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Abstract— We consider large scale interconnected systems
where some of the interconnections are characterized by
uncertain bounded delays. The delays may for instance be
due to a communication network connecting some or all of
the subsystems. Using a general formulation of comparison
functions we derive a small-gain theorem for local practical
stability of such large scale systems. The results build on
some generalizations of recent results on the class of monotone
aggregation functions and almost inversion of general small-
gain operators.

I. INTRODUCTION

Since 1960 small-gain type theorems have proved to be
a valuable tool for analyzing the stability properties of
interconnected systems. With the introduction of the ISS
framework by Sontag [1] nonlinear extensions of the linear
small-gain theorem became possible. One of the first con-
tributions dealing with the interconnection of two nonlinear
ISS systems in a feedback manner was [2]. It has been gen-
eralized to deal with the interconnection of several systems
in [3].
There exists many stability notions which are related to ISS
(see e.g., [4]). One of them is the notion of input-to-output-
practical-stability (IOpS) introduced in [2].
Andrew Teel derived Razumikhin-type theorems for func-
tional differential equations (FDE) in [5] based on the ISS
small-gain theorems from [2].
In [6] it is shown how to construct an ISS Lyapunov function
for a large scale system from the ISS Lyapunov functions of
the subsystems using small gain arguments.
The paper [7] uses so-called cyclic-small-gain arguments to
construct Lyapunov function for an interconnected system.
Two contributions dealing with the notion of ISS for time-
delay systems can be found in [8] and [9].
Similar to [7], the paper [8] uses also the cyclic-small-
gain argument, which is known to be equivalent to the no
joint increase condition if the maximum formulation is used
(see [10, Theorem 6.4]). Here we have to use a slightly
stronger condition than the no joint increase condition (see
Lemma 3.6).
Polushin et al. presented in [11] a small-gain theorem which
guarantees the IOpS property of the interconnection of two
IOpS systems. In this particular work the interconnection of
the subsystems is over multiple channels, where each of those
channels can be delayed. The delay could be introduced by a
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communication network, where the information is possibly
transmitted in packets as for instance when using TCP or
UDP as a communication protocol. Using such protocols
introduces delay or even loss of information i.e., packet loss.
In [12] we relaxed the condition from [11] to a weaker
small-gain condition. We show in [13] that this result can be
generalized to the case of an arbitrary number of subsystems,
where the interconnection can form an (almost) arbitrary
topology. In this paper we continue our work on small-gain
theorems from [13]. In [13] we investigate the notion of ISS
in a maximum formulation. Sometimes it is more natural to
consider the sum formulation of ISS or other norms. To be
able to use different comparison functions we generalize the
results of [13] to the class of so called monotone aggregation
functions (see Definition 2.1).
In order to prove basically the same results as in [13], we
have to change some of our technical lemmas. In particular,
we have to change the lemma which describes the domain of
our gain operator (Lemma 3.2) and the lemma which allows
us the “inversion” (Lemma 3.4).
The paper is organized as follows. The problem setup as well
as the notion of IOpS for FDEs is presented in Section II. The
main contribution of this paper is presented in Section III.
We will conclude our work with some remarks in Section IV.

II. PRELIMINARIES

A. Notations

In this section we introduce the class of systems under
consideration and the stability notion we investigate. To this
end we have to define some functional classes and their
multi-dimensional extensions.
A continuous function γ : R+ 7→ R+ is said to belong
to class G, if it is nondecreasing and satisfies γ(0) = 0. A
function γ ∈ G is of class K if it is strictly increasing. If γ
is of class K and unbounded, it is said to belong to K∞.
A matrix Γ = (γij), γij ∈ K or γij = 0 for i, j = 1, . . . , n
is said to belong to Gn×n. It defines an operator Γ : Rn+ →
Rn×n+ by

(Γ(s))i = (γi1(s1), . . . , γin(sn))i, s ∈ Rn+, i = 1, . . . , n.

