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Abstract

In this paper the problem of measuring the robustness of
stability for a perturbed discrete time nonlinear system is
studied. Various stability radii are introduced and their
values for the nonlinear system and its linearization are
compared and it is shown that they generically coincide.
Some examples are presented showing that it is sometimes
necessary to consider the nonlinear system directly, and
not simply to rely on the information provided by the

linearization.

1 Introduction

Robustness analysis of linear systems has played a promi-
nent role in the theory of linear systems. In particular
the state-state approach via stability radii has received
considerable attention, see the survey [HP90]. In recent
years there has been a great deal of work done on extend-
ing these results to more general perturbation classes, see
for example the survey paper [PD93], and for recent re-
sults on stability radii with respect to real perturbations,
see [QBRT95]. To date, the problem of extending these
results to nonlinear systems has received little attention,
although see [CK95].

In this paper stability radii for discrete-time nonlinear
systems are studied. The system is assumed to have an

affine perturbation structure. The stability radius is then

the norm of the smallest perturbation such that the sys-
tem is no longer stable. In this fashion, radii may then
be defined with respect to exponential, asymptotic and
Lyapunov stability. Results on the relationships between
the sizes of these stability radii are presented. It is seen
that the nonlinear stability radii are contained in the in-
terval defined by the radii of the linearized system, and
that generically all radii are equal. This equality is seen
to rely on the non-convexity of the set of Schur matrices.
Examples are presented to illustrate this point.

The paper is organised as follows: In Section 2 prelim-
inary definitions are presented, defining stability radii for
the nonlinear system and its linearization. The relation-
ships between these stability radii are studied in Section 3.
In Section 4 examples are presented demonstrating sys-
tems where the stability radii differ. An important link
between the nonlinear system and its linearization is pro-
vided by the center manifold theorem for discrete time
systems. For a review of these results see [Car81] and the

references contained therein.

2 Preliminaries

Consider the perturbed nonlinear discrete time system:
m
at = folx) + ) _uifi(z) (1)
i=1

where, fo(z*) = z*, f; : R* = R*, fi(z*) = 0,i =
1,2...m. A solution for a given initial condition zg is

denoted by ¢(t; o, u), where ¢(0;zg,u) = xo. When the



system is unperturbed, we denote the solution ¢(t; o) =
¢(t; o, 0).

The following standard definitions of local (Lyapunov)
stability, asymptotic and exponential stability are now
presented for completeness.

Definition 1 [Stability] The system (1) is said to be
stable (Lyapunov stable) about z* if Ve > 0 there ex-
ists a neighborhood U C R" of z* such that Vzoq € U,
|lo(t; m0) — 2*|| <.

Definition 2 [Asymptotic Stability] The system (1) is
said to be asymptotically stable at x* if it is stable about
x* and also U : Vxo € U, ¢(t; z0) — z*.

Definition 3 [Exponential Asymptotic Stability] The sys-
tem (1) is said to be exponentially asymptotically stable
at x* if it is asymptotically stable at x* and addition-
ally AU : Vxg € U, there exist M,a > 0 such that
l|p(t; zo) — 2*|| < Meot, Vit > 0.

For nonlinear systems, we define stability radii, or mea-
sures of robustness, for exponential, asymptotic and Lya-

punov stability directly from the definitions.

Tez(fo; (fz)) = inf {p > 0|E|U € Rm? ”u” < P

s.t. (1) is not exp. stable} (2)

Tas(fo; (fz)) = inf {p > 0|E|U € Rm? ”u” < P

s.t. (1) is not as. stable} (3)

rst(fo; (fi)) = inf{p>0[Fu e R",[lul <p,

s.t. (1) is not stable} 4)

Although the norm used in the definition could in prin-
ciple be any norm on R™, we shall use the Euclidean norm
in this paper.

