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Growth conditions for the global stability of highspeed
communication networks

C. King, R. Shorten, F. Wirth, M. Akar

Abstract

This note considers the design of TCP-like congestion control protocols for deployment in highspeed communi-
cation networks. A basic problem in this area is to design congestion control strategies that probe more aggressively
than standard TCP, but which coexist with each other and result in globally stable and equitable network behaviour.
In this note we take a first step towards this goal, by formulating the TCP dynamics as a discrete linear system with
nonlinear feedback gain. Under the assumption of player synchronisation, conditions for global network stability
are derived in the form of growth bounds on the local nonlinear probing functions. Examples are given to illustrate
the main features of our results.

I. I NTRODUCTION

Traffic generated by theTransmission Control Protocol(TCP) accounts for 85% to 95% of all traffic
in today’s internet [1]. TCP, in congestion avoidance mode, is based primarily on the Chiu and Jain’s
[2] Additive-Increase Multiplicative-Decrease(AIMD) paradigm for decentralized allocation of a shared
resource (e.g., bandwidth) among competing users. With some minor modifications, the AIMD algorithm
has served the networking community well over the past two decades and it continues to provide the basic
building block upon which today’s internet communication is built.

Recently, in the context of designing high speed communication networks, several authors have sug-
gested basic modifications to the AIMD algorithm; for example, see [3], [4], [5], [6], [7], [8]. One idea
underlying these modifications is to replace the constant growth rate of window size in standard TCP
with an increasing rate. The rationale for this change is that such protocols probe more aggressively
for available bandwidth as network capacity increases [8],[3]. These algorithms, which we refer to as
nonlinear AIMD (NAIMD), result in networks with different dynamic properties than those employing
the basic (linear) AIMD; see [9], [10], [11], [12]. A basic question in the design of NAIMD networks is
how to choose the probing action so that the resulting network exhibits desirable properties. Remarkably,
despite increasing deployment of these algorithms (e.g., ahigh-speed TCP algorithm is implemented as
part of the Linux operating system), little work has been carried out in this area and basic questions
concerning the existence and nature of network equilibria have yet to be addressed. In this paper we
extend results obtained in [13] to more general nonlinear settings.

Our objective in this note is to study basic convergence and stability properties of a class of NAIMD
congestion control protocols. In this preliminary study, we restrict attention to deterministic networks in
which all sources (players) are informed of network congestion simultaneously, and where all sources
employ NAIMD protocols whose growth rates depend only on their most recent congestion window size.
The study of synchronized networks is in general restrictive, however it is important for a number of
reasons. Firstly, it has been observed by many researchers that source synchronisation is a feature of
high-speed networks, and in the context of such networks, the assumption of synchronisation is not overly
conservative. Secondly, the study of synchronised networks represents an important first step toward the
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study of more realistic network types in which sources are informed of congestion asynchronously.

Our basic finding in this paper is that NAIMD protocols are stable and lead to a reasonably equitable
allocation of resources as long as the growth rate functionsof all users in the network increase more
slowly than linearly with window size. This linear growth rate is a sharp boundary between stable and
unstable behavior; if two or more users employ protocols whose growth rate functions increase more
rapidly than linearly, then there cannot be any stable equilibrium for the network.

The paper is organised as follows. In section II we introducethe basic model for NAIMD protocols.
The main growth assumption on the nonlinearities which is needed for stability is presented. The main
technical tool consists of a state space transformation which leads to transition maps, which are the product
of a diagonal (state dependent) matrix and a row stochastic matrix. This leads to the main Lemma 2.1
which provides a Lyapunov type argument for the tranformed system. Its proof is deferred to the appendix.
The main result is stated and proved in section III. It provides formulas for the fixed points of NAIMD
networks and gives conditions under which these are globally asymptotically stable. We present some
examples in section IV.

II. BACKGROUND

Throughout, we use notationR for the real numbers,Rn for the n-dimensional real Euclidean space
andR

n×n for the space ofn × n matrices with real entries.

