of qa(z) over the polynomial ring R[z].

4 Conditions for II controllability

The result of the previous section raises the question which cyclic matrices A
admit a representation of the form (4) or equivalently when (5) is possible.
With respect to this question we have the following preliminary results.

Proposition 1. Let A € R"*"™ be cyclic with characteristic polynomial g4 .

(i) A is not II-controllable, if it satisfies one of the following conditions
(a) A has a nonreal eigenvalue of multiplicity p > 1.
(b) A has a real eigenvalue of multiplicity p > 2.
(i) A is II-controllable, if 0(A) C R and no eigenvalue has multiplicity p > 2.

In general, a complete characterization of the set of cyclic matrices that
is not II-controllable is not known. Several examples, showing obstructions
to this property in terms of the location of the eigenvalues are discussed in
detail in [14]. These are obtained via the following result.
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Proposition 2. Let A € R"*™ be cyclic.

(i) If for two eigenvalues A1, A2 € o(A) we have Re A\; = Re Az, |A1] # |Az|
then A is not II-controllable.

(i3) If the spectrum o(A) is symmetric with respect to rotation by a root of
unity, i.e. 0(A) = exp(2mi/m)o(A4) (taking into account multiplicities)
and two eigenvalues of A™ satisfy the condition of (i) then A is not II-
controllable.

If, furthermore, m is even, then it is sufficient that for two eigenvalues
of A™ we have

|/\1 —u| < |/\2 —’l.b|,
for all w > 0 in order that A is not II-controllable.

Using this corollary it is easy to construct examples of matrices that are
not II-controllable. Such are e.g. the companion matrices of the polynomial
p(z) = 2(2? + 1) and the 7-th degree polynomial whose roots are 0, the
three cubic roots of ¢ and their respective complex conjugates. Using the last
statement, one sees that the matrix corresponding to p(z) = (22 —1)(22 +1)
is not II-controllable. Many more examples like this can be constructed, some
more examples are discussed in [14].

For the case n < 3 the following complete result can be given.

Proposition 3. Let A € R"*™ be cyclic.

(i) If n = 1,2 then A is II-controllable.

(i) If n = 3 then A is II-controllable if and only if the eigenvalues A1, A2, Az
of A do not have a common real part, i.e. do not satisfy ReA\; = ReXs =
Re )\3 .

5 Control system on rational functions

There is an interesting reformulation of the inverse Rayleigh iteration as an
equivalent control system on rational function spaces. This connects up with
the work by Brockett and Krishnaprasad [9] on scaling actions on rational
functions, as well as with divided difference schemes in interpolation theory.

Let (c, A) € RM*™ x R"*™ be an observable pair and let q(z) := det(21— A)
denote the characteristic polynomial. Let

Rat(g) := {2% € R(2)

denote the real vectorspace of all strictly proper real rational functions with
fixed denomination polynomial ¢(z). The map

degp < deg q}

¢ : R* — Rat(q)
x> c(zl — Az
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defines a bijective isomorphism between R” and Rat(g). We use it to trans-
port the inverse Rayleigh iteration onto Rat(g). Let P(Rat(q)) denote the
associated projective space; i.e. two rational functions g1(z), g2(2) € Rat(q)
define the same element Pg; = Pg, in P(Rat(q)) if and only if g; and g, differ
by a nonzero constant factor. Then ¢ induces a homeomorphism

¢ : RP"! — P(Rat(q))
#(Px) := Pe(2I — A) 2.
Let (Pz;):en denote the sequence in RP™~! generated by the inverse power
iteration (3). Then, for
ge(2) == c(2I — A) "ty
we obtain the divided difference scheme

Pgiy1(2) = Pe(2I — A) (A — ud) oy
_ P(!)t(z) - gt(ut)).

Conversely, if go(2) = c¢(2I — A)~'z¢ € Rat(q) and (Pg;)sen is recursively
defined by

ge(t) — ge(uy)

z)=—"———",t€N
gi+1(2) 7 —uy ) 05

then g; € Rat(q) for all t € N and
9:(2) = c(z] — A)7'ay

for a sequence (Pxz;).en, generated by the inverse Rayleigh iteration. Thus the
inverse Rayleigh iteration (3) on RP"~! is equivalent to the divided difference
control system

gt(z) _gt(ut)) (7)

P =P
() = B (212

on P(Rat(q))-
Equivalently, we can reformulate this algorithm as a control system on
polynomials of degree < n. To this end let

R, [2] :== {p € R[2]| degp < n}

denote the vectorspace of polynomials of degree < n and let P(R,,[2]) denote
the associated projective space. Note that for any polynomial p € R, [2] and
uelR
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is again a polynomial of degree < n. Thus

P(pt+1 (z)) =P (pt(Z)Q(Ut) - pt(ut)q(z)) (8)

Z — Ut

defines a control system on P(R,[2]).
Since

pe(z) _ pe(ue)
P (pt+1 (z)> _p (9@ " et
q 2= U

we see (for g(us) # 0) that the control systems (7) and (8) are equivalent.

6 Inverse iteration on flag manifolds

A well known extension of the inverse Rayleigh iteration (3) is the QR-
algorithm. To include such algorithms in our approach we have to extend
the analysis to inverse iterations on partial flag manifolds. A full analysis is
beyond the scope of this paper and will be presented elsewhere.

For simplicity we focus on the complex case. Recall, that a partial flag
in C" is an increasing sequence {0} # V; ; ; Vi, € C* of C-linear
subspaces of C". The type of the flag (V1,...,V}) is specified by the k—tuple
a=(ay,...,a;) of dimensions

aizdichi, izl,...,k.
Thus
1<a1 <...<ar <n.