We assume that the functions f; are differentiable at
x*. The linearization of system (1) at z* is of particular

interest, and is defined by

m
zt = (Ao + ZuiA,) x (5)
i=1
= A(u)z
where A; := %’; ,t =0,1,...m. Stability radii for the

linearized systemw(S) are now defined as follows:

r>(Ao; (4i)) = inf{p>0]JueR", |ul| <p,

sit.r(A(u)) > 1} (6)

r>(Ao; (4i) = inf{p>0|3ueR",[ul <p,

s.t.r(A(u)) > 1} (7

where 7(M) denotes the spectral radius of M € R**".
r>(Ao; (A;)) measures the size of the smallest perturba-
tion such that (5) is no longer exponentially stable, and
corresponds to the stability radius usually studied for lin-
ear systems, and is motivated by the following result.

Lemma 4 Letu € R™. Then the following statements

are equivalent:

(i) (5) is asymptotically stable.
(ii) (5) is exponentially stable.
(iii) r (A(u)) < 1.

Furthermore (5) is stable iff r(A(u)) < 1, and the geomet-
ric and algebraic multiplicity of the eigenvalues of A(u)

with norm 1 are equal. d
Proof. See [Aga92] Theorem 5.5.1, Remark 5.5.3, and
Corollary 5.4.2. m

The radius rs (Ao; (4;)) is the infimum of the norms of
the perturbations such that the system is exponentially
unstable. To the best of our knowledge this is a new mea-

surement of instability.

3 Results

In this section we examine the relationships between the
stability radii defined in the first section. For the mo-
ment we will not consider the problem of exactly how to
calculate these quantities.

The following inequalities are immediate from the defi-
nitions.

Lemma 5

r>(Ao; (4:)) <7 (Ao; (4:)) (8)
ez (fo; (fi)) < ras(fo; (fi)) < ree(fo; (fi) 9)
O

We now examine the relationship between the stability
radii for a nonlinear system, and those of its linearization.
The main ideas and intuition for the first result come from
the center manifold theorem for discrete time systems.
Lemma 6

7> (Ao; (Ai)) = rea(fo; (f:)) (10)

O



Proof. Suppose 7 < 7>(Ao;(4;)). Then by defini-
tion, Vu € R™ such that |ju|| < 7, 7(A(u)) < L
Thus by Corollary 5.6.3 of [Aga92] Vu € R™ such that
[lu]| <7, (1) is exponentially stable, thus v < 7. (fo; (i)
and 1> (Ao; (4i)) < rex(fo; (fi))-

Suppose now that v < 7rez(fo;(fi))- Then Yu € R™
such that ||u|| < «y there exist M, 8, > 0 such that

[lip(t; w0, u)|| < Mye™*[|2(0)|] (11)

for ||z(0)|| sufficiently small. Fix u and suppose that
r(A(u)) > 1. If r(A(u)) > 1, then the system is locally
unstable, contradicting v < Tegz(fo; (fi))-
r(A(u)) = 1.

need only consider the behavior of that part of the sys-

Now consider

Due to the center manifold theorem, we

tem which corresponds to eigenvalues A of A(u) for which
|A| = 1. Transform the system so that it may be written

in the form (suppressing the dependence on )

vt

Sv + g(v,w)

Tw + h(v,w) (12)

wt =
where T is Schur, and S has eigenvalues on the unit circle.
Then, by center manifold theory, there exists a function
c(v) such that the dynamics of the system (12) are gov-
erned by

S

¥ = Sz+49(z,¢(2)) (13)

in the sense that v(t) — 2(t) and w(t) — 0 as t — oo.
Now define G(z) := g(z, ¢(z)), which is the nonlinear part
of the dominant dynamics of the system.

