
A Converse Lyapunov Theorem for Switched Linear Systems with
Dwell Times

Fabian Wirth*

Abstract— We study linear switching systems, where time-
variations have to satisfy restrictions on the dwell time, that
is on the minimum distance between discontinuities. The main
objective of the paper is to construct parameter dependent
Lyapunov functions, which characterize the exponential growth
rate. This is possible in the generic irreducible case.

Index Terms— converse Lyapunov theorem, linear parameter
varying systems, linear switching systems, linear flows on vector
bundles, periodic systems.

I. INTRODUCTION

This paper is a reduction of the paper [1] to a content that
can be presented within the given space limitations. For full
details we refer to the journal paper, especially all omitted
proofs can be found there. In a few points the results of [1]
are extended.

In [1] we consider linear time-varying systems of the form

ẋ(t) = A(t)x(t) , (1)

where A : R → M is a measurable map, and M is
a compact set of real or complex matrices of a given
dimension. We are interested not in one individual system,
but in the exponential growth rate of a set of systems, that
is described by a subset A ⊂ L∞(R,M). The stability
and spectral properties of such kinds of systems have been
actively investigated over the past two decades.

In particular in [1] a framework covering many of the sys-
tems studied in the areas of linear parameter varying systems
with constraints on the derivative and of linear switching
systems with dwell times. A class of linear time-varying
systems is introduced, that allows for (i) bounds on the
minimal time between discontinuities and (ii) bounds on the
derivative of parameter variations between discontinuities.

Here we will deal with a far less general case, that is
a general case of [1]. Consider a finite set of matrices
A := {A1, . . . , Am} ⊂ R

n×n and a dwell-time h > 0. The
switched linear system Σ = (A, h) is defined as the family
of time-varying systems given by

ẋ(t) = Au(t)x(t) , (2)

where u : R+ → {1, . . . ,m} is a piecewise continuous map,
with the property, that the discontinuities of u, denoted by
0 < t0 < t1 < t2 . . . satisfy the dwell time condition

tk+1 − tk ≥ h , ∀k ≥ 1 . (3)

In other words, discontinuities of u are at least distance h
apart. We refer to u as a switching signal. Without loss of
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generality, we will assume switching signals to be right-
continuous. The set of switching signals is denoted by

U := {u : R+ → {1, . . . ,m} | right-continuous, piecewise
continuous, with discontinuities h apart.} .

For fixed u ∈ U the linear time-varying system (2) gen-
erates an evolution operator, which we will denote by
Φu(t, s), t, s ≥ 0. We are interested in stability properties
with respect to all switching signals u ∈ U .

The main contribution of the present paper lies in the
construction of Lyapunov functions parameterized by i ∈
{1, . . . ,m}, that characterize the exponential growth rate of
the system under consideration. The construction is possible
in the generic irreducible case, in which the system leaves
no nontrivial subspace invariant. For each parameter the
corresponding Lyapunov function is a norm. One of the
features of the Lyapunov functions is, that for any solution
the corresponding infinitesimal decay is upper bounded by
the maximal growth rate. Also the exponential growth rate
can be realized instantaneously from every initial condition
of state and parameter. As in [2] it would be possible
to consider smooth approximations to obtain differentiable
Lyapunov functions, which still yield a decay arbitrarily close
to the growth rate. This problem is not pursued here, as the
method is well described in the literature, see [2], [3], [4].

Using the existence of Lyapunov functions, a fairly simple
proof of a version of the Gelfand formula can be given, see
[1], [5]. By this result the exponential growth rate can be
approximated to arbitrary precision using periodic parameter
variations. In [6] results on the Lipschitz continuous depen-
dence of the growth rate of the data are obtained using the
existence of Lyapunov functions constructed here.

Papers concerned with linear differential inclusions and
families of time-varying systems often treat the case of
linear inclusions (or (2) with arbitrary measurable switching
signals) which amounts to taking U = L∞(R,M). In this
area a detailed description of spectral concepts is available,
see [7], [8], [9] and a good Lyapunov theory has been
developed [10], [11], [12].

