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1 Introduction

The robustness analysis of linear systems via a state
space approach has been of major interest in the last
decade. A significant step in this development was
the introduction of the stability radius as a measure
of robustness by Hinrichsen and Pritchard [8]. This
methodology has subsequently been extended to sev-
eral classes of linear systems and perturbations, see
the survey [9]. There has also been a great deal of
work done on extending these results to more general
perturbation classes, see for example the survey paper
[11].

Recently, in [13], stability radii for linear discrete-time
systems with time-varying perturbations have been in-
vestigated based on results on the joint and the gener-
alized spectral radius obtained in [2], [3], [4]. In this
paper we study robustness of discrete-time nonlinear
systems based on these results. The key idea is to de-
fine a stability radius for the perturbed nonlinear sys-
tem, and then to examine the related stability radii for

the linearized system.

Following the approach outlined in [6, 7] we assume
there exists a fixed point z* of the nonlinear system,

and that it is singular with respect to the perturbations,

i.e. not perturbed under the perturbation class consid-
ered. For this fixed point we define the exponential
stability radius. We show that lower and upper bounds
of this stability radius can be obtained by studying the
linearization in z*. Using results of the spectral the-
ory of linear time-varying systems and semi-algebraic
geometry we show that in a certain sense the upper
and the lower bound of the nonlinear stability radius
generically coincide. This can be used to show that
the set of systems for which the stability radii for the
nonlinear system and the linearization are equal con-
tains a countable union of open and dense subsets in

the C''-topology.

A further question of interest concerns extended sta-
bility radii, that is stability radii with respect to a pre-
scribed rate of decay c. For a fixed matrix along with a
fixed perturbation structure we describe the behavior
of the extended stability radii under variation of ¢. It
turns out that for all but at most countably many c
the upper and the lower bound of the nonlinear stabil-

ity radius coincide.

In the ensuing Section 2 we introduce the stability radii
under consideration and note some preliminary prop-
erties. In Section 3 we study extended stability radii
obtaining the main tool for the proof of our main re-
sult. In Section 4 the main result concerning generic
equality of the linear stability radius to the nonlinear
is shown. In Section 5 we summarize the results and

give a short outlook on remaining problems.



2 Preliminaries

In this paper we study nonlinear systems of the form

z(t+1) = fo(z(t)), teN 1)
z(0) = zo€eR",

which have an exponentially stable fixed point z*. By
this we mean that there exists a neighborhood U of z*
and constants ¢ > 1, 8 < 0 such that the solution of (1)
satisfies ||z(t,z)|| < ce”® for all z € U. Assume that

(1) is subject to perturbations of the form

z(t+1) = fo(z(t) + Zui(t)fi(x(t)) , teN, (2)

where the perturbation functions f; leave the fixed
point invariant, i.e. fi(z*) = 0,4 = 1,...,m. It is
our aim to analyze the corresponding time-varying sta-

bility radius
Tt (fo, (fi)) = inf{||u)lec | : N = R™ s. t.

(2) is not exponentially stable} .

For time-invariant perturbations this problem has been
studied in [12]. Assume that the functions f; are con-
tinuously differentiable. Associated with the nonlinear
system (2) we may study the linearization in z* given
by

y(t+1) = Aoy(t) + Zui(t)Aiy(t) , teN, (3)

where A; denotes the Jacobian of f; in z*. We abbre-
viate A(u) = Ao+ > u;A;. Given (Ay,...,A,) denote

Ma (Ao, -+, Am) = {AW) | [|lull < o},

where we will suppress the dependence on the matrices
(Ao, ..., An) when it is clear which matrices are con-
sidered. For a bounded set M C R"*™ we consider the

set of all finite products of length ¢ denoted by
S :={At—-1)...A(0) | A(s) e M,s=0,...,t—1}.

and call M exponentially stable if there are constants
¢ > 1,8 < 0 such that ||S;|| < ce”* for all S; € S;. The
following quantities will be useful in characterizing ex-
ponential stability. Let r(A) denote the spectral radius

of A and let || - || be some operator norm. Define

1
(M) = sup{;logr(St) | S; € S},

. 1

pe(M) = sup{ log||St[| | S¢ € St} -
Theorem 4 in [4] states that for bounded M equality
holds between the joint and the generalized spectral
radius. This implies

p(M) = lim py(M) =limsupp(M).  (4)

t—o0

It is easy to see that (3) is exponentially stable for all
u:N = R”, |lulle < a iff p(Mg) < 0. Furthermore

we have for all t > 1

Pt (M) < p(M) < pe(M) .- (5)