(a) The AIMD algorithm : The AIMD algorithm of Chiu and Jain [2] is a decentralised resource
allocation algorithm. The algorithm consists of two operational modes. The first mode, a backoff mode,
is invoked whenever a source (player) is informed that the network is congested. Users respond to this
notification by down-scaling their utilization-rate in a multiplicative manner. This mode is called the
Multiplicative Decrease(MD) phase. After reducing their utilisation rates, users probe for available
capacity until congestion is reached again, at which point the mode of the next cycle is entered. The
second mode of operation is called theAdditive Increase(AI) phase.

(b) A model of NAIMD : The evolution of the network states over one cycle of operation may be
conveniently written as follows. Letw(k) = [w1(k), . . . , wn(k)]T denote the share of network capacity
allocated to each user at the time of thekth congestion eventt(k). The capacity constraint requires that
∑n

i=1 wi(k) = C, with C as the total capacity of the resource available to the entiresystem. After the
next cycle of multiplicative decrease and additive increase, the utilization-rate of playeri becomes

wi(k + 1) = βiwi(k) + ai(wi(k)) (t(k + 1) − t(k)), (1)

whereβi is a constant in the open interval(0, 1), andai(·) is the growth rate function of useri. It follows
that the time between congestion eventst(k + 1) − t(k) is a function ofw(k), that is t(k + 1) − t(k) =
T (w(k)) where

T (w(k)) =
C −

∑n

j=1 βjwj(k)
∑n

j=1 aj(wj(k))
=

∑n

j=1(1 − βj)wj(k)
∑n

j=1 aj(wj(k))
. (2)

Combining (1) and (2) we obtain the discrete time dynamical systems

wi(k + 1) = Fi(wi(k)) := βiwi(k) + ai(wi(k))

∑n

j=1(1 − βj)wj(k)
∑n

j=1 aj(wj(k))
, i = 1, . . . , n (3)

with initial condition w(0) =
[

w1(0) . . . wn(0)
]T

satisfying
∑n

i=1 wi(k) = C and wi(0) ≥ 0, i =
1, . . . , n. We note that regardless of initial condition we havewi(k) > 0 for all k ≥ 1, so that in what
follows we will always assume without loss of generality that wi(k) > 0 for all k ≥ 0.
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(c) Growth assumptions: The key assumptions concern the growth rate functionsai(·) : R+ → R+.
We assume that the functionsai, i = 1, . . . , n are continuous, nondecreasing and satisfyai(x) > 0 for all
x > 0. In addition we will assume that the functionsfi : (0,∞) → (0,∞) defined by

fi(x) :=
x

ai(x)
, i = 1, . . . , n (4)

are strictly increasing. E.g. ifai(x) = cxp, this implies thatp ∈ (0, 1). In the case whereai is differentiable,
the non-decreasing and growth properties can be expressed compactly as the inequalities

0 ≤
d

d log x
log ai(x) =

a′

i(x)

ai(x)
x < 1 , ∀x ≥ 0 . (5)

(d) Matrix formulation: We define a new set of network statesz = [z1, . . . , zn]T as follows:

zi := Φi(wi) := (1 − βi)
wi

ai(wi)
= (1 − βi)fi(wi) . (6)

By assumption on thefi the transformationsΦi are bijections of(0,∞) on their range and so the new
variables are well-defined. In terms of these variables the network dynamics (1) becomes

zi(k + 1) =
ai(wi(k))

ai(wi(k + 1))

(

βizi(k) + (1 − βi) T (w(k))
)

=
ai(wi(k))

ai(wi(k + 1))

(

βizi(k) + (1 − βi)
n

∑

j=1

zj(k)pj(w(k))
)

(7)

=
ai(Φ

−1
i zi(k))

ai(Fi(Φ
−1
i (zi(k)))

(

βizi(k) + (1 − βi)
n

∑

j=1

zj(k)pj(Φ
−1(z(k)))

)

(8)

wherepi(w) =
(

∑n

j=1 aj(wj)
)

−1

ai(wi). Gathering equation (7) for alli we get the vector equation

z(k + 1) = R(z(k))z(k) (9)

whereR(z) ∈ R
n×n is defined by

R(z)ij =
ai(wi)

ai(Fi(wi))

(

δijβi + (1 − βi) pj(w)
)