For an overview and much of the related literature in the
area of switched systems we refer to [13], [14], [15]. The
approach to consider switched systems with a dwell time
condition derives its motivation in part from adaptive control
and has been discussed in [16], [17]. Sufficient conditions
for the existence of Lyapunov functions in terms of LMIs
are available, see e.g. [18].

We proceed as follows. In the ensuing Section II we
introduce the exponential growth rate under the (essential)



assumption of shift invariance. This is the quantity of interest
in this paper. In Section IV irreducibility of a system is
introduced and some immediate consequences of this prop-
erty are shown. The assumption of irreducibility is used
in Section V to construct parameter dependent Lyapunov
norms, that characterize the exponential growth rate. We
particularly discuss the case of linear switching systems with
dwell time, for which an easy interpretation is available.

Finally, we would like to warn the reader that our use
of the term Lyapunov function is not quite the standard
one. It will be used to denote functions that characterize
the exponential growth rate of the system if evaluated along
trajectories. Now if the system is stable, then this will give
the usual decrease condition. However, if the system is not
exponentially stable, then we still speak of a Lyapunov
function because of the characterization of the growth rate.

II. EXPONENTIAL GROWTH RATES

We now define the object of interest in this paper which is
the (uniform) exponential growth rate associated to system
(2). Given the map A and h > 0 and define for t ≥ 0 the
sets of finite time evolution operators

St(A, h) := {Φu(t, 0) |u ∈ U} , S(A, h) :=
⋃

t≥0

St(A,U).

We now introduce for t > 0 finite time growth constants
given by

ρ̂t(A, h) := sup

{
1

t
log ‖S‖ |S ∈ St(A, h)

}
.

It is easy to see, that the function t 7−→ tρ̂t(A, h) is
subadditive. Using a folklore result (see e.g. [19, p. 27/28])
this implies, that the following limit exists

ρ̂(A, h) := lim
t→∞

ρ̂t(A, h) = inf
t≥0

ρ̂t(A, h). (4)

It is well known, that an alternative way to describe ρ̂ is
given by

ρ̂(A, h) = inf{β ∈ R | ∃M ≥ 1 such that (5)
‖Φu(t, 0)‖ ≤ Meβt for all u ∈ U , t ≥ 0} .

For this reason the quantity ρ̂(A, h) is called uniform expo-
nential growth rate of the family of switched linear system
(2). An alternative way to define exponential growth is to
employ a trajectory-wise definition. In this case we define
the Lyapunov exponent corresponding to an initial condition
x0 ∈ R

n \ {0} and u ∈ U by

λ(x0, u) := lim sup
t→∞

1

t
log ‖Φu(t, 0)x0‖ , (6)

and define as exponential growth rate κ(A, h) :=
sup{λ(x, u) | 0 6= x ∈ R

n , u ∈ U}. It follows using
Fenichel’s uniformity lemma that κ(A, h) = ρ̂(A, h), see
[1] and [9, Prop. 5.4.15].

One might now be tempted to look for norms that are
Lyapunov functions for the whole system and characterize
the quantity ρ̂(A, h) as in the case of linear differential

inclusions, see [10], [12]. However, the following lemma
shows, that this is not a very fruitful enterprise.

Lemma 2.1: Consider a switched system (A, h). If there
is a norm v on R

n, such that for all x ∈ R
n, u ∈ U and the

corresponding evolution operator Φu(t, s) it holds, that

v(Φu(t, 0)x) ≤ eρ̂(A,h)t v(x) , ∀t ≥ 0 , (7)

then ρ̂(A, h) = ρ, where

ρ := max {λ(x,B) | 0 6= x ∈ R
n , B : R → A measurable}

and where λ(x,B) denotes the Lyapunov exponent corre-
sponding to the initial condition x and B defined as in (6).

By the previous lemma, a norm satisfying (7) can only
exist for (2), if the parameter varying system realizes the
exponential growth, which is obtained by allowing all mea-
surable functions with values in A; in other words, by
studying (2) with U = L∞(R,A). For general switched
systems with dwell time this situation is rarely encountered.
For this reason we use a different approach, that introduces
a family of norms with an extremal property. The idea to
use parameter dependent Lyapunov functions, proposed by
several authors (see e.g. [20], [18]), can be made exact in
this way. That is, a family of parameter dependent Lyapunov
norms may be constructed, such that the exponential growth
rate of system (2) is the incremental growth rate with respect
to this family. Note that we cannot restrict our attention to
quadratic norms to perform such a construction.

