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Abstract

This note considers the design of TCP-like congestion obptotocols for deployment in highspeed communi-
cation networks. A basic problem in this area is to desigrgestion control strategies that probe more aggressively
than standard TCP, but which coexist with each other andtresglobally stable and equitable network behaviour.
In this note we take a first step towards this goal, by fornimggthe TCP dynamics as a discrete linear system with
nonlinear feedback gain. Under the assumption of playechaymisation, conditions for global network stability
are derived in the form of growth bounds on the local nonlingrabing functions. Examples are given to illustrate
the main features of our results.

I. INTRODUCTION

Traffic generated by th&ransmission Control ProtocqITCP) accounts for 85% to 95% of all traffic
in today’s internet [1]. TCP, in congestion avoidance modebased primarily on the Chiu and Jain’s
[2] Additive-Increase Multiplicative-Decreag@&IMD) paradigm for decentralized allocation of a shared
resource (e.g., bandwidth) among competing users. Witresomor modifications, the AIMD algorithm
has served the networking community well over the past twzades and it continues to provide the basic
building block upon which today’s internet communicatinbuilt.

Recently, in the context of designing high speed commuminatietworks, several authors have sug-
gested basic modifications to the AIMD algorithm; for exaey@ee [3], [4], [5], [6], [7], [8]. One idea
underlying these modifications is to replace the constaowvtr rate of window size in standard TCP
with an increasing rate. The rationale for this change i¢ theeh protocols probe more aggressively
for available bandwidth as network capacity increases [[#], These algorithms, which we refer to as
nonlinear AIMD (NAIMD), result in networks with differentyshamic properties than those employing
the basic (linear) AIMD; see [9], [10], [11], [12]. A basic gstion in the design of NAIMD networks is
how to choose the probing action so that the resulting ndétwshibits desirable properties. Remarkably,
despite increasing deployment of these algorithms (e.gigla-speed TCP algorithm is implemented as
part of the Linux operating system), little work has beenriedr out in this area and basic questions
concerning the existence and nature of network equilibe@ehyet to be addressed. In this paper we
extend results obtained in [13] to more general nonlinetimgs.

Our objective in this note is to study basic convergence aablilgy properties of a class of NAIMD
congestion control protocols. In this preliminary study vestrict attention to deterministic networks in
which all sources (players) are informed of network congassimultaneously, and where all sources
employ NAIMD protocols whose growth rates depend only onrtheost recent congestion window size.
The study of synchronized networks is in general restectivowever it is important for a number of
reasons. Firstly, it has been observed by many researcharsaource synchronisation is a feature of
high-speed networks, and in the context of such networlksafisumption of synchronisation is not overly
conservative. Secondly, the study of synchronised netsvogRresents an important first step toward the
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study of more realistic network types in which sources aferined of congestion asynchronously.

Our basic finding in this paper is that NAIMD protocols areb$taand lead to a reasonably equitable
allocation of resources as long as the growth rate functanall users in the network increase more
slowly than linearly with window size. This linear growthteais a sharp boundary between stable and
unstable behavior; if two or more users employ protocols sghgrowth rate functions increase more
rapidly than linearly, then there cannot be any stable gxitim for the network.

The paper is organised as follows. In section Il we introdtiee basic model for NAIMD protocols.
The main growth assumption on the nonlinearities which isdee for stability is presented. The main
technical tool consists of a state space transformatiostwleads to transition maps, which are the product
of a diagonal (state dependent) matrix and a row stochasicixnThis leads to the main Lemma 2.1
which provides a Lyapunov type argument for the tranformesdesn. Its proof is deferred to the appendix.
The main result is stated and proved in section lll. It pregidormulas for the fixed points of NAIMD
networks and gives conditions under which these are glplzymptotically stable. We present some
examples in section IV.

Il. BACKGROUND

Throughout, we use notatidR for the real numbersR” for the n-dimensional real Euclidean space
andR"*" for the space of. x n matrices with real entries.

(&) The AIMD algorithm : The AIMD algorithm of Chiu and Jain [2] is a decentralised rese
allocation algorithm. The algorithm consists of two operad&l modes. The first mode, a backoff mode,
is invoked whenever a source (player) is informed that thevork is congested. Users respond to this
notification by down-scaling their utilization-rate in a fmplicative manner. This mode is called the
Multiplicative Decrease(MD) phase. After reducing their utilisation rates, usersbe for available
capacity until congestion is reached again, at which pdiet mode of the next cycle is entered. The
second mode of operation is called tAdditive IncreasgAl) phase.