Now Ve > 0, 30 > 0 such that ||z|| < d = [|G(2)|| <
€||z||- Thus for ||z|| < &

1Sz + g(z,c(DIl =
> |zl =GN =

152z + G(2)|
(1= e)lll|

Considering |[2(0)|| < ¢ it follows that ||z(¢)|| > (1 —
€)t(|2(0)||. For ¢ large enough, this contradicts (11). We
conclude that 7(Ag + > u;A;) < 1, and v < r>(Ag; (4;)).
It follows that re;(fo; (fi)) < r>(Ao; (A;i)), and the proof
is complete. [ ]
Lemma 7

rst(fo; (fi)) <> (Ao; (4i)) (14)

O

Proof. If v > r5(Ao; (4;)), then there exists a u € R™

with ||u|| < v such that 7(A¢ + >"u;A;) > 1. Thus the

system is unstable, so v > 75:(fo; (fi)) [ ]
When considering the possibility that

r>(Ao; (Ai)) # 7> (Ao; (A4))

it is important to note that the important character-
istic of the equations is the movement of the roots of
x(Ao + > u;A;) as the maximum allowable norm of u
increases. Clearly, if 7> (Ao; (4;)) < r>(Ao; (A;)), then
there must be a p; such that for some u with ||u|| = p1
r(Ao + > u;A;) = 1, but that for ||[u]| = p1 + €, with
e > 0 sufficiently small r(Ao + > u;A;) < 1. This is only
possible when the set of Schur matrices is non-convex. In
order to prove a genericity result about this property the
following concepts are useful.

Recall that a subset X of R™ is called semi-algebraic if

it is the finite union of sets of the form

{zeR; filz) =0=...= fi(z),
gl(-'L') > 07"'7gk($) > 0}7

where the f;, g; are all polynomials in R[X7,...,X,)]. For
semi-algebraicsets X C R*, Y C R afunction f: X - Y
is called semi-algebraic if its graph {(z,y) € R** ; y =
f(z),z € X} is a semi-algebraic subset of R**'. For an
introduction to the theory of semi-algebraic sets we refer
to [BCRA&T]. In particular we will use that the complement
of a semi-algebraic set is semi-algebraic and that sets de-
termined by a formula of first order in the language of real
ordered fields is semi-algebraic. (See [BCR87] Définition
2.2.3 and Proposition 2.2.4).

Lemma 8 Letn,m €N be fixed.

(i) The sets

7-2 = {(AO,--
o = {(4o,..

are semi-algebraic.

,Am) 3 7’2(140,...
Am); >

*

(ii)) The functions

r> RnXnx(m+1) \7'> SR
s Rnxnx(m-i—l) \7'> SR

are semi-algebraic.
(iii) r> is upper semicontinuous.

(iv) r~ is lower semicontinuous.



Proof.
(i) Note first that by the Schur-Cohn conditions the set
of Schur-stable matrices S, is semi-algebraic. The sets

T>,T> are the complements of

{(Ao,...,An); ueR™: A(u) € CS,.},
respectively

{(Aoy ..., Ap); FueR™ : A(u) € LclS,}

and thus semi-algebraic.
(#) Define the function

das....an (A0, B) = inf{[jul|; u € R™, B = A(u)},

where inf() = co. Note that d...(-,-) is a semi-algebraic
function on R**"*(m+2) which is finite on the set given
by the condition B € Ay + span{Ayj,..., An}. The graph

of r> is given by

{(Ao,...,Am,t) t>0,
VB € (AO + span{Al, ceey Am})\Sn :
t <da,,. A, (4, B) and

Ve >0, 3B € (Ao + span{A4,,...
t+e> dAl,...,Am(Ao,B) } ,

5Am})\8n :

which defines a semi-algebraic set. The graph of r5 has
the same definition with the exception that S, has to be
replaced by cl S,,.