For any such sequence of integers a = (a1,... ,ar),1 < a1 < ... <ap <n,
let Flag(a,C") denote the set of all flags (Vi,...,V%) of type a. The set
Flag(a,C") is called a (partial) flag manifold. It is indeed a compact complex
manifold. For k = 1, a := a1, we obtain the Grassmann manifold G,(C") as
a special case while for kK = n and a = (1,2,... ,n) we obtain the (full) flag
manifold

Flag(C") := Flag((1,... ,n),C").

For any linear map A : C* — C" and any sequence (u;), us ¢ o(A), of
complex numbers we obtain the inverse iteration on flag manifolds

(A —wI)™! : Flag(a,C") — Flag(a,C").
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This defines a nonlinear control system on the flag manifold. The reach-
able sets are again easily seen to be equal to

t—1
Ra(V) = {][(4A = w])7'V|t € Nu; & o(A)}
=0

=I5y , V € Flag(a,C")
where the semigroup

t—1

I = {p(4) |p(z) = a [[(z — wi), @ € C*, q(w;) # 0}

=0

is defined as in Section 3. Since dim I'§ < n and since I'{ acts with a
stabilizer of dimension > 1 on Flag(a,C) we obtain

dimR4(V) <n-1, VYV € Flag(a,C").

Now dim Flag(a,C") > n — 1, except for the cases k=1, k=n—1orn =2.
Thus we conclude

Proposition 4. Except for k=1, k =n —1 or n = 2, the reachable sets of
the inverse iteration on the flag manifold Flag(a,C™) have empty interior.

Moreover, since the () R—algorithm with shifts is equivalent to the inverse
iteration

(A —uI)™! : Flag(C") — Flag(C™)
we obtain

Corollary 3. The QQR—algorithm with origin shifts is not locally accessible
nor controllable, if n > 3.

We now describe in more detail the structure of the reachable sets. For
simplicity we assume that A € C"*" is a diagonal matrix with has distinct
eigenvalues and we focus on the inverse iteration on Grassmann manifolds

(A - utI)_l : Gk((C”) — Gk((C")
For any full rank matrices X € C*** let
[X] := ImX € G4(C")

denote the k—dimensional subspace spanned by the columns of X.
For any increasing sequence « of integers 1 < a1 < ... < a, <nlet X,
denote the r x k submatrix formed by the rows a3,... ,a, of X.
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Definition 1. (a) Two complex linear subspaces [X],[Y] in C" of dimension
k are called rank equivalent if

rkX, = rkY,

forall<oy <...<a,<nandr=1,...,n.
(b) Rank equivalence defines an equivalence relation on G (C"). The equiv-
alence classes are called Grassmann simplices of G, (C").

For example, the following two matrices span rank equivalent subspaces.

10 10

11

X =span 01 | Y = span 01
02 01

The stabilization of Grassmann manifolds into Grassmann simplices has
been introduced by Gelfand et.al. [7], [8]. For us they are of interest because
of the following fact. (Remember that A is diagonal!)

Lemma 2. Every reachable set R o ([X]) in G(C") is contained in a Grass-
mann simplex.

To obtain a more precise description of reachable sets and Grassmann sim-
plices we consider a projection of the Grassmannian on a polytope.

For any subset a = {a1,...,a,} C:={1,... ,n}h 1<a; <...<a, <
n, let

€a = €q, t -+ €q,

where e;, 1 < i < n, denotes the i—th standard basis vector of C*. For any
full rank matrix X € C*** define

Z | det X, |%eq
1<ai<...<ap<n
w(X) === = :
> | det(XgX7)|
1<B1<...<Br<n
1<r<n

Then pu(X) = u(XS™1) for any invertible matrix S € C¥** and thus u(X)
defines a smooth map

p:Gr(C") = R, p([X]) := p(X)

on the Grassmann manifold. We refer to it as the moment map on G(C"). It
is easily seen that the image of x4 in R™ is a convex polytope. More precisely
we have

w(Gr(C*)) = Akyn
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where Ay, ,, denotes the hypersimplex

Ap k :={(t1,... ,tn)ERiul—}-...—f—tn:k}.

The following result by Gelfand et.al. [7] describes the geometry of Grassmann
simplices in terms of the moment map.

Theorem 3. (a) Every reachable set Ra([X]), [X] € Gr(C"), is contained
in a Grassmann simplex. More precisely, two subspaces [X],[Y] € G1(C")
are rank equivalent if and only if

#(Ra([X]) = p(Ra([Y]))-

(b) (Ra([X])) is a compact polytope in R™ with vertices {e, | det X, # 0}.
It is a closed subface of Ay p.

(c) There is a bijective correspondence between
(i) p—dimensional reachable sets in R 4([X]).

(i) Open p—dimensional faces of u(Ra([X])).

7 Conclusions

Controllability properties of inverse iteration schemes provide fundamental
limitation for any numerical algorithm defined by them in terms of suitable
feedback strategies. In the complex case, reachable sets for the inverse itera-
tion on projective space CP”~! correspond bijectively to invariant subspaces
of A. Moreover, complete controllability holds if and only if A is cyclic, see
[13]. The real case is considerably harder and only partial results for complete
controllability in terms of necessary or sufficient conditions are given.

Differences also occur for inverse iteration on Grassmannians or flag man-
ifolds. The algorithms are never controllable, in particular the Q) R—algorithm
is seen to be not controllable. Reachable sets are contained in Grassmann
simplices and their adherence relation is described by the combinations of
faces of a hypersimplex.
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