(b) A model of NAIMD : The evolution of the network states over one cycle of opemnathay be
conveniently written as follows. Let(k) = [w;(k),...,w,(k)]" denote the share of network capacity
allocated to each user at the time of th& congestion event(k). The capacity constraint requires that
Yoo, w;i(k) = C, with C as the total capacity of the resource available to the esgistem. After the
next cycle of multiplicative decrease and additive incegdke utilization-rate of player becomes

wi(k + 1) = Biwi(k) + a;(wi(k)) (t(k +1) — t(k)), (1)

wheref; is a constant in the open intervdl, 1), anda;(-) is the growth rate function of useér It follows
that the time between congestion evetiis+ 1) — ¢(k) is a function ofw(k), that ist(k + 1) — t(k) =

T(w(k)) where
_ O i Bwih) 3 (- Byw (k)

T(w(k)) = <=7 = == )
2 e (w;(K)) 2 =1 45 (w; (k)
Combining (1) and (2) we obtain the discrete time dynamicateps
i1 (1= Bj)w;(k)
(k+1) = Fy(wi( (k) o () S )
with initial condition w(0) = [wy(0) ... wn(O)}T satisfying >, w;(k) = C and w;(0) > 0,7 =
1,...,n. We note that regardless of initial condition we havgk) > 0 for all £ > 1, so that in what

follows we will always assume without loss of generalityttha(k) > 0 for all £ > 0.



(c) Growth assumptions: The key assumptions concern the growth rate functiofg : R, — R,.
We assume that the functiong i = 1,...,n are continuous, nondecreasing and satisfy:) > 0 for all
x > 0. In addition we will assume that the functiorfs: (0,00) — (0, 00) defined by

i@ =

are strictly increasing. E.qg. if;(z) = ca?, this implies thap € (0, 1). In the case where; is differentiable,
the non-decreasing and growth properties can be expressegactly as the inequalities

Y i=1,....n (4)

d ai(x)
< loga;(z) = —= 1 >0. 5
O_dlogzv og a;(x) ai($)x< , Yo >0 (5)
(d) Matrix formulation: We define a new set of network states- [z, ..., 2,]? as follows:
zi = Qy(w;) = (1 - @)ai(wi) = (1 =8 filwi). (6)

By assumption on th¢; the transformation®; are bijections of(0, co) on their range and so the new
variables are well-defined. In terms of these variables #tevork dynamics (1) becomes

_ai(wi(k))
Akt 1) = kT D) (@Zi(kﬁ) + (1) T(w(k)))
ai(wi(k)) n
— a(wi(k+ 1)) (ﬁizi(k) +(1=7) ; Zj(k)pj(w(k))> 7)
ai(®; ' zi(k)) » B
4y (Fi(®: 1 (z:(k))) (@Zz(/ﬂ) +(1-05) Z zi(k)p;(® (z(k)))> (8)

J=1

-1
wherep;(w) = (Z@ L aj(wj)> a;(w;). Gathering equation (7) for allwe get the vector equation

2(k +1) = R(z(k))2(F) (9)
where R(z) € R™*" is defined by

a; (U}Z>

a(Fr(w) (%'@' + (1= 8)p; (w)) ; (10)

with z; = ®;(w;) and where),;; denotes the standard Kronecker symbol. The mat(ix) may be factorized
as

R(z)i; =

R(z) = D(2)R(2),

with a diagonal parD(z) = diag (%, ce %) and where the second part of this expression
with entriesR(z);; = (52-]-61- + (1 — Bi) pj(w(k)) ) defines a positive, row stochastic matrix. As is well-
known, positive, row stochastic matrices define contrastion the positive orthaf’; [14, Theorem 1.1].
This has been called the averaging effect of stochastideeatrThe following lemma shows th&X(z(k))
asymptotically shares this property in the linkit— co. We write z,,,,, and z,,,;, to denote the largest and
smallest components of the vectar

Lemma 2.1:Consider the dynamic system defined in Equation (3), and sepibat all growth functions
a;(x) satisfy condition (4). Then

(i) forall k>0
Zmin<k) S Zmin<k + 1) S Zmax(k + 1) S Zmax(k) .