(iii) If r>(Ao;(A;)) > c this implies that for all u €
R™, ||Ju|]] < ¢ we have r(A(u)) <+ < 1 for a suitable con-
stant . By continuity of the spectral radius there exists
a neighborhood V' of (Ao, ..., Am) such that r(B(u)) <
7" < 1 for all (By,...,Bm) € V and u € R™,|ju]| < c.
This implies r>(Bo; (B;)) > c for all elements of V. (iv)
can be proved using a similar argument. ]
Proposition 9 Given n,m € N, the set of matrices
Ao, Ay, ..., Ay € R™™™ for which

r>(Ao; (As)) < 7> (Ao; (A4)) (15)
is a nowhere dense, semi-algebraic subset of
Rrxnx(m+1) O

Proof. By the previous lemma it follows that the set

B :={(Ao,---,Am) ; r>(Ao; (4i)) <r>(Ao; (4i))}

is semi-algebraic. Thus it suffices to show that B is
nowhere dense in R**?*(m+1) and for this we need to show
that in every neighborhood of any point in B there exists a
point that does not belong to B. We first prove the follow-
ing intermediate claim: For any open set V' C R*nx(m+1)
it holds that

inf
(Ag,...,Am)EV

7> (Ao; (4)) — r>(Ao; (4;)) = 0.
To see this define d := inf( 4, . a,.yev >(A4o; (4:)) > 0.
If the infimum is oo there is nothing to show. Fix € > 0
and choose (By; (B;)) € V such that r>(By; (B;)) —€ > d.
Thus there exists u,||u|| < d + € such that r(B(u)) >
1. In any neighborhood of (By; (B;)) there exists a point
(Co; (C;)) such that 7(C'(u)) > 1 and hence r< (Co; (C;)) <
d+eand so s (Co; (C))—r>(Co; (C;)) < d+e—d. Asrs —
r> is lower semicontinuous a standard argument shows
that the infimum is actually attained on every open set
V. This completes the proof. ]

To paraphrase the previous result is to say that
generically it does not happen that r>(Ag;(4;)) and
r (Ao; (4;)) differ. This result extends to the case of non-
linear systems. We denote by C*(R*,R",z*) the set of
continuous maps from R™ to itself, continuously differen-
tiable at * € R™ and satisfying f(z*) = z*. Furthermore
C'(R",R", z*,0) denotes the set of continuous functions
from K™ to itself, continuously differentiable at z* € R"
and satisfying f(z*) = 0. We endow these spaces with the
topologies generated by the topology of uniform conver-
gence on compact sets and the topology of convergence of
the Jacobians at z*.
Corollary 10 Given n,m € N, the set of functions
{fos fi,---» fm} € CH(R™,R", z*) x CY(R"*,R", z*,0)™ for
which

Tex (fo; (fi)) < rse(fo; (fs)) (16)

is a thin subset of C'(R",R",z*) x C*(R*,R",z*,0)™
endowed with the product topology. O
Proof. Note that the situation of (16) is only possible if
for the linearized system (15) holds. It is thus sufficient to
show that the preimage of a nowhere dense semi-algebraic

set under the continuous, linear map

9fo

Ofm
Ik (@),

{fo, f1,--- ’6—x(m*)}

is a thin subset. This, however, is clear by definition of

the topology. [ ]



Remark 11 Due to the fact that for 1 dimensional
systems the set of Schur matrices is convex, it is immediate
that forn =1

Tea(fo; (i) = ras(fo; (fi)) = rse(fo; (fi)) - (17)

4 Examples

In this section we present examples demonstrating when
the inequalities proven in the previous section are strict
inequalities.
Example 12

To demonstrate what may happen in a situation where
the inequalities (15) and (16) hold, consider the following

system
2t = Agz+udiz (18)
where
7/22 —7/8 —37/264
Ao = 1 0 0
0 1 0
—13/22 —1/8 —35/264
Ay = 0 0 0
0 0 0
and we use the standard norm, |[|u|| = |u|.

Due to the special form of the matrices, the character-

istic equation of the system (18) may be seen to be

264

22 "3 26
(19)

Note that Ag + uA; is Schur for u € (—2,271/79)\{1}'.
The matrix Ag + A; has eigenvalues i, —i,—3/11, and the
martix Ag —2A; has eigenvalues 1, (1+4)/4, (1 —4)/4. See
Fig. 1 for a root locus diagram for the system.

It is thus clear that the system (18) has the following
stability radii: r>(A4g,(A41)) = 1, and rs (4o, (41)) = 2.

