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Abstract

Controllability properties of the inverse power method on projective space are investi-
gated. For complex eigenvalue shifts a simple characterization of the reachable sets in terms
of invariant subspaces can be obtained. The real case is more complicated and is investigated
in this paper. Necessary and sufficient conditions for complete controllability are obtained in
terms of the solvability of a matrix equation. Partial results on the solvability of this matrix
equation are given.

1 Introduction

Numerical matrix eigenvalue methods such as the QR algorithm or inverse power iterations
provide interesting examples of nonlinear discrete dynamical systems defined on Lie groups or
homogeneous spaces. A typical approach from numerical linear algebra to improve convergence
properties of such algorithms is via suitable shift strategies for the eigenvalues. We refer to
[2, 3, 5] for papers studying the shifted inverse iteration. In particular, the case of complex
shifts is studied in [7].

Such eigenvalue shifts can be viewed as control variables and the resulting algorithms can there-
fore be analyzed using tools from nonlinear control theory. So far the analysis and design of shift
strategies in numerical eigenvalue algorithms has been more a kind of an art rather than being
guided by systematic design principles. The situation here is quite similar to that of control
theory in the 50’s before the introduction of state space methods. The advance made during
the past two decades in nonlinear control theory indicates that the time may now be ripe for a
more systematic investigation of control theoretic aspects of numerical linear algebra.

In this paper we investigate the controllability properties of the well known inverse power iter-
ations for finding the dominant eigenvector of a matrix using real shifts. Shifted versions of the
inverse power method lead to nonlinear control systems on projective space, or more generally
on Grassmann manifolds. The complex case has been studied in [4].

The shifted inverse iteration R" in its controlled form is given by

(A —u(t)"'=(t)
I(A = u(®)) "'z (@)]] 7
where u(t) ¢ o(A). The trajectory corresponding to an initial condition zy and a control

sequence u = (u(0),u(1),...) is denoted by ¢(t, zo,u). Via the choice u(t) = z*(t)Ax(t) we
obtain the Rayleigh quotient iteration studied in [2], [3]. The Rayleigh iteration may therefore

z(t+1) =

teN, (1)

*Research partially supported by the European Nonlinear Control Network.



Controllability of the shifted inverse power iteration

be interpreted as a feedback strategy for the shifted inverse iteration. It is known that in some
cases this feedback strategy has undesirable properties [3].

This is a shortened version. Due to space constraints full details of the proofs cannot be given
here and will appear elsewhere.

2 The shifted inverse power iteration on projective space

Clearly, if the initial condition z( for system (1) lies in an invariant subspace of A than the same
holds true for the trajectory ¢(t, zo,u) regardless of the control sequence u. Therefore we may
restrict our attention to those points not lying in a nontrivial invariant subspace of A. Using the
fact that the interesting dynamics of (1) are on the unit sphere and identifying opposite points
which give no further information about the dynamics we define our state space of interest to
be

M =P\ U v, (2)

AV CV,0<dimV <n

where P"~! denotes the real projective space of dimension n — 1. Thus M is the projection of
the cyclic vectors of A, that is those z € R**" such that {z, Az,..., A" 'z} is a basis of R”. In

the following we assume that A has a cyclic vector, i.e. M # (). To keep notation short let us

introduce the union of A-invariant subspaces V(A) := U V. The system on M is
AV CV,0<dimV <n
then given by

Et+1) = P(A-u(t) '€(t), teN (3)

£€0) = &eM,
where u(t) € U := R\ 0(A4) (the set of admissible control values) and P denotes the natural
projection onto the projective space. We denote the space of finite and infinite admissible control

sequences by U?, resp. UN. The solution of (3) corresponding to the initial value &y and a control
sequence u € U" is denoted by ¢(t; &g, u). The forward orbit of a point ¢ given by

O (€):={ne M |3t eNu e U such that n = p(t;£,u)}.

Similarly the set of points reachable exactly in time # is denoted by O} (¢). In order to analyze the
controllability properties of (3) we introduce the following definition of regions of approximate
controllability in P41, A control set of system (3) is a set D C M satisfying

(i) D CclOT(¢) for all € € D.
(ii) For every & € D there exists a u € U such that ¢(1,z,u) € D.
(iii) D is a maximal set (with respect to inclusion) satisfying (i).