(i) there isr < 1 and a sequencgn; }ren CONverging to zero, such that for &ll> 0

Zmax(E+ 1) — zmin(k + 1) < 7( 2max (k) — 2Zmin(k) ) + 7% - (11)
Lemma 2.1 is proved in the appendix. We will use it in the probfour main result to show that
the nonlinear system (9) behaves essentially as a lineaéemsywith row stochastic matrices, and that
the solutionz(k) is driven to the fixed point = [1,...,1]7. This will imply in turn that the network
dynamics (3) converges to a stable solution.

[1l. M AIN RESULT

Our principal goal in this paper is to derive conditions fatwiork stability in terms of the network
rate functionss;(-) and the network capacit¢'. Referring to (1), dixed pointof the network is defined
to be a vectow* € intR"} satisfyingw; = ;w; + a;(w})T(w*) and ) w; = C, where

intR} ={weR" : w; >0fori=1,...,n}. (12)

Theorem 3.1:Consider the network of NAIMD sources defined in the preambleen the following
properties hold.

(i) If all a;(-) satisfy the growth condition (4), then for all > 0 the network has a unique fixed point
which is globally asymptotically stable with respectRg .

(i) Recall the definition (4), and suppose thatis differentiable for alki. If at least two of thef;(-) are
strictly decreasing, then any fixed point is unstable.

Remark 3.1:Theorem 3.1 gives conditions for acceptable network beh@avProvided that all of the
a;(-) satisfy the growth condition (4), the network has a uniquabglly asymptotically stable fixed point.
If at least two sources do not satisfy these bounds, and peofiinctionsf; that are strictly decreasing,
then the network is unstable. In the case where exactly orleeof;() is decreasing, and all others are
increasing there is a locally stable fixed pointinassuming the capacity is large enough. In this case
the network may or may not be stable.

Remark 3.2:Networks of standard TCP flows satisfy the conditions of TaeoB.1. Further, our result
shows that any mix of standard TCP flows and flows satisfyinggitesvth conditions will result in a
globally stable network.

Remark 3.3:Network flows that employ MIMD (multiplicative increase, ftiplicative decrease) do not
satisfy the growth conditions. It has been shown that sutivar&s either have multiple stable equilibria
or are unstable [12]. Scalable TCP is an example of one sud¢bqgmio

Proof of Part (i) of TheoremHere we present the proof of (i) in two parts. In Part A. we groke
existence of unique fixed points for (1), and in Part (B) we prthwe global asymptotic stability of these
solutions.

Part A. Fixed pointFrom the fixed point equations

w) = fw; +T(wa;(w)), i=1,.n (13)
we obtain the condition T (w")
fwi) =15 i=L.n. (14)

In addition to (14) the fixed point has to satisfy the condifjo_, w; = C'. Thus the constarft* := T'(w*)

has to satisfy
n n T*
C=>w=> f" (m) (15)
i=1 i=1 v



Now by assumption the functiong are all increasing and continuous. Hence the map

THZf (1—@)

is continuous with rang€0, o), so for allC > 0 there is a uniqud™ satisfying (15). This together with
(14) determines a unique fixed poiat in 3.

Part B. Global stabilityLemma 2.1 will be proved in the Appendix; we use it now to costplthe proof

of Theorem 3.1.From (ii) of Lemma 2.1 we deduce that given any0, there are integer&’, L > 0 so
that

me < (1 — T)% foral k > K, r* <zmaX(K) - zmin(K)> < % (16)
Then for allk > K + L we get
k—K
Zmax(k + 1) - zmin(k + 1) S Tk+1_K <Zmax(K) - zmln(K)) + Z Tjnk—j
=0
c k—K
L
< " (Zmax (K) — Zmin (K (1—r) 3 Z r
7=0
< € 17)
Since this holds for any > 0, it follows thatlimy .. (zmax(k + 1) — zmin(k + 1)) = 0. Together with (i)
of Lemma 2.1 this implies that(k) converges to the fixed poirt, ..., 1)”, and hencev(k) converges
to w*.
Proof of Part (ii) of Theorem:Suppose there is a fixed point* = [w},...,w}]” in intR?. The

evolution equation (3) can be written agk + 1) = F'(w(k)) whereF' : R" — R™ is differentiable under
our assumptions. We will compute the Jacobian of this mapefiked point.