Furthermore, by virtue of Lemma 4, system (18) is an

X(A0+UA1) = 53 —+—+

_752 7s 37 13s2 s 35 u
22 8

example where

> (Ao, (A1)) = ez (Ao, (A1) = ras(Ao, (41))

< rse(Ao, (A1) = > (Ao, (41)) .

1271/79 ~ 3.43

0.8

0.6

0.4

0.2r

Imag Axis
o

-1 -0.5 0 0.5 1
Real Axis

Figure 1: Root loci for x(Ag + uA;1).

If we consider the system in R® given by

" Ay I A 0
z = T
0 Ao 0 A
=: Byx +uBix

then of course the values of r>, 7 are the same as for
system (18), but again by virtue of Lemma 4 we have an

example where
> (BO; (Bl)) = Tez(Boa (Bl)) = T‘aS(B(], (Bl))

= Tst(BOJ (Bl)) <7rs (BO) (Bl)) .
O

A difference between the exponential and the asymp-
totic stability radius is a truely nonlinear phenomenon.
To exhibit this we study a nonlinear system which has
(18) as its linearization.

Example 13 Consider the system

ot = Agz +ui Az — T x(Ag + Az +usxT m(Ag + Ay )z
(20)
with the Euclidean norm [Ju|| = (u} +u3)?. Note that
the linearization of (20) is (18), thus exponential stabil-
ity or instability of the system will be determined by the
parameter u;. Thus 7e,(fo; (fi)) =1 = r>(fo; (fi))-
Consider now that u; = 1, so that the linearization is
stable, but not asymptotically stable. We examine the

stability of the system using the center manifold theorem



and a Lyapunov argument. First note that (Ao + A;) is

similar to the matrix

0 1 0
B:=|-10 0
0 0 -3/11

Let S be the transformation matrix. In this basis, and

using u; = 1 the system(20) has the special form:

zt =

(1— (1 +up)2z" ST Sz)Bx .

Due to the center manifold theorem, we need only consider
what happens on the center manifold to determine stabil-
ity of the system. In this case the subspace (z1,2,0) is

a center manifold for the system. On this subspace (21)

T2
—1

takes the form:

2
x5

Consider the function V(z) = 2% + 23. Then

> - (1_(1+U2)(2w3+m§))<

AV(z) = V(zT)-=V(x)
= (T4u) (=24 222 + 22)(1 + uz)) *
(@7 + 3) (227 + 73) .

Now, V(z1, x2) # 0 the factor (2% +z2)(22% +22) is strictly
positive, and Vu there exists a neighborhood of the origin
such that —2+ (2% 4+ 22)(1 4+ u2) < 0. Within this neigh-
borhood the sign of V() is thus purely determined by the
sign of (1 + uy). Thus, for us > —1 the origin is asymp-
totically stable, for us = —1, the origin is stable, and for
uz < —1 the origin is unstable.
It is thus clear that

1= rep(fo; (i) < ras(fo; (f:)) = ra(fo; (fi)) = V2.

O

Note that using combinations of Examples 12 and 13 it
is easy to construct a higher dimensional example where
indeed

TZZTEE<TGS<TSt<T>-

5 Conclusions

In this paper we have shown that for a nonlinear system

(1) and its linearization (5),the stability radii are related

in the following way:
r>(Ao; (4i)) = rex(fo; (fi)) < ras(fo; (fi))

< rse(fo; (i) < (Aos (4i)),

ofs
ox | _

show that the inequalities may not be replaced by equali-

where A; = . Examples have been presented to
ties, however for systems of dimension 1 or 2, and generi-

cally for systems of higher dimension
> (Ao; (Ai)) = rex (fo; (fi)) = ras(fo; (fi))
= rst(fo; (fi)) = r>(4Ao; (4i)) -

In this paper we only consider real, time invariant per-
turbations of the system. In further work we intend ex-
tending these results to include complex or time-varying
perturbations.

It is expected that all the results presented in this paper
may be proven for continuous time systems. This will be

the subject of another study.
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