We write a < b, a, b ∈ Rk if and only if ai < bi ∀i = 1, .., k
(≤, >,≥ are defined analogously). Note that we are com-
paring vectors, therefore we also have to use the negations
�,≮,≯,�. The inequality a � b means that there must be
at least one component i of a which is strictly less than the
corresponding component of b i.e., a � b :⇔ ∃i such that
ai < bi. The other negations are defined in a similar manner.
Furthermore we want to adopt a more general class of
comparison functions. To this end we introduce the so



called monotone aggregation functions, which incorporate
the properties we need.

Definition 2.1: A map µ : Rn+ → R+ is called a
monotone aggregation function (respectively MAFn), if the
following conditions are satisfied:

1) positive definiteness: µ(x) ≥ 0, ∀x ∈ Rn+ and
µ(x) = 0 if and only if x = 0

2) strict monotonicity: µ(x) < µ(y) if x < y
3) unboundedness: µ(x)→∞ if |x| → ∞
4) continuity: µ is continuous

A µ ∈ MAFn is said to have the subadditivity property, if
µ(x+ y) ≤ µ(x) + µ(y), ∀x, y ∈ Rn+. Furthermore we call
µ1 ∈ MAFn, µ2 ∈ MAFn+l compatible, if

µ1(x) = µ2((x, 0)) = µ2((0, x)), ∀x ∈ Rn,

where in µ2 we filled up the vector x with l zeros.
For instance, the maximum norm and the 1-norm as well as
all p-norms are subadditive monotone aggregation functions
and fullfill the compatibility condition.
The definition of monotone aggregation function raises the
question whether there is a µ ∈ MAFn which is not a norm.
Considering µ(x) = log(|x|+1), where | · | can be any norm
on Rn gives a positive answer. It is easy to see that this µ
fullfills the properties of Definition 2.1 and is subadditive
but not a norm.
We define a multi-dimensional extension to the notion of
monotone aggregation functions by µ : Rn×n+ → Rn+, µ =
(µ1, . . . , µn)T , µi ∈ MAFn, ∀i = 1, . . . , n. We denote
such an operator by µ ∈ MAFnn.
An operator T : Rn+ → Rn is called monotone, if the
following implication holds: Given x, y ∈ Rn+ such that
x ≤ y then it holds that T (x) ≤ T (y).
A given µ ∈ MAFnn together with Γ ∈ Gn×n defines a
continuous and monotone operator µ(Γ) : Rn+ → Rn+ by

(µ(Γ(s)))i = µi(γi1(s1), . . . , γin(sn) ,

for s ∈ Rn+ and i = 1, . . . , n. The class of these matrix-
induced operators has some nice properties. Most relevant
is the fact that any finite composition of matrix-induced
operators gives again a matrix-induced operator.
To shorten the notation we fix a µ ∈ MAFmk , µ =
(µ1, . . . , µm)T , where k has to be chosen appropriately
and assume that all other monotone aggregation functions
are compatible with µ. Furthermore we assume that µ is
subadditive. This justifies the simplification we will use
throughout the paper by just using a single µ.
The IOpS notion mentioned in the introduction usually deals
with ordinary differential equations. In this note we are
interested in the interconnection of many systems, where
the inputs of the subsystems are delayed. An appropriate
mathematical object to model such a situation are the so
called functional differential equations or FDEs. An FDE is
a differential equation where the right hand side depends on
a function rather than a single point in the state space for
every time instance t. For a detailed introduction to FDEs
see e.g., [14].

More precisely, we consider systems of the form:

ẋ(t) = f(xd, u
1
d, . . . , u

l
d, t)

y1(t) = h1(xd, u
1
d, . . . , u

l
d, t) (1)

...

yr(t) = hr(xd, u
1
d, . . . , u

l
d, t),

where x ∈ Rn is the state, ujd, j = 1, . . . , l are the inputs.
The operators f and h are Lipschitz in xd, uniformly con-
tinuous in ud and Lebesgue measurable in t. The subscript d
describes a retarded version of its variable in the following
way xd(t) := {(s, x(s+ t)), s ∈ [−td(t), 0]}, td : R 7→ R+,
td(t2)− td(t1) ≤ t2 − t1 for all t1, t2 ∈ R. Therefore xd is
a piece of trajectory starting at s = t − td(t) and ending at
s = t. Now define ‖xd(t)‖ := sups∈[t−td(t),t] |x(s)|, where
| · | is an arbitrary norm on Rn norm. In a similar manner
we define ‖yd‖, ‖ud‖, and ‖wd‖.
To ease presentation we introduce u+d := (‖u1d‖, . . . , ‖uld‖)T
and y+d := (‖y1d‖, . . . , ‖yrd‖)T .
Following [11], we use this “multichannel” formulation to
model and analyze the effects of certain inputs on certain
outputs. A second advantage of this approach is to have the
possibility of different delays in every “channel” as we will
see in the next section.
The ensuing definition is borrowed from [11].