, (10)

with zi = Φi(wi) and whereδij denotes the standard Kronecker symbol. The matrixR(z) may be factorized
as

R(z) = D(z)R̃(z) ,

with a diagonal partD(z) = diag
(

a1(w1)
a1(F1(w1))

, . . . ,
an(wn)

an(Fn(wn))

)

and where the second part of this expression

with entriesR̃(z)ij =
(

δijβi + (1 − βi) pj(w(k))
)

defines a positive, row stochastic matrix. As is well-
known, positive, row stochastic matrices define contractions on the positive orthantRn

+ [14, Theorem 1.1].
This has been called the averaging effect of stochastic matrices. The following lemma shows thatR(z(k))
asymptotically shares this property in the limitk → ∞. We writezmax andzmin to denote the largest and
smallest components of the vectorz.

Lemma 2.1:Consider the dynamic system defined in Equation (3), and suppose that all growth functions
ai(x) satisfy condition (4). Then
(i) for all k ≥ 0

zmin(k) ≤ zmin(k + 1) ≤ zmax(k + 1) ≤ zmax(k) .
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(ii) there isr < 1 and a sequence{ηk}k∈N converging to zero, such that for allk ≥ 0

zmax(k + 1) − zmin(k + 1) ≤ r
(

zmax(k) − zmin(k)
)

+ ηk . (11)
Lemma 2.1 is proved in the appendix. We will use it in the proofof our main result to show that

the nonlinear system (9) behaves essentially as a linear system with row stochastic matrices, and that
the solutionz(k) is driven to the fixed pointz = [1, . . . , 1]T . This will imply in turn that the network
dynamics (3) converges to a stable solution.

III. M AIN RESULT

Our principal goal in this paper is to derive conditions for network stability in terms of the network
rate functionsai(·) and the network capacityC. Referring to (1), afixed pointof the network is defined
to be a vectorw∗ ∈ int R

n
+ satisfyingw∗

i = βiw
∗

i + ai(w
∗

i )T (w∗) and
∑

w∗

i = C, where

int R
n
+ = {w ∈ R

n : wi > 0 for i = 1, . . . , n} . (12)

Theorem 3.1:Consider the network of NAIMD sources defined in the preamble.Then the following
properties hold.
(i) If all ai(·) satisfy the growth condition (4), then for allC > 0 the network has a unique fixed point

which is globally asymptotically stable with respect toR
n
+.

(ii) Recall the definition (4), and suppose thatai is differentiable for alli. If at least two of thefi(·) are
strictly decreasing, then any fixed point is unstable.

Remark 3.1:Theorem 3.1 gives conditions for acceptable network behaviour. Provided that all of the
ai(·) satisfy the growth condition (4), the network has a unique globally asymptotically stable fixed point.
If at least two sources do not satisfy these bounds, and produce functionsfi that are strictly decreasing,
then the network is unstable. In the case where exactly one ofthe fi(x) is decreasing, and all others are
increasing there is a locally stable fixed point inΣ̃, assuming the capacityC is large enough. In this case
the network may or may not be stable.

Remark 3.2:Networks of standard TCP flows satisfy the conditions of Theorem 3.1. Further, our result
shows that any mix of standard TCP flows and flows satisfying thegrowth conditions will result in a
globally stable network.

Remark 3.3:Network flows that employ MIMD (multiplicative increase, multiplicative decrease) do not
satisfy the growth conditions. It has been shown that such networks either have multiple stable equilibria
or are unstable [12]. Scalable TCP is an example of one such protocol.

Proof of Part (i) of Theorem:Here we present the proof of (i) in two parts. In Part A. we prove the
existence of unique fixed points for (1), and in Part (B) we prove the global asymptotic stability of these
solutions.

Part A. Fixed point:From the fixed point equations

w∗

i = βiw
∗

i + T (w∗)ai(w
∗

i ) , i = 1, . . . , n (13)

we obtain the condition

fi(w
∗

i ) =
T (w∗)

1 − βi

, i = 1, . . . , n . (14)

In addition to (14) the fixed point has to satisfy the condition
∑n

i=1 w∗

i = C. Thus the constantT ∗ := T (w∗)
has to satisfy

C =
n

∑

i=1

w∗

i =
n

∑

i=1

f−1
i

(

T ∗

1 − βi

)

. (15)
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Now by assumption the functionsfi are all increasing and continuous. Hence the map

T 7→

n
∑

i=1

f−1
i

(

T

1 − βi

)

is continuous with range(0,∞), so for allC > 0 there is a uniqueT ∗ satisfying (15). This together with
(14) determines a unique fixed pointw∗ in Σ̃.