For:=1,...,n define
d
= log a; 1

/ *

fa’i(wi)
" ai(w])

1

R; = W

Letvy; = Bi+(1—Bi)ki, v = [11,---,7)" andD., = diag (v, . ..,7,) be the diagonal matrix whoge, :)
entry is~;. Finally letp = [p;(w*),. .., p.(w*)]T wherep;(w) is defined after (7). Then a straightforward
calculation shows that the Jacobianofat w* is

JF(w*) = Dy —pry" (19)

By assumption and without loss of generality it holds for théicesn — 1, n that f,,_; and f,, are both
strictly decreasing, and hence (18) implies that,, x,, > 1. This means that alsg,_i,~, > 1. We will
show by an interlacing argument, that the Jacobldi{w*) has an eigenvalue which is bigger than one.

To this end we will assume that the valugsare orderedy; < v, < ... <~,. Consider the eigenvalue
equation

(Dy = py")z = Az

If vTz = 0, this implies thatr is an eigenvector oD., so that\ = ; for somei. Assume now that
~vTx # 0, so that we may assume it is equalltoThen the eigenvalue equation reads in componentwise
form



From this we see that = ~; for some: if and only if p, = 0,7 = 1,...,n, which contradictg > 0.
Thus the assumption’z # 0 implies, that) is different from they; and hence (20) is equivalent to

Di
Yi— A

As we have the condition”’z = 1 we obtain

YiPi
1—2%1‘1— %_)\—.q()\).

By these consideration we see, thais an eigenvalue different from the, if and only if ¢(\) = 1.

Clearly, the rational functiog has poles iny, ..., ,. Note that forn \ +; we haveq(n) — —oco and
for n " ~; if holds thatq(n) — oco. Thusq maps the intervalvy;,v;+1) to R and consequently, there is a
v < A < 741 With ¢(\) = 1, so that) is an eigenvalue of f(w*). Thus in total every intervaly;, v;:1)
contains an eigenvalue, if we séf;,vi+1) = {71} for the degenerate casg = ~;,1, in which case,
clearly v; is an eigenvalue ob., — py’.

As we have assumeg, 1,7, > 1, this shows tha/ F'(w*) has an eigenvalue bigger than one. Therefore
the fixed pointw* is unstablem

T = 1=1,...,n.

IV. EXAMPLES

We now give a number of examples to illustrate the main festwf Theorem 3.1.

Example 1:Consider a network of three users that compete for bandwicitbrding to:

wi(k + 1) = Bwi(k) + wi(k)"T'(k), (21)
with 3; = {0.9,0.7,0.6}, p; = {0.5,0.7,0.1} andC = 10. The fixed point of the network satisfies:
* T* 1—1p1-
Wi = (1—@-) ’ (22)

with w} + w; + w; = C' = 10. In this case it is easy to determine numerically that~ 0.289962 and
SO wi ~ 8.4077,w} ~ 0.8928, w}; ~ 0.6995. Since thef;(w(k)) = w(k)' P are all strictly increasing,
Theorem 4.1 asserts that the fixed point of the network isueignd globally asymptotically stable.
Convergence of the network to a unique fixed point can be glemdn from Figure 1. Note that in this
figure the evolution of the complete network is modelled, rghs the discrete model only considers the
times at which the constraint is satisfied. Thus necesstrdye are oscillations in the figure. The point
is that the peak values of the flows converge.

Example 2:Consider again the network in Example 1 with= {1.5,1.7,1.1} and agairC' = 10. Since
the f;(w(k)) = w(k)'~Pi are all strictly decreasing, Theorem 4.1 asserts that theonk is unstable, and
the simulation shows that some of the network sources enditlpne share of the resource.

V. CONCLUSIONS

In this paper we have studied stability properties of hefen@ous networks in which different users
implement different versions of nonlinear AIMD algorithraad with different levels of aggressiveness.
Conditions for global stability are given in the form of gréwtonditions on the network growth functions
a;. It has been shown that if the level of aggressiveness linear or faster, then this results in an unstable
situation. This applies in particular to Scalable TCP, inahhisers set their aggressiveness function to be
linear. On the other hand minor modifications of this, in whitsers are allowed to set their aggressiveness
to be slightly sublinear result in a unique exponentialb$t fixed point. The rate of convergence to this
fixed point, however, deteriorates as the behavior appesatihear.
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Fig. 1. Example 1 - A network with unique g.a.s. fixed point. Note that thdlagons in the figure do not violate the existence of a fixed
point. The model (3) models the peak window sizes and the evolution ofethkespover successive congestion events.
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Fig. 2. Example 2 - A network of flows all of which violate the growth condition

APPENDIX

Proof of Lemma 2.1 :
Part (i): First we show that,,..(k) is decreasing. It follows from the basic evolution equati¢h) and
(2) that
> i1 (1= B)w;(k)