Definition 2.2: A system of the form (1) is input-to-
output-practical-stable (IOpS) at t = t0 with td(t) ≥ 0, β ∈
Kr×1∞ , IOpS gains Γ ∈ Gr×l, restrictions ∆x ∈ R+, ∆u ∈
Rl+ and offset δ ∈ Rr+ if the conditions ‖xd(t0)‖ ≤ ∆x

and supt≥t0 u
+
d ≤ ∆u, imply that the solution of (1) are

well-defined for t ≥ t0 and the following inequalities hold:

sup
t≥t0

y+ ≤ µ
(
β(‖xd(t0)‖),Γ(sup

t≥t0
u+d ), δ

)
,

and
lim sup
t→∞

y+ ≤ µ
(

Γ(lim sup
t→∞

u+d ), δ

)
,

Remark 2.3: The first inequality in Definition 2.2 resem-
bles a property which is called global stability, where the
second can be regarded as an asymptotic gain property.
Our motivation for the name IOpS for FDEs defined in
Definition 2.2 is the following well known fact. For the case
of finite dimensional systems the ISS definition is equivalent
to the global stability property together with the asymptotic
gain property. Although it is not known yet, whether this
equivalence is also true in the case of FDEs, we use the
term IOpS for our definition nevertheless.
Definition 2.2 couples the practical notion in the sense of
IOpS mentioned in [2] with the notion of ISS for FDEs
mentioned in [5] and extends it to a semi global version. The
term semi global refers to the restrictions ∆x, ∆u, while the
offset δ reflects the practical notion of the IOpS definition.
Setting ∆x =∞, ∆u =∞, δ = 0, and restricting to ODEs
recovers the usual IOS definition.
It has been shown in [15] that design methods for nonlin-
ear sampled-data systems usually yield stability with finite
restrictions and an offset bigger than zero.



B. Problem Setup

Consider n systems of FDEs Σi, i = 1, 2, . . . , n, n ∈ N
of the form

ẋi = fi(xid, u
1
id, . . . , u

li
id, w

1
id, . . . , w

vi
id , t)

y1i = h1i (xid, u
1
id, . . . , u

li
id, w

1
id, . . . , w

vi
id , t) (2)

...

yrii = hrii (xid, u
1
id, . . . , u

li
id, w

1
id, . . . , w

vi
id , t).

Here we distinguish between the controlled inputs u and the
disturbance inputs w. The dimensions of the state spaces and
the input spaces are as follows xi ∈ Rni , uji ∈ Rpij , j =
1, .., li and wji ∈ Rqij , j = 1, .., vi.
The following definition as well as Definition 2.7 are from
[11].

Assumption 2.4: The systems Σi, i = 1, 2, . . . , n are
IOpS at t = t0 with tid(t0) ≥ 0, restrictions ∆xi ∈ R,
∆ui ∈ Rli , ∆wi ∈ Rvi and offsets δi ∈ Rri . More precisely,
there exist βi ∈ Kri×1, Γiu ∈ Gri×li and Γiw ∈ Gri×vi , such
that for each i = 1, 2, . . . , n and each t0 ∈ R the condition
‖xid(t0)‖ ≤ ∆xi, supt≥t0 u

+
id ≤ ∆ui and supt≥t0 w

+
id ≤

∆iw imply that the corresponding solution of Σi is well-
defined for all t ≥ t0 and the following inequalities hold

sup
t≥t0

y+i ≤

µi

(
β(‖xid(t0)‖),Γiu(sup

t≥t0
u+id),Γiw(sup

t≥t0
w+
id), δi

)
(3)

and

lim sup
t→∞

y+i ≤

µi

(
Γiu(lim sup

t→∞
u+id),Γiw(lim sup

t→∞
w+
id), δi

)
. (4)