System (3) is called forward accessible [1], if the forward orbit O (¢) of every point & € P41
has nonempty interior and uniformly forward accessible (in time t) if there is a t € N such that
int OF (&) # 0 for all ¢ € M. Note that int O (¢) # () holds iff there is a ¢ € N such that
int O (¢) # (). For such a t there exists by Sard’s theorem a u € U? such that

K&y
ou
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A pair (&,u) € M x Ut is called regular if this rank condition holds. u € U? is called universally
regular if (€, u) is a regular pair for every £ € M. By [6, Corollaries 3.2 & 3.3] forward accessibility
is equivalent to the fact that the set of universally regular control sequences U}feg is open and
dense in U for all ¢ large enough. (For a precise statement we refer to [6].)

The following result clarifies the situation for the systems under consideration here:

Lemma 2.1 System (8) is uniformly forward accessible in time n — 1. A control sequence
u € Ut is universally regular if and only if there are n — 1 pairwise different values in the
sequence u(0),...,u(t —1).

An important subset of a control set D is its core defined by
core(D):={¢e€D|int® (£)ND # 0 and int @+(§) ND #(}.

Here O (&) denotes the points 7 € P41 such that there exist ¢ € N, ug € intU* such that
o(t;n,ug) = € and (n,up) is a regular pair.

3 Statement of Results

Theorem 3.1 Let A € R™™"™ be cyclic with characteristic polynomial q. Consider the system
(3) on M. The following statements are equivalent:

(i) There exists a control set D C M with int D # (.
(ii) M is a control set of system (3).

(iii) There exists a universally reqular control sequence u € U such that

t—1
[I(A—u(s))™" € RI. (4)
5=0
(iv) For every B € T4 := {p(A) | p € Rlz],p A q = 1} there exist t €N, u € Ul,,, a € R*
such that
t—1
B = aH(A—u(s)),
s=0

t—1
ie. La=T%:={p(4) |p= [l (2= u(s),u(s) eRpAg=1} .
s=
(v) There exists a polynomial f with only real roots and n — 1 pairwise different roots,
a € R* and r(z) € Rz] such that

f(2) = a+r(2)q(2) . ()

Outline of proof: Statement (iii) is equivalent to (v) by the Caley-Hamilton theorem and the
implications (ii) = (i) and (iv) = (iii) are obvious.

“(ili) = (ii)” By assumption every z € M is an element in the core of a control set, [8]. Thus by
[8] every connected component of M is contained in the core of a control set. It thus remains
to show that it is possible to steer from any connected components of M into any other. To
be precise we have to show for every two connected components Zy,Zo C M that there exist
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x; € Z;,i = 1,2 and a control v € U such that x5 = ¢(t,z1,u). Note that different connected
components of M are separated by the n — 1-dimensional A-invariant subspaces. Let the (real)
Jordan form of A be given by

TAT-! — ( diag(J(M)(,)...,J()\k)) g ) |

where the J()\;) are Jordan blocks to real eigenvalues Ay > A2 > ... > At and B has only
complex eigenvalues. For ¢ = 1,...,k let z; denote the unit Jordan vector to J()\;) of highest
index, then the n — 1-dimensional A-invariant subspaces are given exactly by the sets T-!{x €
R" | z; =0}, =1,...,k. The connected components of M can then be described by index sets
I, where I C {1,...,k} and the connected components of M are of the form

Z=P{zeR"\V()|z;>0,j€lz;<0,j¢I}.

(Note that by multiplication by —1 there are now for each connected component two representa-
tions of the above kind. But this is irrelevant for our purposes.) It is now clear how it is possible
to steer from one connected component into another. Namely, if one chooses A; > u > A; +1
then the connected component given by the index set I is mapped onto the connected component
given by the index sets I, where I = {i € I |i > j}U{i ¢ I | i < j}. Using this representation
it is easy to see that indeed it is possible to steer from any connected component into any other.
“(i) = (iii)” Let D C M be a control set. By Theorem 15 in [8] for every open set W C core(D)
there exists an £ € W and u € Ufeg such that £ = p(¢,£,u). Choose W such that for alln € W
the representation n = P) ' ; a;z; in terms of a basis given by (generalized) eigenvectors of A
implies o; # 0,7 = 1,...,n. For such an 1 we now have a representation