Part B. Global stability:Lemma 2.1 will be proved in the Appendix; we use it now to complete the proof

of Theorem 3.1.From (ii) of Lemma 2.1 we deduce that given anyǫ > 0, there are integersK,L > 0 so
that

ηk < (1 − r)
ǫ

2
for all k ≥ K, rL

(

zmax(K) − zmin(K)
)

<
ǫ

2
(16)

Then for allk ≥ K + L we get

zmax(k + 1) − zmin(k + 1) ≤ rk+1−K
(

zmax(K) − zmin(K)
)

+
k−K
∑

j=0

rjηk−j

≤ rL(zmax(K) − zmin(K)) + (1 − r)
ǫ

2

k−K
∑

j=0

rj

< ǫ (17)

Since this holds for anyǫ > 0, it follows that limk→∞(zmax(k + 1) − zmin(k + 1)) = 0. Together with (i)
of Lemma 2.1 this implies thatz(k) converges to the fixed point(1, . . . , 1)T , and hencew(k) converges
to w∗.

Proof of Part (ii) of Theorem:Suppose there is a fixed pointw∗ = [w∗

1, . . . , w
∗

n]T in int R
n
+. The

evolution equation (3) can be written asw(k + 1) = F (w(k)) whereF : R
n 7→ R

n is differentiable under
our assumptions. We will compute the Jacobian of this map at the fixed point.

For i = 1, . . . , n define

κi = w∗

i

a′

i(w
∗

i )

ai(w∗

i )
=

(

d

d log x
log ai(x)

)

x=w∗

i

(18)

Let γi = βi +(1−βi)κi, γ = [γ1, . . . , γn]T andDγ = diag (γ1, . . . , γn) be the diagonal matrix whose(i, i)
entry isγi. Finally let p = [p1(w

∗), . . . , pn(w∗)]T wherepi(w) is defined after (7). Then a straightforward
calculation shows that the Jacobian ofF at w∗ is

JF (w∗) = Dγ − p γT (19)

By assumption and without loss of generality it holds for the indicesn−1, n thatfn−1 andfn are both
strictly decreasing, and hence (18) implies thatκn−1, κn > 1. This means that alsoγn−1, γn > 1. We will
show by an interlacing argument, that the JacobianJF (w∗) has an eigenvalue which is bigger than one.

To this end we will assume that the valuesγi are orderedγ1 ≤ γ2 ≤ . . . ≤ γn. Consider the eigenvalue
equation

(Dγ − pγT )x = λx

If γT x = 0, this implies thatx is an eigenvector ofDγ, so thatλ = γi for somei. Assume now that
γT x 6= 0, so that we may assume it is equal to1. Then the eigenvalue equation reads in componentwise
form

γixi − pi = λxi , i = 1, . . . , n . (20)
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From this we see thatλ = γi for somei if and only if pi = 0, i = 1, . . . , n, which contradictsp > 0.
Thus the assumptionγT x 6= 0 implies, thatλ is different from theγi and hence (20) is equivalent to

xi =
pi

γi − λ
, i = 1, . . . , n .

As we have the conditionγT x = 1 we obtain

1 =
∑

γixi =
∑ γipi

γi − λ
=: q(λ) .

By these consideration we see, thatλ is an eigenvalue different from theγi, if and only if q(λ) = 1.
Clearly, the rational functionq has poles inγ1, . . . , γn. Note that forη ց γi we haveq(η) → −∞ and

for η ր γi if holds thatq(η) → ∞. Thusq maps the interval(γi, γi+1) to R and consequently, there is a
γi < λ < γi+1 with q(λ) = 1, so thatλ is an eigenvalue ofJf(w∗). Thus in total every interval(γi, γi+1)
contains an eigenvalue, if we set(γi, γi+1) = {γi+1} for the degenerate caseγi = γi+1, in which case,
clearly γi is an eigenvalue ofDγ − pγT .