If we introduce the following notation

B(x+d (t0)) = (β1(‖x1d(t0)‖)T , . . . , βn(‖xnd(t0)‖)T )T ,

ΓU = diag{Γ1u, . . . ,Γnu}, ΓW = diag{Γ1w, . . . ,Γnw}

δoff =
(
δT1 , . . . , δ

T
n

)T
, u+d =

(
(u+1d)

T , . . . , (u+nd)
T
)T

and
w+
d =

(
(w+

1d)
T , . . . , (w+

nd)
T
)T

we can rewrite (3) and (4) to
obtain

sup
t≥t0

y+ ≤

µ

(
B(x+d (t0)),ΓU (sup

t≥t0
u+d ),ΓW (sup

t≥t0
w+
d ), δoff

)
, (5)

and, respectively,

lim sup
t→∞

y+ ≤

µ

(
ΓU (lim sup

t→∞
u+d ),ΓW (lim sup

t→∞
w+
d ), δoff

)
. (6)

Before we can describe the interconnection of the n subsys-
tems, we have to introduce a delayed versions of y+i . To this
end define

ŷ+i (t) = (|y1i (t−τ1i (t))|, . . . , |yrii (t−τ rii (t))|)T , i = 1, .., n ,

where τ ji : R → R+, i = 1 . . . n, j = 1, . . . , ri are
Lebesgue measurable functions. They describe the delay of
the j-th component of the output of the i-th subsystem.
Again, to shorten the notation we introduce

ŷ+(t) =
(
ŷ+1 (t)T , . . . , ŷ+n (t)T

)T
.

Assumption 2.5: The interconnection of the n subsystems
is described by

u+d (t) ≡ 0, ∀t < T0 (7)

u+d (t) ≤ µ
(
Ψ(ŷ+(t))

)
, ∀t ≥ T0 (8)

where the operator Ψ is of the form

Ψ =


0 Ψ12 · · · Ψ1n

Ψ21 0 · · · Ψ2n

...
...

. . .
...

Ψn1 Ψn2 · · · 0

 ,

Ψij : Rrj+ → Rli+ is a continuous and monotone operator for
all i, j = 1, . . . , n.

Remark 2.6: Assumption 2.5 states that there exists a
T0 ∈ R which is the first time instance a connection has
been established. Before that time the input is constantly 0.
After T0 the operator Ψij describes how the output of the
j-th subsystem influences the input of the i-th subsystem.
To ensure that communication between the subsystems hap-
pens at least sometime, we have to make the following
assumption on the delays.

Assumption 2.7: There exists τ∗ > 0 and a piecewise
continuous function τ∗ : R 7→ R+ with τ∗(t2) − τ∗(t1) ≤
t2 − t1 for all t2 ≥ t1 such that

τ∗ ≤ min
i=1,...,n
j=1,...,ri

{τ ji (t)} ≤ max
i=1,...,n
j=1,...,ri

{τ ji (t)} ≤ τ∗(t), (9)

and
t− max

i=1,...,n
j=1,...,ri

{τ ji (t)} → ∞ as t→∞ (10)

for all t ≥ 0.
Remark 2.8: The inequalities (9) say that the delays

should be bounded from above by τ∗(t) and from below by
τ∗. Because of the propagation delay of any physical system
the existence of a lower bound τ∗ is guaranteed.
Basically, (10) states that the delay should not grow faster
than the time itself. In the literature an assumption of the
kind of τ̇∗(t) < 1 can be found to ensure the property (10).
To account for possible information losses we have to adopt
the more general Assumption 2.7.
In [11] a methodology to satisfy Assumption 2.7 either
by timestamping or by sequence numbering can be found.
Timestamping refers to an approach where in a packet based
transmission (e.g., TCP) every packet is marked with the
current time, while sequence numbering maps an uniquely
defined number to every packet.



III. MAIN RESULT

We find it convenient to define

Γ = ΓU ◦Ψ and Γµ = µ ◦ Γ . (11)

The operator Γ resembles the matrix multiplication of Ψ and
ΓU . Hence Γ has the following form:

Γ =


0 Γ1u ◦Ψ12 · · · Γ1u ◦Ψ1n

Γ2u ◦Ψ21 0 · · · Γ2u ◦Ψ2n

...
...