Remark 2.1: The main technical problem in this paper
is, that S(A, h) does not naturally carry the structure of a
semigroup. This complicates matters compared to the case
of linear inclusions of the form

ẋ ∈ {Ax | A ∈ A(Θ)} ,

as studied in [10], [7], [13], [21], [12] and references therein.

III. CONCATENATION OF SWITCHING SIGNALS

As we will be dealing with set-valued maps, let us briefly
recall, that a set-valued map F from X ⊂ R

m to R
n is a

map, that associates to every point in X a subset of R
n.

We will only encounter the easy case, in which the images
are compact sets. Such a map is called locally Lipschitz
continuous, if for every compact subset K ⊂ X there is
a constant L, such that dH(F (x), F (y)) < L‖x− y‖ for all
x, y ∈ K.

In this section we assume the system Σ = (A, h) to
be given. For ease of notation we will therefore suppress
the dependence of ρ̂, St, etc. on these data. In general,
concatenation of admissible switching signals does in general
not result in an admissible switching signal. Given two
switching signals u,w ∈ U we define the concatenation at
time t by

(u �t w)(s) :=

{
u(s) , s < t
w(s − t) , t ≤ s

. (8)

U(i) := {w ∈ U | w(0) = i or t0(w) ≥ h} .

(Recall, that t0 > 0 is the first discontinuity of w, possibly
t0 = ∞.) Thus the set U(i) denotes the set of switching



signals that may be concatenated at time t to a switching
signal u with the properties that u(t−) = i and so that the
largest discontinuity t∗ of u smaller than t satisfies t−t∗ ≥ h.
In this case we can either use a continuous extension by i
and there is no restriction on the next discontinuity, or we
can introduce a discontinuity at t by switching to j 6= i in
which case another time span of length h has to elapse before
a further discontinuity can occur.

For each i ∈ {1, . . . ,m} and t ≥ 0 we define the set of
evolution operators ”starting in i” by

St(i) := {Φu(t, 0) | u ∈ U (i)}. (9)

Similarly, we define for i, j ∈ {1, . . . ,m} and for t ≥ h the
sets of evolution operators ”starting in i and ending at j” by

Rt(i, j) := {Φu(t, 0) |u ∈ U (i) , and for all
w ∈ U(j) it holds that u �t w ∈ U(i) } .

(10)

Thus by definition if R ∈ Rs(i, j) and S ∈ St(j), then
SR ∈ St+s (i). We now define

S≤T (i) : =
⋃

0≤t≤T

St(i) and S(i) :=
⋃

t≥0

St(i) ,

and in a similar manner R≤T (i, j) as well as R(i, j). Note
that for every i ∈ {1, . . . ,m} the set R(i, i) is a semigroup.

Remark 3.1: Note that for any i, j ∈ {1, . . . ,m} the set
Rt(i, j), t ≥ h is not empty. It suffices to define u(s) =
j, 0 ≤ s ≤ t to obtain an element of the set.

In a first step let us clarify the continuity properties of
the sets just defined. To this end we note the following
consequence of the Arzela-Ascoli theorem.

Lemma 3.1: Let A and h > 0 be fixed and consider the
space U of admissible switching signals.

Given T ≥ h and sequences ik, jk ∈ {1, . . . ,m}, uk ∈
U(ik) with Φuk

(T, 0) ∈ R(ik, jk), there exist subsequences,
such that
(i) the limits limµ→∞ ikµ

=: i and limµ→∞ jkµ
=: j exist,

(ii)
{
ukµ

}
µ∈N

converges in the weak-∗-topology on [0, T ] to
an admissible switching signal u ∈ U(i) with Φu(T, 0) ∈
R(i, j).

Furthermore,

Φukµ
(t, 0) → Φu (t, 0) , uniformly on [0, T ] .

