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Abstract

For discrete inclusions in Banach spaces we study
stability questions. The main result states that for
discrete inclusions on a reflexive Banach space vari-
ous characteristic exponents characterizing different
concepts of stability coincide. Using this result it is
shown that the convexification of an exponentially
stable difference inclusions is exponentially stable. It
is examined to what extent these results can be car-
ried over to the time-varying case.

1 Introduction

In this work we are concerned with stability prop-
erties of time-varying discrete-time systems and of
discrete inclusions. Several results that have been
obtained for finite dimensional systems are extended
to infinite dimensions. In particular we obtain results
similar to those in [3], [1], [5].

The study of infinite-dimensional time-varying
discrete-time systems has been carried out to a large
extent in the articles [8], [12], [9], [10], [11] . In these
papers it has also been noted that the study of dis-
crete time systems on Banach space is an appropriate
setting for the study of delay differential equations.
Robustness of stability was studied for discrete time
systems in infinite dimensions in [13]. As a discrete
inclusion may be interpreted as a time invariant sys-
tem with a specified region of uncertainty this paper
extends and complements the results of the previous
work on robust stability.

The motivation to study discrete inclusions in infinite
dimensions comes from the consideration of robust-
ness problems with respect to time-varying pertur-
bations of infinite dimensional discrete time systems.
Discrete inclusions are a very general way of describ-

ing time-varying uncertainty of a time-invariant sys-
tem. Applications of the theory to delay differen-
tial equations are discussed in the forthcoming article
[14].

Section 2 is devoted to the definition of various con-
cepts of stability for time-invariant and time-varying
systems. For exponential stability of a time-varying
system it is not enough to require, that all trajecto-
ries decay exponentially. The fact as such has been
discussed in the book on stability by Daleckii and
Krein [2], and the ideas are easily transferred to the
discrete-time case.

In Section 3 Lyapunov and Bohl exponents of time-
varying systems are introduced. We will show that
the Bohl exponent of an operator sequence A(-) €
£°(N, £(X)) can be represented as the logarithm of
the spectral radius of an associated operator A on
2(N, X). After this discussion of characteristic ex-
ponents we turn to the study of discrete inclusions
in the following Section 4. For discrete inclusions on
reflexive Banach spaces it is shown that the supre-
mal Lyapunov exponent, the supremal Bohl exponent
and a further “uniform” exponential growth rate co-
incide. In the final Section 5 time-varying discrete
inclusions are considered and stability concepts are
studied. These class of systems forms a generaliza-
tion for time-varying systems as well as discrete in-
clusions and this section therefore encompasses all
the results obtained up to that point.

2 Time-varying systems

Let X be a Banach space over the field K =R or C.
L(X) denotes the Banach algebra of bounded linear
operators from X to X. The norm on X and the
induced operator norm on £(X) are both denoted by
- 1I-

A Banach space X is called reflexive if the range of
the natural embedding of X into X** is X**. X
is reflexive iff the unit ball in X is compact in the
weak topology which is in turn equivalent to the



weak compactness of the unit ball in £(X) (see [4]
Theorem V.4.7 and Exercise VI.9.6). Recall that a
net {A,} C L(X) converges weakly to A iff for all
z € X and f € X* it holds that < A,z, f > con-
verges to < Az, f >. Weak convergence is denoted
by w—lim, A, = A. A set M C L(X) is called
weakly compact if it is compact with respect to the
weak topology, i.e. open covers contain a finite sub-
cover. The weak closure of a set V is denoted by
w—clV.
We consider time-varying linear discrete-time sys-
tems of the form
z(t+1)=A)z(t), t€N, (1)
where A() = (A(t))ien € L(X)N is a sequence of
bounded linear operators on X. The evolution oper-
ator associated to this system is defined by

b(t,t) = Ix, ®(t,s) = At —1)---A(s), t > s.
Definition 2.1 [Stability] System (1) is called

(i) stable, if for every e > 0 and to € N there exists
ad = d(g,to) > 0 such that

lzol| <6 = ||®(t,to)xol| <& forallt >tg,

(ii) asymptotically stable, if it is stable and for every
2o € X, to € Nlim;_, o <I>(t, to).’L‘o =0.

(iii) exponentially stable, if there are ¢, > 0
such that [|®(t,s)||¢(x) < ce P9, s,t €
N, t> s holds.

An immediate consequence of the definition is that if
(1) is exponentially stable, then A(-) € £>°(N, L(X)).
For time-varying systems asymptotic and exponential
stability are not equivalent and exponential stability
is not characterized by the spectrum of the transition
matrices A(t) even in the finite dimensional case, see
e.g. [7] Chapter 4.4. An example in [2] shows that
for exponential stability it is not sufficient that all
trajectories of a system of the form (1) decay expo-
nentially.

3 Characteristic Exponents

To characterize exponential stability the concepts of
Lyapunov and Bohl exponents have been introduced.
The largest exponential growth rate of system (1)
is given by the discrete time version of the (upper)
Bohl exponent [2] (named generalized spectral radius
in [10]). In the following definition we do not assume
(1) to be exponentially stable and let (A(t)):en be an
arbitrary sequence in £(X).

Definition 3.2 [Bohl exponent] Given a sequence
(A(t))ten in L£(X) the (upper) Bohl exponent of the

system (1) is

B(A()) =inf{B e RTeg >1:t>s>0=
1 2(t, 8)]| < eae” =},

where inf ) = oo.

B(A(-)) may be infinite, but it is easy to see that
B(A(+)) < oo if and only if (A(t))ten is bounded.

In contrast Lyapunov exponents focus on the expo-
nential growth rates of trajectories.

Definition 3.3 [Lyapunov exponent] Given a se-
quence (A(t))ten in L£(X) and an initial condition
(to, o) € N x (X \ {0}) the Lyapunov exponent cor-
responding to (to,xo) is defined by

)\(to,z‘o) = 1nf{)\ ERdey >1:t>t) =>

|®(t, to)zo|| < cxet=t0) ||z}

(2)

Furthermore we define the supremal Lyapunov expo-
nent by

#(A(") = sup{A(to, Zo); (fo, o) € N x (X \ {0})}.

The following statement is immediate from the defi-
nition.

Lemma 3.4 Let (A(t))ien in £(X) and an initial
condition (tp,z¢) € N x (X \ {0}). Then

(i) B(A(:)) <0 iff (1) is exponentially stable.

(ii) A(to, o) < 0 iff ®(¢,t0)xo goes to zero exponen-
tially fast.

(iii) B(A()) = K(A())
O

It should be noted that Lyapunov and Bohl expo-
nents do not characterize asymptotic stability. Also,
in general the inequality in Lemma 3.4 (iii) may be
strict.

Example 3.5 Let X = R and consider the se-
quence A(-) given by

1 11 111
A('):(_717_7_71717_7_7_7171715"')-
2°°2°2 2°2°2
It is easy to see that B(A(-)) = 0 while
k(A(-)) = —1log2. O

Both Bohl- and Lyapunov-exponents have asymp-
totic expressions that are easily shown from the def-
inition. For the Bohl exponent see [10].
Proposition 3.6 Let A(-) € L(X)Y, then

(i) If B(A(:)) < oo then
1

— S8

B(A()) = limsup ~—log ||2(% s)l] -

s,t—s—00



(ii) For every (to,zo) € Nx X

1
t—1o

A(to, zo) = limsup log ||® (¢, to)xo]|-
t—o00

O

In [10] Bohl exponents have been named generalized
spectral radius, as properties of the spectral radius
for time-invariant systems coincide with properties
of the Bohl exponent for time-varying systems. Let
us now explain why the relation between these con-
cepts is such a close one. The proofs of the follow-
ing two propositions are omitted due to space lim-
itations. Let X = £2(N,X) be the space of all se-
quences (z;)ien C X satisfying >, [|2i|* < oo. X
is a Banach space if it is endowed with the norm
l(@)ienllx = (Cien lzill>)2. On X we define the
operator A by defining for z = (29, 1,...) € X

A(z) := (0, A(0)zo, A(D)x1,...). (3)

From the definition it is immediate that A € £(X) iff
A(-) € £°(N, L(X)). The following relation holds be-
tween the spectral radius of A and the Bohl exponent
of A(-).

Proposition 3.7 Let A(-) € ¢*(N,£(X)) and
A be defined by (3), then

SN = 1(d), @)

where we use the convention e~ = (. O

As the Bohl exponent can be expressed as the spec-
tral radius of the operator A € L(£2(N, X)) we have
obtained a new way to prove the following results
that first appear in [10] and [12].