. . .
...

Γnu ◦Ψn1 Γnu ◦Ψn2 · · · 0

 .

Let m =
∑n
i=1 ri, clearly, Γµ is a continuous and monotone

operator from Rm+ to Rm+ .
Small-gain type theorems in the spirit of [3] compare some

operator with the identity. Because of the restrictions and the
offset of Assumption 2.4 we need a slightly stronger small-
gain condition.

Definition 3.1: Let Γµ be defined as in (11). We say that
Γµ fullfills the local small-gain condition if there exists
δ,∆ ∈ Rm+ , δ < ∆, such that

lim sup
k→∞

Γkµ(∆) < δ . (12)

Before we can prove the main technical lemma, we have to
exploit some topological properties of our local small-gain
condition.

Lemma 3.2: Let Γµ be defined as in (11) and assume that
Γµ fullfills the local small-gain condition (12), then

lim sup
k→∞

Γkµ(s) < δ ∀ s ∈ Ω, where

Ω :=
⋃
k

{s ∈ Rm+ | s ≤ Γkµ(∆)}.

Proof: Let s ≤ ∆. From the monotonicity of Γµ we
deduce

Γkµ(s) ≤ Γkµ(∆), ∀k ∈ N.

And hence

lim sup
k→∞

Γkµ(s) ≤ lim sup
k→∞

Γkµ(∆) < δ,

where the last inequality follows from (12). Repeating the
arguments for s ≤ Γlµ(∆) with l arbitrary yields

lim sup
k→∞

Γkµ(s) ≤ lim sup
k→∞

Γk+lµ (∆) < δ,

and the proof is finished.
Remark 3.3: In contrast to [13] where we have used the

maximum formulation for the IOpS definition, in this paper
we end up with a different Ω as depicted in Figure 1.
Using the maximum formulation would lead to Ω = {s ∈
Rm+ | s ≤ maxk{Γk(∆)}}. The reason for the simpler Ω
in the maximum case is that the maximum commutes with
monotone operators.
For a more extensive study of the properties of such mono-
tone operators and their induced discrete dynamical systems
see [10].
The next lemma is the main technical tool for the proof of
our main theorem. It is a generalization of the corresponding

lemma from [13]. Some of the ideas of the proof can already
be found in [16] respectively [3].

Lemma 3.4: Let the premise of Lemma 3.6 hold. Then for
all a, b ∈ Ω ,

a ≤ µ(Γ(a), b) (13)

implies
a ≤ max{Γd(µ(b)), δ} , (14)

where Γd = diag(γ1, . . . , γm) ∈ Gm×m.
Proof: First we have to rewrite (13) to

a ≤ µ((Γ(a), 0) + (0, b)).

Using the subadditivity we end up with

a ≤ µ(Γ(a)) + µ(b). (15)

If we apply Γµ on both sides of the inequality, use the
subadditivity, and insert the result in (15) we obtain

a ≤ Γ2
µ(a) + Γµ(µ(b)) + µ(b)

Repeating the same steps N − 1 times yields

a ≤ ΓNµ (a) +

N−1∑
k=0

Γkµ(µ(b)).

Because of (12) we can choose N large enough to get

a ≤ δ +

N−1∑
k=0

Γkµ(µ(b)).

Since the concatenation and the sum of the matrix induced
monotone operators in the right hand side of the previous
expression is again a matrix induced monotone operator, this
can easily be rewritten to get (14).
The next observation will be needed later on.

Remark 3.5: From the construction of Γd in Lemma 3.4
it is easy to see that the following holds.

µ(b) ≤ Γd(µ(b)). (16)
Usually, small-gain type conditions compare some operator
with the identity. As we will see in the next lemma, condition
(12) can also be interpreted in this manner.

Lemma 3.6: Let the premise of Lemma 3.2 hold. then

Γµ(s) � s ∀s ∈ Ω , s ≥ δ (17)

where Ω comes from Lemma 3.2
Proof: We will prove this by contradiction. So assume

there exists s ∈ Ω, s ≥ δ such that Γµ(s) ≥ s. From the
monotonicity of Γµ it follows readily that Γkµ(s) ≥ s ≥ δ for
all k. Realizing that this contradicts (12) finishes the proof.