We are now ready to prove an essential though fairly basic
lemma concerning the dependence of the parameterized sets
of transition operators on time and the parameters.

Lemma 3.2: Consider system (2). Then
(i) For all (t, i, j) ∈ [0,∞)×{1, . . . ,m}2 the sets St(i) and
Rt(i, j) are compact.

(ii) The maps S : R+×{1, . . . ,m} → K(Rn), R : [h,∞)×
{1, . . . ,m}2 → K(Rn) given by

(t, i) 7→ St(i) , (t, i, j) 7→ Rt(i, j) (11)

are locally Lipschitz continuous.
(iii) If S(A,U) is bounded, then the Lipschitz constants with
respect to i ∈ {1, . . . ,m} (resp. (i, j) ∈ {1, . . . ,m}2) may
be chosen uniformly in t.

If we want to describe the exponential growth rate within
the subsets of evolution operators with given initial and end
condition, this leads to the definitions

ρ̂t(i) := max

{
1

t
log ‖S‖ |S ∈ St(i)

}
,

ρ̂t(i, j) := max

{
1

t
log ‖S‖ |S ∈ Rt(i, j)

}
.

With this the problem arises, that the functions t 7−→ tρ̂t(i),
and t 7−→ tρ̂t(i, j) are no longer subadditive, so that it does
not follow automatically to what value they are converging,
if at all. It is therefore useful to point out the following.

Lemma 3.3: Consider the system (2). There is a constant
C ∈ R, such that for all i, j ∈ {1, . . . ,m} we have, that

tρ̂t(i, j) ≥ tρ̂ − C ,∀t > 0 . (12)

In particular, it follows for all i, j ∈ {1, . . . ,m}, that

ρ̂ = lim
t→∞

ρ̂t(i, j) = lim
t→∞

ρ̂t(i).

IV. IRREDUCIBILITY

We aim to construct parameter dependent Lyapunov func-
tions that exactly reflect the exponential growth rate of the
system Σ = (A, h). To this end it is crucial to assume the
irreducibility of A. Recall that a set of matrices M ⊂ R

n×n

is called irreducible, if only the trivial subspaces {0} and R
n

are invariant under all A ∈ M and reducible otherwise.
Remark 4.1: (i) Note that if m ≥ 2 the set of irreducible

sets A is open and dense in the set of finite sets of matrices
with at most m elements in any standard metric, e.g. the
Hausdorff metric.

(ii) If A is reducible, we can find a similarity transfor-
mation T , such that for all j ∈ {1, . . . ,m} the transformed
matrix TAjT

−1 is of the form



A11 (j) A12 (j) . . . A1d (i)
0 A22 (j) . . . A2d (j)

. . . . . .
...

0 0 Add (j)


 , (13)

where the sets {Aii(j) | j ∈ {1, . . . ,m}} ⊂ R
ni×ni are

irreducible or {0}, i = 1, . . . , d. It is an easy exercise to
show, that in this case ρ̂ (A, h) = maxi=1,...,d ρ̂ (Ai, h),
where Ai is the set of matrices obtained by taking the i-
th diagonal block. Having said this it is clear, that for the
analysis of ρ̂ with respect to one system we can assume
irreducibility without loss of generality.

The next simple lemma, see [12, Lemma 3.1], is crucial
in the following construction.

Lemma 4.1: Let S ⊂ R
n×n be an irreducible semigroup.

For any family of sets St, t ∈ R+ with

S =
⋃

t≥0

St ,

there are ε > 0 and T ∈ R+, such that for all z ∈ R
n, A ∈

R
n×n there is an S ∈

⋃
1≤t≤T St with

‖ASz‖ ≥ ε‖A‖‖z‖ .



We now begin to study the consequences of irreducibility.
The following properties are essential in our construction of
Lyapunov functions.

Proposition 4.1: Consider system (2). If A is irreducible,
then for all i, j ∈ {1, . . . ,m}

(i) the set R(i, j) is irreducible,
(ii) the set S(i) is irreducible.

