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Abstract: We show that uniformly global asymptotic stability for a family of ordinary differential
equations is equivalent to uniformly global exponential stability under a suitable nonlinear change of
variables.

1 Introduction

Lyapunov’s notion of (global) asymptotic stability of an equilibrium is a key concept in the
qualitative theory of differential equations and nonlinear control. In general, a far stronger
property is that of ezponential stability, which requires decay estimates of the type “||z(¢)| <
ce M||z(0)||.” In this paper, we show that, for differential equations evolving in finite-dimensio-
nal Euclidean spaces R" (at least in spaces of dimensions # 4,5) the two notions are one and
the same under coordinate changes.

Of course, one must define “coordinate change” with care, since under diffeomorphisms the
character of the linearization at the equilibrium is invariant. However, if we relax the require-
ment that the change of variables be smooth at the origin, then all obstructions disappear. The
basic ingredient of the construction we are about to present relies on the existence of smooth
Lyapunov functions V. The coordinate transformations are constructed via “projecting” along
the gradient flow of V onto a level set V~!(c). The result now relies on the fact that this
level set is diffeomorphic to the standard sphere, which is true except for those cases where
the Poincaré conjecture is still open. This explains why we have to exclude n = 4,5 from our
statements.

Closely related to our work is the fact that all asymptotically stable linear systems are equiv-
alent (in the sense just discussed) to £ = —z; see e.g. [1].

2 Problem Statement

Throughout the paper, || - || denotes the usual Euclidean norm, and “smooth” means C*. For
a differentiable function V' : R® — R the expression L,V (z) denotes the directional derivative
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DV (z)f(x,d). We consider the family of differential equations
#(t) = f(2(t),d(?)) (2.1)

where f : R® x D — R" is continuous and for z # 0 locally Lipschitz continuous in z, where
the local Lipschitz constants can be chosen uniformly in d € D C R™. We assume that D is
compact and that f(0,d) = 0 for all d € D and let D denote the set of measurable functions
from R to D. Then we say that the zero state is uniformly globally asymptotically stable
(UGAS) if there exists a class KL function® 3 such that, for each d(-) € D, every maximal
solution is defined for all ¢ > 0 and

I6(¢, z,d()I| < B([z]l,2), VE>0. (2.2)

Note that while our general assumptions on f do not guarantee uniqueness of solutions through
zero, assumption (2.2) implies that ¢(¢,0,d) = 0 is the unique solution with initial condition
z =0, for all d € D and thus the same is true for every initial condition.

An apparently stronger formulation of (2.2) is the following. We call the zero position of (2.1)
uniformly globally exzponentially stable (UGES), if there exist constants ¢ > 1, A > 0 such that
forall d() € 16,7, d()) | < ce Mz, Ve>0. (23)
If the origin is no common fixed point for all values d € D then (2.2) is impossible. In this case,
however, still a useful notion of stability is possible which is known as input-to-state stability.
For this stability concept similar results to those discussed in this paper can be obtained, [3].
Extending the concepts in [1, p. 207] to our nonlinear setting, we will call a homeomorphism
T : R* — R™ a change of variables if T(0) = 0, T is C' on R”, and T is diffeomorphism on
R™ \ {0} (i.e., the restrictions of T and of T~! to R* \ {0} are both smooth). Given a change
of variables T' and a system (2.1), we may consider the transformed system

y(t) = fly(t),d(t)), (2.4)

where, by definition, f(y,d) = DT(T~'(y))f(T~'(y),d). In other words, system (2.4) is ob-
tained from the original system by means of the change of variables y = T'(z). Observe that
the new system again satisfies the general requirements.

It is our aim to show that for dimensions n # 4,5 the following assertions are true. Given a
system of the form (2.1) satisfying (2.2) there exists a transformed system that satisfies (2.3).
In this sense, global asymptotic stability is equivalent to global exponential stability under
nonlinear changes of coordinates. Furthermore, one may obtain transformed systems where

the constants defining the exponential stability property can be chosen to be the special values
c=A=1.

3 Statement of Results

The main tool for our construction of 7' is the use of an appropriate Lyapunov function V.
In fact, we can obtain T for a whole class of functions as stated in the following proposition.
Recall that a function V' : R* — R is called positive definite if V(0) = 0 and V(z) > 0 for all
x # 0, and proper if the set {z | V(z) < S} is bounded for each g > 0.

! As usual, we call a function o : [0,00) — [0,00) of class K, if it satisfies a(0) = 0 and is continuous and
strictly increasing (and class Ko if it is unbounded), and we call a continuous function 3 : [0, 00)* — [0, c0) of
class KL, if it is decreasing to zero in the second and of class K in the first argument.
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Proposition 3.1 Let n # 4,5 and let V : R* — R be a proper, positive definite C' function.
Assume furthermore that V' is smooth on R™ \ {0} with nonvanishing gradient. Then there
exists a class Ko function vy which is smooth on (0,00) and satisfies y(s)/7'(s) > s and a
change of variables T : R* — R" with T'(0) = 0 such that

V(y) = V(T (y) =(llyll) (3.5)
Outline of proof: Let ¢ denote the smooth flow determined by
b VV(z)
IVV(z)|*’

Fix ¢ > 0 and define the smooth map 7 : R* \ {0} — V~1(c) by n(z) = ¥(c — V(z),z). Now
observe that the properties of V imply that V~!(c) is a homotopy sphere (cf. also [6, Discussion
after Theorem 1.1]), so that V~!(c) is diffeomorphic to S”~! for n # 4,5 ( see [2] for n = 1,2, 3,
[5, S9, Proposition A] for n > 6). Now T is given by

T(0) =0, and T(z) =y (V(2)) S(n(2)), «#0.

It is straightforward to see that T" satisfies (3.5). For the remaining statements see [3]. [
Theorem 3.2 Let n # 4,5 and consider any system (2.1) on R” which is UGAS (2.2). Then,

(2.1) can be transformed into a system (2.4) that is UGES (2.3). In particular, the constants
in (2.3) can be chosen to be c =1, A = 1.

Outline of proof: Under our assumptions, by [4, Theorem 2.9, Remark 4.1] there exists a
smooth function V : R” — R for (2.1) such that
Ly, V(z) < —ar(llz]) and  oo(llz]) < V(z) < as(l|z])- (3.6)

d
for some class Ko functions a1, as,as. From this it is possible to construct a C! class Ko
function p on [0, 00) which is smooth on (0, 00) with p'(0) = 0 and for which W (z) := p(V (z))

tisfe
satisfes LW (@) < W (a).
Applying Proposition 3.1 to W, we obtain for each d € D and y # 0
7 [yl 7 vl [yl 2
(f(y,d),y) = LiW(y) < - W(y) = - Y(llylh) < =llyll*-
7 (lyl) 7 ¥ (llyll) 7' (llyll)
This immediately yields the desired exponential estimate. a
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