Remark 3.7: The inequality (17) is known as the no joint
increase condition.

Remark 3.8: From the following example it can be seen
that condition (12) is indeed stronger than Γ � id. Consider
the following operator.

T =

(
2 id 0
0 1

2 id

)



Γ(∆)

δ

∆

Γ2(∆)

Ω
Γ3(∆)····

· Γn(∆)

Fig. 1. Sketch of the evolution of Γµ in two dimensions. The black bounded
region is Ω, where Γµ � id holds. By condition (12) the iterates of Γµ

will end in the smaller box on the left.

It is easy to verify, that T ∈ G2×2 and T (s) � s ∀s ∈
[δ, ν], δ > 0 and arbitrary ν > δ. On the other hand
T k(s), k →∞ is unbounded, contradicting (12).
From the last example we see that we have to exclude the
possibility of unbounded growth to achieve a property like
(12). The next lemma shows that a descent in one single
point is needed to ensure that property.

Lemma 3.9: Let Γµ be defined as in (11). If there exists
an a ∈ Rm+ and some k ∈ N such that Γkµ(a) < a, then there
exists b ≤ a such that

lim sup
k→∞

Γkµ(a) < b.

Proof: Choose an l > k. Then the following holds

0 ≤ Γlµ(a) ≤ · · · ≤ Γk+1
µ (a) ≤ Γkµ(a) < a.

This is a bounded and monoton sequence. Hence

lim
r→∞

Γrµ(a) = b

exists. The proof is finalized by noting that b ≤ a, which
follows from Γkµ(a) < a.

Remark 3.10: The example from Remark 3.8 suggests
that δ = 0 plays a special role. Indeed, setting δ = 0 would
allow us to use existing results to prove our main result. If
we would change condition (12) to

lim sup
k→∞

Γkµ(∆) = 0

we could deduce with the help of Lemma 3.6 that

Γµ(s) � s ∀s ∈ Ω.

And hence there exists some w ∈ Ω such that

Γµ(s) � s ∀s ∈ [0, w].

Now we could replace Lemma 3.4 with [17, Proposition 4.4].
Before we state the main contribution of this paper we

introduce ∆x = (∆x1, . . . ,∆xn)T , ∆u = (∆T
u1, . . . ,∆

T
un)T

and ∆w = (∆T
w1, . . . ,∆

T
wn)T .

Theorem 3.11: Suppose the system (2), satisfies Assump-
tions 2.4, 2.5 and 2.7 and that there exist δ,∆ ∈ Rm+ ,
0 ≤ δ < ∆, such that the following conditions hold:

lim sup
k→∞

Γkµ(∆) < δ , (18)

∆∗ ∈ Ω, where

∆∗ := max
{

Γd
(
µ(B(∆x),ΓW (∆w), δoff )

)
, δ
}
, (19)

and
µ(Ψ(∆∗)) ≤ ∆u , (20)

then system (2) is IOpS at t = T0 in the sense of Defini-
tion 2.2 with

td(T0) =

max
i=1,...,n

{tid(T0)}+ τ∗(T0) + τ∗(T0 − τ∗(T0)) . (21)

More precisely, the conditions x+d (T0) ≤ ∆x , supt≥T0
w+
d ≤

∆w imply that the following inequalities hold

sup
t≥T0

y+ ≤

max
{

Γd

(
µ
(
B(x+d (T0)),ΓW ( sup

t≥T0

w+
d ), δoff

))
, δ
}
, (22)

and

lim sup
t→∞

y+d ≤

max
{

Γd

(
µ
(
Γw(lim sup

t→∞
w+
d ), δoff

))
, δ
}
. (23)

Proof: Consider system (2) and assume

x+d (T0) ≤ ∆x and sup
t∈[T0,∞)

w+
d ≤ ∆w. (24)

In order to achieve the IOpS property of the overall system
it remains to show that the restrictions on the inputs are not
violated. To this end we will first show that the inputs will
be bounded for all positive times. This allows us to conclude
the existence of solutions for the overall system. Then the
claim will be concluded by an application of Lemma 3.4.
Assumption 2.4 together with (5), (24) as well as causality
arguments imply that

y+d (T0) ≤ µ (B(∆x),ΓW (∆w), δoff ) .