25— aj(w;(k))
> i1 zi(k)ag(w;(k))

> i1 aj(w;(k))
(k) + a;(w;(k)) zmax (k)

wi(k+1) = Baw;i(k) + ai(wi(k))

< ai(wi(k))zmax (k) (1 + 1 fﬁ) :

Thus we obtain the estimate

< ai(wi(k))

T 1=4

By assumptionf; is an increasing function, hence applyirigto (23) gives
aern) < 1= m a0 )

_ (@it zmn(®) _ ai(wilk)zna(k) (24)

a;(wi(k w; (k
ai< (17;31)) Zmax<k7)) a; ( z,((k)) zma.x(k)>

w;(k+1) Zmax (k) - (23)




Since a; is non-decreasing and;(k) < zpn.x(k), we haveai(% Zmax(K) | > a;(w;(k)) and from
(24) it then follows thatz;(k + 1) < zmax(k). Maximizing this inequality over the indek shows that
Zmax(k+1) < zmax(k) which means that the sequengs,..(k)} is decreasing. A similar argument shows
that { z..;n (k) } is increasing.

Remark 5.1:Note that the decreasing sequereg..(k)} is bounded below by zero, and therefore it
converges ag — oo; similarly {zi,(k)} is increasing and hence also converges.

Remark 5.2:The fact that{ z,,.<(k) } is decreasing means in particular thatk) is uniformly bounded
from above for alli and all k. Becausef; are increasing and continuous this also means ihét) is
uniformly bounded for alf, k. Similarly the fact thaf z,.;., (k) } is increasing means that (k) is uniformly
bounded away from zero for alland k.

Part (ii): The matrixR(z(k)) = D(z(k))R(z(k)) is the product of a row stochastic matti¥ k) followed
by a diagonal matrix, where

R(2(k))ij = 658 + (1 = B;) pj(w(k)) (25)

Remark 5.2 above means that theré is 0 such thatp;(w(k)) > 0 fori =1,...,n and allk > 0, and
hence the entries aR(z(k)) are positive and uniformly bounded away from zero. If we defin

2(k) = R(z(k))=(k) (26)
then by [14, Theorem 1.1] there is< 1 (uniform in k) such that
Zmax (k) = Zmin (k) < 7(2max(k) = 2min (k) (27)
We will show below that
tmsp (k1) = Zua(F) ) < 0. Hinf (2 (k +1) = Zuna(k)) > 0 (28)

Combining (27) and (28) immediately yields the stated regid).

We now show that the first inequality in (28) holds; the secamehuality follows by an identical
argument involvingz,;, in place ofz,.,. For eachk > 0 let i, be the index such that,..(k) = z;, (k).
We define two sequences, r;, corresponding to the diagonal factbX(z(k)) of the matrix R(z(k)):

Sk = aik+1(wik+1 (k>>> Tk = G4y (wik+1 (k + 1)) (29)
It follows that P P
tmax(k 1) = =25, (k) € = Za(k) (30)
Tk Tk
and so the first part of (28) will follow from
lim 2% =1 (31)
k—o0 T,
We now show that (31) holds. Note that from (7) it follows tHat all j we havez;(k + 1) <
% Zmax(k), SO choosing = i, gives the lower bound

sk Zmax(k+1)

>1.
Tk o Zmax(k) - ! (32)
There is a similar upper bound: for any indgx
aj(wi(k)) __ hi(z(F)) (33)

aj(wi(k +1))  hi(z(k+1))
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where h;(z;) = aj(fjfl(lfjﬁi)). Choosingj = i1, and using the fact thai;, f; and henceh; are

non-decreasing, we deduce that
S_k _ hik+1 (Zik+1 (k)) < hik_H (Zmax(k))
e i (Grax(B+1)) 7 Ry (Zmax(k + 1))

From Remark 5.2 above we know that there is a closed intervél,itv) containingzu.x(k) for all .
For any fixed indexj, uniform continuity ofz; on this interval and the convergence noted in Remark 5.1

imply that % — 1. Since this(hol?:; for every index= 1,...,n, convergence also holds for
hjk Zmax k

any sequence of indicdgy }, that ism
JE \Fmax

hi max k
k—oo0 hik+1 (ZmaX(k + 1))
Hence the right side of (34) converges to 1kas- oo, as does the right side of (32). Together these

imply the convergence (31) as requirdml.

(34)

— 1. Choosing the sequengg = i1 then shows that