As we have assumedγn−1, γn > 1, this shows thatJF (w∗) has an eigenvalue bigger than one. Therefore
the fixed pointw∗ is unstable.

IV. EXAMPLES

We now give a number of examples to illustrate the main features of Theorem 3.1.

Example 1:Consider a network of three users that compete for bandwidth according to:

wi(k + 1) = βiwi(k) + wi(k)piT (k), (21)
with βi = {0.9, 0.7, 0.6}, pi = {0.5, 0.7, 0.1} andC = 10. The fixed point of the network satisfies:

w∗

i =
( T ∗

1 − βi

)
1

1−pi
, (22)

with w∗

1 + w∗

2 + w∗

3 = C = 10. In this case it is easy to determine numerically thatT ∗ ≈ 0.289962 and
so w∗

1 ≈ 8.4077, w∗

2 ≈ 0.8928, w∗

3 ≈ 0.6995. Since thefi(w(k)) = w(k)1−pi are all strictly increasing,
Theorem 4.1 asserts that the fixed point of the network is unique and globally asymptotically stable.
Convergence of the network to a unique fixed point can be clearly seen from Figure 1. Note that in this
figure the evolution of the complete network is modelled, whereas the discrete model only considers the
times at which the constraint is satisfied. Thus necessarilythere are oscillations in the figure. The point
is that the peak values of the flows converge.

Example 2:Consider again the network in Example 1 withpi = {1.5, 1.7, 1.1} and againC = 10. Since
the fi(w(k)) = w(k)1−pi are all strictly decreasing, Theorem 4.1 asserts that the network is unstable, and
the simulation shows that some of the network sources end up with no share of the resource.

V. CONCLUSIONS

In this paper we have studied stability properties of heterogeneous networks in which different users
implement different versions of nonlinear AIMD algorithmsand with different levels of aggressiveness.
Conditions for global stability are given in the form of growth conditions on the network growth functions
ai. It has been shown that if the level of aggressivenessai is linear or faster, then this results in an unstable
situation. This applies in particular to Scalable TCP, in which users set their aggressiveness function to be
linear. On the other hand minor modifications of this, in which users are allowed to set their aggressiveness
to be slightly sublinear result in a unique exponentially stable fixed point. The rate of convergence to this
fixed point, however, deteriorates as the behavior approaches linear.
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Fig. 1. Example 1 - A network with unique g.a.s. fixed point. Note that the oscillations in the figure do not violate the existence of a fixed
point. The model (3) models the peak window sizes and the evolution of the peaks over successive congestion events.
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Fig. 2. Example 2 - A network of flows all of which violate the growth condition.

APPENDIX

Proof of Lemma 2.1 :
Part (i): First we show thatzmax(k) is decreasing. It follows from the basic evolution equations (1) and
(2) that

wi(k + 1) = βiwi(k) + ai(wi(k))

∑n

j=1(1 − βj)wj(k)
∑n

j=1 aj(wj(k))

= βiwi(k) + ai(wi(k))

∑n

j=1 zj(k)aj(wj(k))
∑n

j=1 aj(wj(k))

≤ βiwi(k) + ai(wi(k))zmax(k)

= βi

zi(k)

1 − βi

ai(wi(k)) + ai(wi(k))zmax(k)

≤ ai(wi(k))zmax(k)

(

1 +
βi

1 − βi

)

.

Thus we obtain the estimate

wi(k + 1) ≤
ai(wi(k))

1 − βi

zmax(k) . (23)

By assumptionfi is an increasing function, hence applyingfi to (23) gives

zi(k + 1) ≤ (1 − βi) fi

(

ai(wi(k))

1 − βi

zmax(k)

)

=
ai(wi(k))zmax(k)

ai

(

ai(wi(k))
1−βi

zmax(k)

) =
ai(wi(k))zmax(k)

ai

(

wi(k)
zi(k)

zmax(k)

) . (24)
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Since ai is non-decreasing andzi(k) ≤ zmax(k), we haveai

(

wi(k)
zi(k)

zmax(k)

)

≥ ai(wi(k)) and from

(24) it then follows thatzi(k + 1) ≤ zmax(k). Maximizing this inequality over the indexi shows that
zmax(k+1) ≤ zmax(k) which means that the sequence{zmax(k)} is decreasing. A similar argument shows
that {zmin(k)} is increasing.