With the help of (7), (8) and Assumption 2.7 we can deduce

sup
t∈[T0−td(T0),T0+τ∗]

u+ ≤ µ
(
Ψ(µ (B(∆x),ΓW (∆w), δoff ))

)
≤ µ

(
Ψ(∆∗)

)
,

where the last inequality follows from (16) and (19). From
the last inequality together with (20) we see that the restric-
tions on the inputs are satisfied for t ∈ [T0−td(T0), T0+τ∗].
Hence there exists Tmax > T0 + τ∗ such that the solutions
of (2) are well-defined for all t ∈ [T0, Tmax). Now we want
to show that

sup
t∈[T0,Tmax)

y+d ≤ ∆∗. (25)



We will prove (25) by contradiction. To this end assume
T1 ∈ [T0, Tmax − τ∗) is the first time that

sup
t∈[T0,T1]

y+d ≤ ∆∗ and sup
t∈[T0,T1+τ∗]

y+d � ∆∗. (26)

Combining (5), (21), (24) with (8) and Assumption 2.7, we
obtain

sup
t∈[T0,T1+τ∗]

y+d ≤

µ
(
B(∆x),ΓW (∆w),Γ( sup

t∈[T0,T1]

y+d ), δoff

)
.

By monotonicity we get

sup
t∈[T0,T1+τ∗]

y+d ≤

µ
(
B(∆x),ΓW (∆w),Γ( sup

t∈[T0,T1+τ∗]

y+d ), δoff

)
. (27)

Since T1 is the first time that (26) holds,

sup
t∈[T0,T1+τ∗)

y+d ≤ ∆∗.

Because of the continuity of Γ resp. Γµ the small-gain
condition still holds on the closed interval t ∈ [T0, T1 + τ∗],
therefore we can use Lemma 3.4 to get

sup
t∈[T0,T1+τ∗]

y+d ≤max
{

Γd
(
µ (B(∆x),ΓW (∆w), δoff )

)
, δ
}

≤∆∗,

which contradicts the second inequality in (26). This contra-
diction proves (25). Next we want to show that Tmax =∞.
Again we will prove this by contradiction. Due to the IOpS
assumption on the subsystems and (24) Tmax <∞ implies

sup
t∈[T0,Tmax)

u+ � ∆u. (28)

From (8) and (20) we can see that (28) implies

µ
(
Ψ( sup

t∈[T0,Tmax)

ŷ+)
)
� µ

(
Ψ(∆∗)

)
.

Because of the monotonicity of µ ◦ Ψ and the fact that
sup ŷ+ ≤ sup y+d we get

sup
t∈[T0,Tmax)

y+d � ∆∗,

which contradicts (25), hence Tmax =∞.
Summarizing, the restrictions on the inputs hold for all t ∈
[T0,∞). Hence we can use (5) to get

sup
t≥T0

y+d ≤ µ
(
B(x+d (T0)),ΓW ( sup

t≥T0

w+
d ),Γ( sup

t≥T0

y+d ), δoff

)
.

Using Lemma 3.4 we conclude

sup
t≥T0

y+d ≤ max
{

Γd
(
µ(B(x+d (T0)),ΓW ( sup

t≥T0

w+
d ), δoff )

)
, δ
}
,

which is exactly inequality (22). Similarly we can use (6)
together with Lemma 3.4 to get

lim sup
t→∞

y+d ≤ max
{

Γd
(
µ(ΓW (lim sup

t→∞
w+
d (t)), δoff )

)
, δ
}
.

Realizing that this is just (23) finishes the proof.

IV. CONCLUSION

In this paper we continued our work on small-gain
theorems which uses the notion of IOpS for FDEs to
ensure that the interconnection of an arbitrary number of
subsystems is again IOpS. In particular we considered the
case where the communication is over delayed, possible
lossy communication channels. The contribution of this
paper is the generalization of our work in [13] to the case
of a more general class of comparison functions.
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