Proposition 3.8 Let (A(t))ien € I°(N; L(X)).
Then

(i) The function § : (I®(N;L(X)),|| - leo) = R U
{—o0} is upper semi-continuous.

(ii) If A(t) = A € L(X) is constant in t € N then
1
P = exp(lim = log | A'||) = r(A)
t—oo
is the spectral radius of A.

(iii) The following statements are equivalent:

(a) (1) is exponentially stable.

(b) B(A()) <0.

(c) r(4) < 1.

(d) Iy > 1 Vs € N Vi
S 18(t, 5)ao > < 72 oo

t=s

e X

4 Discrete Inclusions

Let X be a Banach space and M C L(X) be a
bounded set. We consider the discrete inclusion
z(t+1) e {Az(t); Ae M} teN. (5)
A sequence {z(t)}+en is called solution of (5) with
initial condition zo € X if x(0) = zo and for all
t € N there exists an A(t) € M such that z(t + 1) =
A)xz(t).
Two concepts as regards characteristic exponents of
(5) are immediate.

R(M) = sup{(A(-) ; A() e M}, (6)

B(M) = sup{B(A() ; A() e MY}, (7)

A further quantity that will be of interest is given by
the uniform exponential growth rate

_ ) 1
(M) :=limsup —log sup |[|[®4y(t,0)[. (8)
A()EM

t—o00 ) N
Corresponding to these definitions we introduce the
following concepts of stability:
Definition 4.9 [Stability] Let X be a Banach space

and M C L(X) be a bounded set. The discrete time
inclusion of the form (5) given by M

(i) has exponentially decaying
r(M) <0.

(ii) is called exponentially stable if 3(M) < 0.

trajectories if

(iii) is called uniformly exponentially stable if

§(M) <.
Let us note that every bounded M satisfies:

k(M) < (M) < (M), (9)
It is our goal to show that the three quantities in
(9) are in fact equal for discrete inclusions on reflex-
ive Banach spaces. In order to do this we need the
following proposition.

Proposition 4.10 Let X be a reflexive Banach
space and let M C L(X) be weakly compact. Then
for every sequence {xi(t)} of solutions of (5) with
bounded initial condition, i.e. ||z (0)|| < c for allk €
N, there exists a subsequence {xzy,(t)} of solutions
and a solution {z(t)} of (5) satisfying

w — limzy, (t) = z(t), for allt e N.

[—o0

(10)
]
Proof. As every closed ball B(0,r) is weakly com-

pact in X, we may choose a subsequence {a:k? )} of
the original sequence such that w — lim;_,o 20 (0) =



xo for an appropriate xg € X. Now choose a subse-
quence {iﬂkll (t)} of the sequence {xk? (t)} such that
w — lim;_, Akll (0) = A(0) for some appropriate
A(0) € M. Continue this process inductively and
consider the diagonal sequence {zy, (t)} := {x(t)}
and the solution {z(t)} of the discrete inclusion (5)
determined by the initial condition zy and the oper-
ator sequence (A(0), A(1),...) € MN.

We will prove (10) by induction. For ¢ = 0 the as-
sertion is clear by construction, so consider the case
t + 1, then for any f € X* it holds that

<az(t+1) —zp(t+1), f >=
< A@)z(t) — A(t)aw, (1), f > +
< A(t)x/w (t) - Akl (t)xkz (t)ﬂ f > .

The first term of the right hand side converges to
zero by the induction hypothesis, while the second

term converges to zero by the weak convergence of
the Ay, (t) to A(t). n

Using the preceding fact we can show the following
proposition on the boundedness of the solutions of an
asymptotically stable discrete inclusion partly using
ideas that were also used in [3] for the finite dimen-
sional case.

Theorem 4.11
Let X be a reflexive Banach space and let M C L(X)
be weakly compact. If for all A(-) € MN it holds that

tlggo ®4()(t,0)20 =0,
then there exists a constant caq € R such that
sup{[|®a¢)(t,0)]| ; t e NJA(-) € MN} <cp . (11)
O
Proof. In order to show (11) we have to show that
sup{[|® a()(t; 0)zo|l ; t € N A() € MY, ||zo]| < 1}

is finite. By the principle of uniform boundedness
(see, [6], Theorem II1.1.27) it is sufficient that for
each f € X* there exists a constant ¢y satisfying

sup{| < @4 (t,0)z0, f > | ;

e N A() € MY, flaoll < 1} < cf.