We denote the Lyapunov exponent corresponding to an
initial condition yo # 0 and a sequence u(-) € ¢(N,R™)
by A(yo,u(-). By (5) it follows that p(M,g) is equal
to the maximal Lyapunov exponent of the family of
time-varying systems given by (3) and the condition
|lulloo < . This is the quantity studied in [2] and [6].
Define the linear stability radii

riy(Ao, (4:)) = inf{a| p(Ma) > 0}, (6)
71y (Ao, (Ai)) = inf{a| p(Ma) > 0} . (7)

For linear systems a method for the calculation of
rLy(Ao, (4;)) based on the relation (5) has been pre-
sented in [13]. The following lemma states a basic rela-
tionship between the nonlinear and the linear stability

radii.
Lemma 2.1

rry(Ao, (A3)) < riw(fo, (fi) < 7ry(Ao, (42)).

Proof: = Suppose v < rry(Ao, (A;)). Then by def-
inition, Yu € £°(N,R™) such that ||u|lec < 7, Sys-
tem (3) is exponentially stable. Thus it follows via
Theorem 5.6.2 of [1] that Vu satisfying ||ulle < 7,
(2) is exponentially stable. Thus v < ¢z (fo; (f;)) and
7y (Ao, (4)) < r10(fo, (fi))-

In order to prove the second inequality note that v >
Try(Ao, (4;)) implies that for a particular v there ex-

ists a solution with positive Lyapunov exponent. Again



a standard linearization argument shows that the cor-
responding nonlinear system cannot be exponentially

stable. -

The previous lemma gives rise to the question whether
Ty (Ao, (A;)) and 71y (Ao, (4;)) commonly coincide. A
simple example shows that this need not always be the

case.

Example 2.2 Let n =2,m =1 and

00 10
A = .
01 0 0

Clearly TLy(Ao,Al) =0 and fLy(A(),Al) =1. O

Ag =

To investigate this problem further we use the theory
of semi-algebraic sets. Recall that a set X C R” is
called semi-algebraic, if it is the finite union of sets of

the form
{zeR" | fiz) =0="...= fi(z),

gl(x) > 07"'7gk(x) > 0}7

where the f;,g; are all polynomials in R[Xq,...,X,].
For properties of semi-algebraic sets we refer to [5]. It
has been shown in [10] that already in the 2 x 2-case
the set of matrix pairs M = (By, By) with p(M) < 0
is not semi-algebraic. We can, however, describe the

relevant sets as countable unions.

Lemma 2.3 The sets
T_ :={(Ao,..., Apn,a) € Rxmx(m+1) o R
p(Mq(Ao, ..., An)) <0},
Ty == {(Ao, ..., Am,a) € ROWXmFD) R
p(Mq(Ao, ..., An)) > 0},

are each open, countable unions of semi-algebraic sets.

Furthermore
To :={(Ao, ..., Am,q) € RMX(M+D) xR

pMa(Ao,...,An)) = 0}.

is a closed countable intersection of semi-algebraic
sets. O

Proof:
R(nxm)x(m+1) » R In order to prove the assertion for

T_,T, define fort > 1

To abbreviate notation let X :=

P = {(AO,...,Am,a) S X| ﬁt(Ma) > 0}’

Q¢ :={(Ao,-- -, Am,) € X | p(Mq) <0}

Then it is clear from (5) that

oo oo
T =JQ, T ={JP.
t=1 t=1

As P;, @ are clearly open it follows that 7_,T, are
open. Thus it remains to show that P, and @); are
semi-algebraic. In [12] it is shown that the spectral
radius is a semi-algebraic function on R**™. Also the
map (Ag,...,A) — Ay...A; is semi-algebraic. We
denote by B(0, &) the ball around 0 with radius a with
respect to the norm on R™. With these remarks it may

be seen that

Pt:{(Ao,...,Am,a) EX'

Y(ui,...,u) € B(0,0)" : r(A(uy) ... A(us)) < 1}.