Remark 5.1:Note that the decreasing sequence{zmax(k)} is bounded below by zero, and therefore it
converges ask → ∞; similarly {zmin(k)} is increasing and hence also converges.

Remark 5.2:The fact that{zmax(k)} is decreasing means in particular thatzi(k) is uniformly bounded
from above for alli and all k. Becausefi are increasing and continuous this also means thatwi(k) is
uniformly bounded for alli, k. Similarly the fact that{zmin(k)} is increasing means thatwi(k) is uniformly
bounded away from zero for alli andk.

Part (ii): The matrixR(z(k)) = D(z(k))R̃(z(k)) is the product of a row stochastic matrix̃R(k) followed
by a diagonal matrix, where

R̃(z(k))ij = δijβi + (1 − βi) pj(w(k)) (25)

Remark 5.2 above means that there isδ > 0 such thatpi(w(k)) > δ for i = 1, . . . , n and allk ≥ 0, and
hence the entries of̃R(z(k)) are positive and uniformly bounded away from zero. If we define

z̃(k) = R̃(z(k))z(k) (26)

then by [14, Theorem 1.1] there isr < 1 (uniform in k) such that

z̃max(k) − z̃min(k) ≤ r(zmax(k) − zmin(k)) (27)

We will show below that

lim sup
k→∞

(

zmax(k + 1) − z̃max(k)
)

≤ 0, lim inf
k→∞

(

zmin(k + 1) − z̃min(k)
)

≥ 0 (28)

Combining (27) and (28) immediately yields the stated result(11).
We now show that the first inequality in (28) holds; the secondinequality follows by an identical

argument involvingzmin in place ofzmax. For eachk ≥ 0 let ik be the index such thatzmax(k) = zik(k).
We define two sequencessk, rk corresponding to the diagonal factorD(z(k)) of the matrixR(z(k)):

sk = aik+1
(wik+1

(k)), rk = aik+1
(wik+1

(k + 1)) (29)

It follows that
zmax(k + 1) =

sk

rk

z̃ik+1
(k) ≤

sk

rk

z̃max(k) (30)

and so the first part of (28) will follow from

lim
k→∞

sk

rk

= 1 (31)

We now show that (31) holds. Note that from (7) it follows thatfor all j we have zj(k + 1) ≤
aj(wj(k))

aj(wj(k+1))
zmax(k), so choosingj = ik+1 gives the lower bound

sk

rk

≥
zmax(k + 1)

zmax(k)
≥ 1 . (32)

There is a similar upper bound: for any indexj,

aj(wj(k))

aj(wj(k + 1))
=

hj(zj(k))

hj(zj(k + 1))
(33)
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where hj(zj) = aj(f
−1
j (

zj

1−βj
)). Choosingj = ik+1, and using the fact thataj, fj and hencehj are

non-decreasing, we deduce that

sk

rk

=
hik+1

(zik+1
(k))

hik+1
(zmax(k + 1))

≤
hik+1

(zmax(k))

hik+1
(zmax(k + 1))

(34)

From Remark 5.2 above we know that there is a closed interval in(0,∞) containingzmax(k) for all k.
For any fixed indexj, uniform continuity ofhj on this interval and the convergence noted in Remark 5.1
imply that hj(zmax(k))

hj(zmax(k+1))
→ 1. Since this holds for every indexj = 1, . . . , n, convergence also holds for

any sequence of indices{jk}, that is
hjk

(zmax(k))

hjk
(zmax(k+1))

→ 1. Choosing the sequencejk = ik+1 then shows that

lim
k→∞

hik+1
(zmax(k))

hik+1
(zmax(k + 1))

= 1 (35)

Hence the right side of (34) converges to 1 ask → ∞, as does the right side of (32). Together these
imply the convergence (31) as required.