That is in the basis {z1,...,z,} (with an associated change of basis T") we have

a=c IEI(TAT_1 —u(s))ta,

s=0
for a suitable constant ¢ # 0 and a = (a4, ...,ay). In particular, for each Jordan block J(\) of
A corresponding to the indices i1, ..., k() it holds that
Qi1 t Qix 1
=c[[IO) —uls)™! :
=0
Qiy kv ’ Qi kv

An easy calculation shows that this implies ¢ [T_o(J(A) — u(s)) ™t = I for every X € o(A).
(ii) = (iv): The proof of this statement is omitted. It follows the ideas for the complex case in
[4]. O

The unusual fact about the system we are studying is thus that by the universally regular
representation of one element of the system’s semigroup we can immediately conclude that the
system is completely controllable.
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For brevity we will call a cyclic matrix A II-controllable (for inverse iteration controllable), if A
satisfies any of the equivalent conditions of Theorem 3.1.

An immediate consequence of Theorem 3.1 lies in a complete characterization of the reachable
sets of the complete projected inverse power iteration given by

Et+1)=P(A—u(t))T'E(), teN, (0)=&eP", (6)

Corollary 3.2 Let A be II-controllable, then
(i) for each & € P*~ we have

Ot = P ﬂ V = Pspan{z, Az, A’z,..., A" 'z},
C€V,AVCY

P vN U V.

zeV,AVCV z¢V,AVCV

07 (¢)

(i) There is a one-to-one correspondence between
e The orbits of system (6).

e The closures of the orbits of system (6).

e The A-invariant subspaces.

4 Conditions for complete controllability

The result of the previous section raises the question for which cyclic matrices A admit a
representation of the form (4) or equivalently when (5) is possible. With respect to this question
we have the following preliminary results.

Proposition 4.1 Let A € R"*™ be cyclic.
(i) A is not II-controllable, if it satisfies one of the following conditions

(i) A has a nonreal eigenvalue of multiplicity greater than one.

(ii) A has a real eigenvalue of multiplicity greater than two.
(#ii) A is II-controllable, if o(A) C R and no eigenvalue has multiplicity greater than two.

We state the following trivial lemma, which for all its triviality will provide a way to construct
cases in which representations of the form (5) do not exist.

Lemma 4.2 (i) If for two eigenvalues A1, A2 € 0(A) and all uw € R we have
A1 —u| < Ao —ul,
then A is not II-controllable.

(ii) If the spectrum o(A) is symmetric with respect to the imaginary azis, i.e. o(A) =
—o(A), then the a representations of the form (5) exists iff there ezxists a universally
regular control sequence u € U? such that

t_l_Il(AQ —u?(s)) € R*I. (7)
s=0
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In this case A is not II-controllable if for two eigenvalues A1, Ay € o(A) and for all u €
[0,00) but one we have
AT —ul <[AS —ul.

Corollary 4.3 If one of the following cases is satisfied, the A is not II-controllable.
(i) There exist A1, Ao € 0(A) with A\ # A2 and Re A1 = Re Aq.

(ii) There ezist \i,i =1,...,4 € 0(A) with A1 # X2 ER, A3 = Ay, Re Az = 2 (A1 + Xo) and
ImAs > 1| A1 — Ao

(iii) There exist Ni,i = 1,...,5 € o(A) with A\t € R, Adg = Az, s = X5, A1 = 13050,
Im Xy =ImAs > |ReA; — Re)g| > 0.

(iv) There exist \i,i = 1,...,6 € o(A) with Ay # X2 € R, A\3 = A1, A5 = g, %()\1 +
Ag) = iz‘?:g)\j with the properties |A\j — (A1 4+ Ao)| > 3[A1 — Aol,j = 3,...,
Re(Aj — 3(A1 + X2))? < 2|A1 — Xo| for j =3,...,6.

(v) There exist \iy;i = 1,...,6 € 0(A) with \y = A2 € C, A\3 = Ag, A5 = Xg, Re A =
%E?:s Aj with the property Re A? < —(Im A)2.

Finally, for low dimensions the following complete result can be given.

Proposition 4.4 Let A € R™*™ be cyclic.
(i) IF n=1,2 then A is II-controllable.

(i) If n = 3 then A is Il-controllable if and only if the eigenvalues of A do not have a
common real part.
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