Assume there exists an f € X* for which (12) does

not hold, i.e. there exist sequences {Zy } nen, {tn }nen
and {A,(-)}nen such that

(12)

| < (I)An(.)(tn,()).%'n,f >|>n+1. (13)

Let us assume that the sequences have been chosen
in such a way as to guarantee that for all solutions

{z(t)} of (5) with initial condition zo,||zo| < 1 it
holds that

| <z@®),f>] <n+l fort=0,1,...,t,—1. (14)

As M is bounded it follows immediately that

t1 <ta<tz..., tp,— 0.

We claim that for every n it holds that

| <zp(t),f>]>1, t=1,... (15)

b tn b
for otherwise consider a 1 < ¢’ < t,, with
| <zn(t), f>|<1.

The sequence z(t) = z,(t + t') is a solution of (5)
with initial condition zg = z,(t'), ||zo|| < 1, by (14)
it follows that

n+l1>|<z(ty—=t),f>|=|<znltn), f>],

in contradiction to (13). Now using Lemma 4.10 we
may choose a subsequence {z,,(t)} of {z,(t)} such
that
w —limz,, (t) = z(t),
J—00

for some solution {z(t)} of (5). By assumption there
exists a T € N such that ||z(¢)|| < 1/2|f| for all
t > T and hence

1
|<ar(t),f>|<§, forallt >T.
Now for all j big enough it holds that
| <on, (T), f>1>1,

by (15) and thus z(7T) is not the weak limit of the
Tn;(T). This contradicts our construction, which
completes the proof. m

Remark 4.12 In the finite dimensional theory The-
orem 4.11 can be used to show that an asymptotically
stable discrete inclusion is in fact exponentially sta-
ble [3]. Note that this is false in infinite dimensions
as even for time-invariant systems asymptotic stabil-
ity does not imply exponential stability, see [8]. The
reason for this appears to be that the boundary of
the spectrum of an operator A need not contain ele-
ments of the point spectrum, so that the existence of
A € 0(A), |\ =1 does not guarantee the existence of
a trajectory with invariant norm.

Using Theorem 4.11 we obtain the following result
on growth bounds of discrete inclusions:
Theorem 4.13

Let X be a reflexive Banach space and assume that
M C L(X) is weakly compact, then

R(M) = B(M) = (M) (16)



Le. a discrete inclusion given by a weakly compact
M has exponentially decaying trajectories iff it is
exponentially stable iff it is uniformly exponentially
stable. O

Proof. By (9) it remains to show that §(M) <
R(M). Assume without loss of generality that
k(M) < 0 < 6(M). By the definition of the Lya-
punov exponents this implies that all solution of (5)
converge to zero and hence by Theorem 4.11 there
exists a constant caq such that

sup{[|®a¢)(t,0)ll 5 t € N, A() € M} <eu-

Hence §(M) < limsup,_, . 1/tlogca = 0, a contra-
diction. n

Corollary 4.14 Let X be a reflexive Banach
space and let M C L(X) be weakly compact. For
every € > ( there exists a constant cpq,. such that

1@ 40y, 0)] < cpr, @M (17)

for all A(-) € MN and allt € N. O

Corollary 4.15 Let X be a reflexive Banach
space and let M C L(X) be weakly compact. If
the discrete inclusion (5) given by M has a positive
uniform growth rate, then there exists a trajectory
with positive exponential growth rate. In particular
there exists an unbounded trajectory. O

Let us note that Theorem 4.13 also has implications
on balanced convex sets. For M C £(X) we denoted
the balanced convexification by

U

a€K la|=1

bcoM := co aM.

Corollary 4.16 Let X be a reflexive Banach
space and assume that M C L(X) is weakly com-
pact, then

BM) = B(co M), (18)

and - -
B(M) = B(bco M) . (19)
O

Proof. In view of the preceding Theorem 4.13 for
(18) it is sufficient to show that 6(M) = §(co M) as
it holds that S(M) < B(coM) < §(coM). To this
end it is sufficient to note that for each ¢ € N it holds
that

sup

@40y, 0| > sup [[@agy (2 0),
A()eMN A(-)eco MN

due to the convexity of the norm. Now (19) follows
from (18) as the matrix products considered in (19)

are up to a constant of modulus one the same as in
(18). n

Corollary 4.17 Let X be a reflexive Banach
space and assume that M C L(X) is weakly com-
pact, then