From this representation it follows that P; is semi-
algebraic if B(0,1) is semi-algebraic. The Euclidean
norm, amongst others, satisfies this property, which
completes our proof. The same argumentation is valid
for @, if the norm used in the definition of p; is semi-
algebraic. This establishes the claim for 7" and T7.
As
oo o
To=T°NT{=()Qin () P¢
t=1 s=1
and the complements of semi-algebraic sets are semi-

algebraic the proof is complete. ]

Recall the following definitions of semi-continuity. A
function f : R® — R is upper (lower) semi-continuous
when, given f(zo) > ¢ (resp. f(xo) < ¢) for some
zo € R™ there exists a neighborhood U C R™ of xg
such that Vz € U, f(z) > ¢ (resp. f(z) < ¢).

Using continuity of the maximal Lyapunov exponent
of a linear discrete inclusion given by a bounded set
M (see [2]), we may now prove the following semi-
continuity properties for rp, and 7, generalizing the

results for time-invariant perturbations.



Lemma 2.4

(i) r1y(Ao; (A;)) is an upper semi-continuous func-
tion of (A(), (Az))
(ii) Try(Ao; (A;)) is a lower semi-continuous function

of (Ao; (4i))-

Proof: Suppose that ag = 71,(A4o;(4i)) > c.
Then Vu, such that ||u|]| < ¢, maxA(y,u(-)) < € <
0. By continuity of p(:), there exists a neighbor-
hood U of (Ag; (A;)) such that for all (Bg;(B;)) € U,
p(Mc(Bqg,...,By)) <€/2 <0,so0that ri,(Bo; (B;)) >

c¢. Thus rr, is upper semi-continuous.

A similar argument establishes lower semi-continuity of

TLy- ™

3 Extended Stability Radii

In some situations it may be interesting to consider
an extended version of the stability radius for the lin-

earized system.
riy(Ao; (4)) :=inf{a >0 | p(Ma) > ¢} (8)
T1y(Ao; (4i)) :==inf{a > 0| p(Ma) > c} 9)
This allows measurement of the robustness of the sys-
tem with respect to a guaranteed level of exponential

convergence or divergence. These new stability radii

may be linked to those of (6) as follows.

Lemma 3.5 Let (Ag,...,A,) € ROxm)x(m+1)
then
riy(Ao; (Ai)) = rry(e™Aos(e™ 4:)), (10)
Tiy(Ao; (Ai)) = Try(e™“Ao;(e™°A)). (11)

Proof:

calculation. -

This can be shown via a straightforward

Using this proposition, the question whether the equal-
ity 77, (Ao; (A:)) = 7, (Ao; (4;)) holds generically may

be answered for every c. A further question of inter-
est involves those matrices/structures (Ao, ..., An,) for
which 77, and 77, coincide for all ¢ € R. In the time-
invariant case it has been shown in [12] that this cannot
be expected. It has to be pointed out however that the
argument employed in this reference does not transfer
to the time-varying case. The reason for this is that
in the time-invariant case it is possible that for two

constant a < b it is possible that
max{r(A(u)) | [lu] = b} < max{r(A(u)) | [lul| = a}.

On the other hand if we denote M (a) := {A(u) | ||u|| =
a} and denote by M (b) the corresponding set for b it
follows that

p(M(b)) = p(M(a)) -

by the results of Barabanov [3, Theorem 1].

For a fixed matrix and perturbation structure we now
analyze the dependence of the extended stability radii

on c.

Proposition 3.6 Let m,n € N and
(Ao, ..., An) € R®XMX™ he fived. For the maps

hicm (Ao (A), Toiem 75, (Aoi (A1),
the following statements hold:

(i) h is upper semi-continuous, h is lower semi-

continuous.
(i) h,h are discontinuous at co iff h(co) < h(co).

(iii) h, h have at most countably many discontinuities.

(iv) h(c) = h(c) for all ¢ € R with the exception of at

most countably many points.

Proof:

(i) Semi-continuity is an immediate consequence of
Lemma 3.5 and Lemma 2.4.

(ii) Let h(co) < h(co) then by definition and continu-
ity of the maximal Lyapunov exponent h(co+e€) >
h(co) for any € > 0. Thus the assumption implies

discontinuity of h at co. Discontinuity of A at ¢



follows from h(cg) > h(co — €). Conversely, let h
be discontinuous at ¢y. By semi-continuity this
implies that h(co) < h(co+0) < h(co+0) = h(cp).

The same argument works for h.
(iii) This follows from the monotonicity of h, h.

(iv) This follows from (ii) and (iii).

The following immediate corollary is needed in the

proof of the main result of this paper.

Corollary 3.7 Let m,n € N and (Ay,...,A,) €
Rxm)xm pe fixed. For the maps

g:cmrrry(e A (e7°4))),

g:c Try(e %Ag; (€7°A4))),

the following statements hold:

(i) g is upper semi-continuous, g is lower semi-

continuous.
(ii) g,g are discontinuous at cq iff g(co) < g(co).
(iii) g,g have at most countably many discontinuities.

(iv) g(c) = g(c) for all ¢ € R with the exception of at

most countably many points.

Proof:
and the fact that by Lemma 3.5 we have g = h,g = h.

The statements follow from Proposition 3.6

4 Genericity

With the help of the previous results, it is possible to
prove the following genericity result, which is the main

result of our paper.

Theorem 4.8

(i) For fixed m > 1 the set L given by

{(A07 .. aAm) |7'Ly(AOa (Al)) = FL:U(A07 (AZ))}

is a countable intersection of open and dense sets.
Furthermore, the Lebesgue measure of the com-

plement L€ is 0.

(ii) For fixed m > 1 the set N of maps (fo,---, fm)
satisfying

TLy(Ao, (As)) = Try(Ao, (4i)) = reo(fo; (f)

contains a countable intersection of open and
dense sets with respect to the C'-topology on the
space of C*-maps (fo, . . ., fm) satisfying fo(z*) =

o*, fi(z*) =0,i=1,...,m.

Proof: (i): First note that (Ao,...,Am,TLy) €
0T_ = Ty, and (Ao,...,An,Try) € 0Ty = Ty by
continuity of the maximal Lyapunov exponent. Thus
(Ao, ..., Ap) € L£°if 3 a,b > 0, a # b such that
(Ao, ..., Am,a), (Ao, .., Ap,b) € To. Under this con-
dition if follows for all a < ¢ < b that (Ao,..., An,c) €
To. For k > 1 we denote

Ty = {(AO, ey A, ) € ROXX(m+]) S R |

1
(Ao,...,Am,a+ E) ET()} .

Thus £¢ = {J;-, Qx where
Qr :={(4o,..., Am) |

Jda > 0 such that (Ao,...,Am,a) € ToNTok}.

The @}, are projections of ToNTp,, onto R(nxn)x(m+1)

By Lemma 2.3 To N7y, is closed and thus @ is closed
for every k > 1. Therefore we now need to show that
all of the sets Qi that compose L€ are nowhere dense
in R?>nx(m+1) - For this it is sufficient that in every
neighborhood of any point in £¢ there exists a point
that does not belong to L€, as any closed set either has
interior points or is nowhere dense. As any ray from
zero of the form {a(A41,...,Ay) | a > 0} intersects L£°
in at most countably many points by Corollary 3.7 the

assertion is proved.

To prove that the measure of L€ is zero, let x denote

the indicator function of £¢. We obtain with Fubini’s



theorem that

/ x(@)dz =
R7Xnx(m+1)

/ / x(as)dads =0,
Snxnx(m+1))-1 JR+

where we have again used that any ray from zero of the
form {as | a >0}, s = (A1,...,An),||s|| = 1 intersects

L¢ in at most countably many points.

(ii): Note that for (fo,.--, fm) € N it is sufficient that
for the linearized system (4g,...,An,) € £. It is thus
sufficient to show that the preimage of an open and

dense set under the continuous, linear map

{fO)fla"':fm}'_) 6$ (.CU )5"'5 Bx (‘Z- )}
is open and dense. This, however, is clear by definition

of the C'-topology. n

A consequence of the previous theorem is that other
stability radii which might be defined for the nonlinear
system, e.g. with respect to Lyapunov, or asymptotic
stability generically coincide with the exponential sta-

bility radius.

5 Conclusion

In this paper we have introduced time-varying stability
for nonlinear systems. Using linearization techniques
and spectral theory for time-varying linear systems is
has been shown that the nonlinear stability radius is
bounded by two linear stability radii. The set of ma-
trices for which these two stability radii differ has mea-
sure zero. At the moment it is not known, whether this
set is open. For extended stability radii with respect
to different guaranteed exponential growth rates simi-
lar results have been obtained. Further research should
be directed towards the question of robust domains of

attraction of nonlinear systems.
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