Proof: (i) Fix an arbitrary nontrivial subspace X and let
Φu(t, 0) ∈ R(i, j) with t ≥ h be such that Φu(t, 0)X = X .
(If no such Φ exists we are done.) Let t∗ ∈ (0, t) be a
discontinuity of u, or if such a discontinuity does not exist
let t∗ = t/2. Denote Y := Φu(t∗, 0)X . As A is irreducible,
there exists a i∗ ∈ {1, . . . ,m}, such that exp(A(i∗)s)Y 6⊂ Y
for some s ≥ h. Hence Φu(t, t∗) exp(A(i∗)s)Φu(t∗, 0)X 6⊂
X . On the other hand Φu(t, t∗) exp(A(i∗)s)Φu(t∗, 0) ∈
R(i, j), because we may at time t∗ switch to A(i∗), remain
there for the time s, and switch back to u(t∗). This defines
an admissible switching signal; and the assertion follows.

(ii) This is immediate from (i) as S(i) =
∪j∈{1,...,m}R(i, j).

V. PARAMETERIZED LYAPUNOV FUNCTIONS

In this section the main result of the paper is derived.
In Theorem 5.1 we obtain the existence of parameterized
Lyapunov functions that characterize the exponential growth
rate.

The main step of the proof relies on the following con-
struction. By Lemma 3.3 the exponential growth in S and in
the subsets S(i), R(i, η) is essentially the same. It therefore
makes sense to define limit sets as follows.

S∞(i) : = {S ∈ R
n×n | ∃ tk → ∞ , Sk ∈ Stk

(i) :

e−ρ̂tkSk → S }.

R∞(i, j) : = {S ∈ R
n×n | ∃ tk → ∞ , Sk ∈ Rtk

(i, j) :

e−ρ̂tkSk → S }.

We note the following properties of S∞(i) and R∞(i, j).
Lemma 5.1: Consider the system (2). If A is irreducible

then
(i) the set ∪i∈{1,...,m}S∞(i) is bounded,
and for all i, j ∈ {1, . . . ,m} it holds that
(ii) R∞(i, j) is a compact, nonempty set not equal to {0},
(iii) S∞(i) is a compact, nonempty set not equal to {0},
(iv) for every t ≥ 0 we have that, if R ∈ Rt(i, j) and
S ∈ S∞(j), or if R ∈ R∞(i, j) and S ∈ St(j), then
e−ρ̂tSR ∈ S∞(i),

(v) for every S ∈ S∞(i), t ≥ 2h there exist j ∈ {1, . . . ,m},
R ∈ Rt(i, j), and T ∈ S∞(j), such that S = e−ρ̂tTR,

(vi) R∞(i, i), S∞(i) are irreducible.
Proof: Without loss of generality we may assume that

ρ̂ = 0, by considering the matrices Ãi := Ai − ρ̂I .
(i) For ease of notation define

δ := min{‖R−1‖−1 | R ∈ S≤h} > 0 .

If the assertion is false, then there are tk → ∞, Sk ∈
Stk

(ik) with ‖Sk‖ → ∞. Without loss of generality we may

assume, that Sk ∈ Rtk
(ik, ik). To see this, note that by

Remark 3.1 we can always ensure, that RkSk ∈ Rtk
(ik, ik)

for some Rk ∈ Sh. It is easy to see, that ‖RkSk‖ ≥
‖Sk‖‖R

−1
k ‖−1 ≥ ‖Sk‖δ → ∞ as k → ∞.

Fix some i ∈ {1, . . . ,m}. The set R(i, i) is a semigroup
and irreducible by Proposition 4.1. We may therefore use
Lemma 4.1 to find constants 1 ≥ ε1 > 0 and T > 0, such
that for all x ∈ R

n and all B ∈ R
n×n there is an R ∈

R≤T (i, i) with ‖BRx‖ ≥ ε1‖B‖‖x‖.
Now define ε := min{1, ε1δ

2} and choose k large enough
such that

‖Sk‖ > 4/ε .

Fix U ∈ R≤2h(ik, i) and V ∈ R≤2h(i, ik) and pick an
arbitrary x0 ∈ R

n, ‖x0‖ = 1, such that ‖Skx0‖ ