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Abstract

The problem of calculating the maximal Lyapunov ex-
ponent of a discrete inclusion (or equivalently its gener-
alized spectral radius) is formulated as an average yield
optimal control problem. It is shown that the maxi-
mal value of this problem can be approximated by the
maximal value of discounted optimal control problems,
where for irreducible inclusions the convergence is lin-
ear in the discount rate. This result is used to obtain
convergence rates of an algorithm for the calculation of
time-varying stability radii.

1 Introduction

The stability radius of the system
z(t+1)=(A+ DAE)x(t), t€eN, (1)

where A represents the unperturbed system, D and E
are given structure matrices of appropriate sizes and A
is an unknown perturbation matrix is defined as the size
of the smallest A (measured in some operator norm)
for which system (1) becomes unstable. The problem
of calculating stability radii for different perturbation
classes has attracted the interest of several researchers.
For an overview of the theory the reader is referred to
the survey article [11].

A formula for the stability radius for a matrix subject
to real time-invariant perturbations was obtained only
recently in [15] for the particular case that the size of
the perturbations is measured in the spectral norm. For
this situation a feasible algorithm for the calculation of
the real structured stability radius has been given in
[16]. It is still an open problem how to calculate real
stability radii with respect to other norms.

In this paper discrete inclusions of the form

o(t+1) € {Az(t); Ae M}, teN, (2

are studied, where M is a bounded set of real matrices.
Stability and dynamics of such systems has been stud-

ied extensively in [1], [2], [10], [13] and [20]. In particu-
lar equality between the joint and generalized spectral
radius and the largest Lyapunov exponent have been
shown, three quantities that characterize exponential
stability of (2). Methods for the calculation of the gen-
eralized spectral radius have been discussed in [1], [7]
and [14]. These approaches have in common that they
are based on the calculation of ever longer matrix prod-
ucts and evaluating norms and spectral radii of these
products.

In our approach the maximal Lyapunov exponent is
formulated as the optimal value of an optimal con-
trol problem on the m — 1 dimensional sphere. The
main idea is that the intrinsically hard problem of cal-
culating the maximal Lyapunov exponent is solved by
finding easier problems which approximate the original
one. These are the so called discounted optimal control
problems with low discount rates. It has been shown
in [18], that in general it is not possible to approximate
average yield optimal control problems by discounted
ones. Here we pursue an approach which only yields
convergence results for the maxima of the value func-
tions, but which has the added advantage of supplying
convergence rates in the discount rate. Also it has been
shown that the procedure we present for the calcula-
tion of stability radii is reliable in the sense that the
estimates for the stability radius are below the actual
stability radius.

In the continuous-time case there has been substantial
work on the Lyapunov spectrum of time-varying linear
systems using an approach introduced by Colonius and
Kliemann [6]. This has also led to an investigation of
the real time-varying stability radius in [4], [5] where
stability radii are examined under the assumption of
further controllability properties.

In the following Section 2 we give a precise problem
formulation. In Section 3 we briefly present existing
algorithms for the calculation of generalized spectral
radii. In the ensuing Section 4 the basic idea of our
approach is presented. The main result for the approx-
imation and an analysis of its complexity are given in
Section 5. A numerical example is presented in Sec-
tion 6.



2 Problem Formulation

Consider the stable time-invariant system

z(t+1) = Aoz(t), teN
z(0) = zo €R*,

where Ag € R"*". Time-varying uncertainty may be
modeled by a set M C R"*", that contains Ay and is
bounded. To this end consider the discrete inclusion

z(t+1) € {Az(t); AeM}, teN (3)
z(0) = 2o €R".

A sequence {z(t)}:en is called a solution of (3) with
initial condition zg if z(0) = zo and for all ¢ € N there
exists an A(t) € M such that z(t + 1) = A(t)z(t). We
denote the set of all finite products of length ¢ by

Sy = {A(t—1)...A0); A(s) e M,5=0,...,t —1}.

Exponential stability of the discrete inclusion (3) may
now be defined as follows.

Definition 2.1 The discrete inclusion (8) is called ex-
ponentially stable, if there exists constantsc > 1,8 <0
such that

S| < cePt,  forallt>0, S;e€S;. (4)

Two quantities which have been studied in [2] in order
to analyze exponential stability of discrete inclusions
are the joint and the generalized spectral radius. We
depart slightly from the conventions in this area as we
take logarithms of all quantities, as is the custom if
Lyapunov exponents are considered. Let M C R"*"
be fixed, let r(-) denote the spectral radius and || - || be
some operator norm on R**™ and define:

1
(M) = sup{z logr(St) ; St € S},

R 1
(M) = sup{zlogHStH ; St € St}

Theorem 4 in [2] states that for bounded M the fol-
lowing equality holds

p(M) = lim (M) = limsup7(M).  (5)
—00 t—»00

It is easy to see that (3) is exponentially stable iff
p(M) < 0. Furthermore we have for all ¢t > 1

Pe(M) < p(M) < pi(M). (6)

Recall that M C R™"*" is called irreducible if only the
trivial subspaces {0} and R" are invariant under all
matrices A € M. Otherwise M is called reducible.
The following lemma is shown in [19]. It provides the
basic fact needed for our convergence analysis.

Lemma 2.2 Assume that M C R**" is bounded.

(i) If M is irreducible, then there exists a constant
M > 0 such that for allt > 1

(M) = p(M)| < Mt

(i) If M is reducible then there exists an M > 0
such that for all t > 1

(M) = p(M)] < ML,

The concept of the stability radius may now be for-
mulated as follows, see also [4]. Assume we are given
an increasing family U := {M,; v > 0} of bounded
subsets of R**™ ie. M, C M,, if 74 < v. The
set M, is the set of admissible perturbations at the
perturbation intensity v. We will assume that v = 0
represents the case, when no perturbations are present
ie. Mo = {Ao}. Given the family ¢ the problem is
then to find the smallest v such the discrete inclusion
given by M, is not exponentially stable.

Definition 2.3 (Stability radius) For an increas-
ing family U, such that { Ao} = Mo we define the time-
varying stability radius of Ao by

Tt (Ao, U) = inf{y; p(M,) > 0}. (7)

By the results of Barabanov [1] and Gurvits [10] it is
known that if the set of matrices M is exponentially
stable and bounded then the same holds true for the
closure of the convex hull cl conv(M). Thus all consid-
erations can be restricted to affine perturbations and
compact M. The following general assumption will be
made throughout the remainder of this paper.

Assumption 2.4 We assume that the set U =
{M, ; v > 0} satisfies:

(i) Mo = {Ao}.
(i3) The family U is increasing in ~y.

(11i) For all v > 0 the set My is compact and
convez.

(iv) For all v > 0 the set Vy := {z € R* ; Az =
0, VA € M} = {0}.

Note that Assumption (iv) is without loss of generality
for robustness analysis as V/, is a linear subspace and we
can study exponential stability on the quotient space
R™/V, if necessary.



3 Existing Algorithms

It is known that the calculation of the generalized
spectral radius is NP-hard in the dimension of the
matrices involved [17]. For finite sets of matrices
M = {4,,...,A,} there are algorithms available for
the calculation of upper and lower bounds. As the top
Lyapunov exponents does not change under convexi-
fication of M these algorithms are applicable to the
special case of system (3) and Assumption 2.4, when
M., = Ay +~yM and M is a polygon.

For this case an approximation algorithm is presented
in [7], which uses (6) to obtain upper and lower bounds.
It converges to a value within a predefined error bound
of the generalized spectral radius. The idea is that
the algorithm evaluates the norm and the spectral
radius of matrix products of length ¢ of the form
A(t —1)...A(0) only in the case that all intermediate
products A(s) ... A(0) have a norm bigger than the pre-
viously obtained lower bound, thus reducing the num-
ber of matrix products to be computed. In [14] the
calculation of the lower bound p;(M) in (6) is further
simplified. In fact, it is shown that it can be performed
involving no more than m'/t matrix products of length
t. The spectral radius of each of these matrices has
then to be evaluated. At the moment it is, however,
not known how quickly p;(M) converges to p(M) also
there are no convergence rates available for Gripen-
berg’s algorithm.

4 Infinite horizon optimal control

In this section we aim to show how to formulate the
generalized spectral radius problem as an infinite hori-
zon optimal control problem. This leads to an algo-
rithm that does not involve matrix multiplications. In
order to do this we introduce exponential growth rates
of trajectories, following an approach introduced in [4].

Definition 4.1 Given a sequence A € MY and an ini-
tial condition vo € R™ \ {0} the Lyapunov exponent
corresponding to (.Z‘o,A) is defined by

A(wo,A) = limsup  log | A(t = 1).... AO)zo]

where we use the convention log0 = —oo.

From (6) it is easy to see that
p(M) = sup{\(zo, A);zo € R" \ {0}, A € M},

which is the quantity studied in [1]. Note that in or-
der to characterize exponential stability of time-varying
systems it is not sufficient to consider Lyapunov ex-
ponents, but rather Bohl exponents have to be intro-
duced. However, it follows from (5) that for discrete in-
clusions determined by a bounded set of matrices max-
imal Lyapunov and maximal Bohl exponent coincide.

We study now the projection of the discrete inclu-
sion onto the sphere. In our discrete-time system
we do not exclude the possibility that the origin may
be reached from non—zero states. Denote M(z) :=
{A e M ; Az # 0} and MN(z) = {A €
MY 5 A(t)...A0)z # 0,Vt € N}. By Assump-
tion 2.4 (iv) it holds for all z # 0 that M(x) #
0, MN(z) # 0. With this notation the projected in-
clusion corresponding to (3) is given by

€t+1) € {Iljggill 6M(§())},teN

£0) = &esm (8)

We denote the solution of (8) corresponding to an ini-
tial value & € S™ ! and a control sequence A €
MN(&) by £(+; &, A). In order to obtain the Lyapunov
exponent A(xo, A) from the trajectory &(; zo/||zol|, A)
of the projected system define for £ € S*~1, A € M(£)

q(§, A) :=log || Ag]| - (9)

A straightforward calculation yields the following ex-
pression for Lyapunov exponents.

Lemma 4.2 For & € S™ 1, A € MN(&) it holds that

A(&): - hm Sup Z 60; 7 ( )) ’

and otherwise A(§p, A) = —o0.

Thus Lyapunov exponents may interpreted as the av-
erage yield along a trajectory on the sphere. Analo-
gously, we introduce for § > 0 and A € MN(£) the
0-discounted yield

=S e Mgt A),AG)  (10)

t=0

Otherwise let J5(&,A) = —oo. The associated value
functions are given by

V&(g) ‘= Ssup J5(£7A)7 Vb(&) ‘= Sup A(57 A) .
AeMN Ac MM

Remark 4.3 (i) The stability radius can now be for-
mulated in terms of value functions in the following
sense. Let Ag € R™™™ and let U C R"*"™ satisfy As-
sumption 2.4 then

Ty (Ao, U) =inf{y > 0; sup Vp,(&) >0},

§€n1

where Vj , denotes the value function of the average
yield problem corresponding to M., .

(ii) Note that for every A € MN(¢) the expression for
Js(&, A) is well defined. In fact, it may be shown that
the infinite sum is either absolutely convergent, or the
partial sums tend to —oo.



The discounted optimal control problem is far easier
to analyze, which is why one tries to obtain a rela-
tion between it and the average yield problem. In [3]
Chapter V it is shown that V; satisfies the Hamilton-
Jacobi-Bellman partial difference equation. A consid-
erable amount of effort has been spent in recent years
on the numerical solutions of such equations. It re-
mains to analyze the relation between Vs and Vg, so
that we can make use of the results of these efforts.

5 Convergence analysis

Let us first examine properties of the different values
along periodic trajectories. This may then be employed
in the analysis of trajectories evolving in eigenspaces.
The following results are shown in [19].

Proposition 5.1 Let & € S, A € MN(&) be such
that there exists a p > 1 satisfying

(i) A(t+p)
(i6) &(t + p; &0, A) = &(t; 60, A) for all t € N.

=A(t) forallt €N,

Then the following statements hold:

(i) Méo, A) = 5 370 a(€(t; &0, A), A(D)).
() o | 050, A), AL +9)
Z 1= e—ﬁ (607 )

(iii) If A\(o, A) > 0 then for all 6 > O it holds that

max 6Js5(§(t; &0, A), At +-)) > A&, A) .

0<t<p—1

The preceding proposition may be used to analyze the
behavior in eigenspaces given by periodic sequences A.
For an eigenvalue p € R of S; € S; let E(u) denote the
corresponding eigenspace, or if u ¢ R, let E(u) denote
the real part of the sum of the eigenspaces correspond-

ing to w, i.

Corollary 5.2 Let S; € S; and & € E(p), ||l =
1 for some u € o(S;). Let A € MY be a t-periodic
sequence satisfying Sy = A(t — 1) ... A(0). then

(i) ngglggi_l 6J5(€(s; 60, A), A(s +-)) >
= Ao, A) = =3 ¢ log u.
(i) If [u| > 1 then

max .J5(£(s; 60, A), As +

0<s<t—-1

)) > A(£07A)7

Theorem 5.3 Let M C R**" be bounded.

(i) If M is irreducible then there exists a constant
M > 0 such that for all § > 0

| max V5(€) - p(M)| < M.
gesn—

(ii) If M is reducible then for any & > 0 there
exists a constant M > 0 such that for all 6 > § >
0

| max §V5(€) — p(M)| < M&(1 +1log(d™1)).
£esn

(#ii) If p(M) > 0 then

lim 52%3“’515%(5) = inf grerég)gléVa(@ = p(M).

In [9] an adaptive grid scheme for the calculation of
approximations Vs to Vs are presented. For grids of
constant node distance k it holds that the deviation
satisfies ||V — Vi|loo < CkP/?%, for suitable constants
C,D. As the number of nodes in S?~! is of the order
k"1 we see that obtaining a good approximation of
p(M) using small values of & > 0 entails exponential
effort in the dimension of the problem.

Let us also note the consequences of the previous the-
orem for the approximate calculation of time-varying
stability radii. By definition the time-varying stability
radius is the infimum of the set {7 ; p(M,) > 0}. Let
us assume that the sets M, are compact and the map
v = M, is continuous with respect to the Hausdorff
topology. Then the map

g:7 = p(My)

is also continuous (see [1]), g(r+ (Ao,U)) = 0 and g is
clearly monotone by Assumption 2.4 (ii). Define

C(U) := sup {C ER: liog(”v(AOI;U) h) < —C} .

The number ¢(U) may be interpreted as the supremum
of the gradients of those linear functions that have their
zero in 14, (Ag,U) and are larger than g on some inter-
val of the form [a, ry, (Ao, U)], where a < 14, (Ao, U). It
is nonnegative by the monotonicity of g. The follow-
ing theorem is the main result for our approximation
procedure, we give a brief outline of the proof.

Theorem 5.4 Let Ag € R*"*™. Let U satisfy Assump-
tion 2.4, then the following properties hold.
(i) For all § > 0 it holds that
rtv(AO;u) 2

rs(Ao,U) = }yr;f('){'y, 52%%}( (5V57( &) > 0}.



(1/L) ’f‘tU(Ao,I/{) = lim5_>0 T(;(Ao,U).

(iti) If c(U) > O then there ezist & > 0 and a
constant M > 0 such that for all 0 < § < §

T (Ao, U) — r5(Ag,U) < MS(1 +1log(671)).

If, furthermore, M., is irreducible for all v > 0
then M may be chosen such that for all0 < § < 9§

Ttv(Ao,Z/{) - Tg(Ao,u) S M§6.

Proof. (i) and (ii) follow using Theorem 5.3.
To prove (iii) choose € > 0 small enough such that
c(Ud) — € > 0. Then there exists an n > 0 such that

9(7) < (eUd) = &) (7 = 1o (Ao, U))

for all

Y € [rtU(A07u) - n;TtU(A07u)]'
Choose ¢ > 0 then by Theorem 5.3 (ii) for every v €
[rew (Ao, U) — 0,74y (Ao, U)] there exists an M., > 0 such
that for all 0 < § < ¢’ we have

§Vs.,(6) <
(ax, 5 (8) <

(cU) —€)
(v — 0 (Ao, U))
It follows from Theorem 2 in [1] and the construc-
tion of the constant M in Lemma 2.2 (ii) that M :=
sup{M,, ; v € [rw(Ao,U) — 0,74, (Ao, U)]} exists. De-
note the zero of (c¢(U) — €)(y — rew(A4o,U)) + MS(1 +
log(d~1)) by

+ M,6(1 +1og(671)).

M
Fg = ’[‘tv(Ao,u) - 7—56(1 +10g((571)) .

cU)
Then for all 0 < § < ¢’ small enough so that Md(1 +
log(671))(c(U) — )~ < n we obtain
Tto(Ao,U) —r5(Ao,U) <
_M
cU) —¢
The claim for the irreducible case follows the same

way by replacing §(1 + log(6~1)) by § and using Theo-
rem 5.3 (i). [ |

5(1 +1og(671)).

6 Numerical Examples

At the heart of the calculation of time-varying stabil-
ity radii is the algorithm for the solution of the discrete
Hamilton-Jacobi-Bellman equation, as described in [8].
Using these existing algorithms max,cgn-1V;s(§) may
be calculated and a bisection algorithm may then be
applied to obtain rs5(A,U) as an approximation of the
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Figure 1: Comparison of the real structured, the com-
plex structured and the time-varying stability

radius.
Example 6.1

stability radius 74, (A,U). To make a clear distinction
between the value r5(A,U), which is theoretically de-
fined and the values that are the result of the numerical
algorithm, we denote the latter by 75(A4,U).

To consider a three-dimensional example let

0 1 0 0

Alu) = 0 0 1 + | 0 | «[010](11)
1 p 1 1
10 2

and U; := {u € R, |u| < 1}. The parameter b is assume
to be known. In this example it is used simply to be
able to present different features of the time-varying
stability radius. It is easy to see that for all v > 0 and
all b € R the set M., (b) = Ao(b) + yU; is irreducible.
With these data we obtain an uncertainty model of
feedback type and the results presented in [11] may be
compared with the results on the time-varying stabil-
ity radius. The real stability radius may be obtained
by the following simple calculation. The characteristic
equation of Ag(b) is given by
33, Ly 1 _

P,(A\) = A +2)\ —bA—lO—O, (13)
and it is straightforward to see that Ag(b) is stable iff
—0.94 < b < 0.6 and for these values of b the real
time-invariant stability radius satisfies

rR(Ao(b); D, E) = min{| — 0.94 — b[,]0.6 — b|}. (14)

The complex stability radius rc(A4q(b); D, E) can be
calculated using the MATLAB routine Stabrad-Bruinsma,
by L. Schwiedernoch. From [12] it follows that in this
case

TR > T4y > TC - (15)

We calculated an approximation of the Lyapunov-
stability radius with discount rate § = 0.01. The three
different stability radii are shown in Figure 1.

In the interval [0.1,0.6] it holds that rgr(Ao(b); D, E) =
rc(Ao(b); D, E), so that the reliability of the algo-
rithm may be tested by comparing the results for



rr(A(b); D, E) and 7g.01(A(b); D, E). The difference is
shown in Figure 2.
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Figure 2: Error in the calculation of the time-varying
stability radius.

The value b = —0.165 has been chosen to study the
convergence of rs. To this end 75(A4o(—0.165),U) was
calculated for & from 10~* to 2 - 1072. The result is
shown in Figure 3. The rate of convergence is of order
1 in § as predicted by the theory. In fact, using the
MATLAB polyfit function we obtain that

r5(Ao(—=0.165); D, E) =~ —0.62124 + 0.6629,
where the least squares error is 6.7174 - 107%4. The
difference between the linear and the second order fit

in § = 0 is 1.7686 - 107% showing that a linear fit is
adequate.

0.665

o
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>

Estimate for stability radius
o
o
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0 0.005 0.(%)1 0.015 0.02

Figure 3: 7; for small discount rates, b = —0.165.

Similar calculations can be performed for the values
of b considered in Figure 2, suggesting that the error
displayed is mainly due to the discount rates and only
to a small extent due to the discretization of the state
space necessary for the solution of the HJB equation.
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