B(M) = B(w — clbcoM). (20)

O

Proof. As in the proof of the preceding corol-
lary we have to show that §(M) = §(w — clco.M)
and for this it is sufficient to see that §(coM) =
d(w — clco M). As for convex subsets of £(X) weak
closure and strong closure coincide (see [4], Corollary
VI.1.5) the assertion follows after noting that for a
strong limit A of an operator sequence {A,} it holds
that [|A[| < limsup,,_, o [|An]|- n

5 Time-varying Discrete Inclu-
sions

Let X be a Banach space and let for every t € N
the set M(t) C L(X) be bounded. We consider the
time-varying discrete inclusion

z(t+1) e {Ax(t) ; Ae M(#)} teN. (21)
A sequence {z(t)}:en is called solution of (21) with
initial condition zg € X if 2(0) = 2o and for all t € N
there exists an A(t) € M(t) such that z(t + 1) =
A(t)z(t). Also we say that a sequence A(-) € M(-)
if A(t) € M(¢) for all t € N. We say that M(:) is
uniformly bounded if there exists a constant ¢ such
that sup{||4]| ; A € M(t),t € N} < c. We introduce
the characteristic exponents

B(M()) :=sup{r(A()) ; A() e M()}, (22)

BM()) :=sup{B(A(-) ; A(-) e M()}.  (23)
dM()) =

i sup % g sup  [[Ba(t+s9), (24)

A(-)EM(-),s€EN

and define the concepts of exponentially decaying tra-
jectories, exponentially stable and uniformly expo-
nentially stable as in Definition 4.9.
Let us note that for M(-) uniformly bounded we have
RM()) < BM() < 6(M(), (25)
where the first inequality may be strict as time-
varying systems are a special case of time-varying
discrete inclusions where each M(t) is a singleton
set. Also for time-varying systems it is clear that



both 8 and § reduce to the Bohl exponent and are
therefore equal. This extends to the general case. A
proof of the following theorem can be found in [14].
Here we will only give a brief sketch.

Theorem 5.18

Let X be a reflexive Banach space and let M(-) be
uniformly bounded. Assume furthermore that for
each t € N the set M(t) is weakly compact, then

(26)

BM()) = 8(M().
Thus a time-varying discrete inclusion is expo-
nentially stable iff it is uniformly exponentially
stable. O

Idea of proof: Recall the definition of the space
X from (3) and introduce the set M := {4 ; A() €
M(-)}. For the discrete inclusion on X given by M
we can apply Theorem 4.13: it is quite straightfor-
ward to see that X is reflexive and that M is weakly
compact. Thus we have that

K(M) = BM) = 6(M)..
Now (M) > SUP 4 A% logr(A) = B(M(-)) and on

the other hand 6(M(+)) is equal to

1
lim sup — log

t—o00

sup
A()eEM(-),sEN

[@ac)(t+s,9)l =
. 1 Y
limsup —log sup [[®4.,(t0)[| =0(M).
t—o0 A()EM
It therefore remains to show that sup ;. v log r(4) =

~

R(M). This is omitted here. ]
Corollary 5.19 Let X be a reflexive Banach
space and let M(-) be uniformly bounded. Assume
furthermore that for each t € N the set M(t) is
weakly compact, then for every ¢ > 0 there exists
a constant cpy(.),. such that

1B 40 (t + 5, 8)]| < cpq(y, e ZMNFE

O

Note that an equivalent statement to Corollary 4.15
is false, as M(t) = {0} may occur for infinitely many
t while a positive uniform exponential growth rate
exists.

Corollary 5.20 Let X be a reflexive Banach
space and let M(-) be uniformly bounded. Assume
furthermore that for each t € N the set M(t) is
weakly compact. Then for the time-varying discrete
inclusion N'(-) given by

N(t) = w — clbcoM(t),
it holds that

6 Conclusion

For a large class of discrete inclusions it has been
shown that different concepts of stability resulting
from the consideration of trajectories, evolution op-
erators or supremal norms coincide. For time-varying
inclusions the latter two indices are the same while
simple examples show that here exponential decay of
trajectories does not guarantee exponential stability.
The results also show that the set of subsets of £(X)
that yield stable discrete inclusions is stable under
convexification and weak closure.
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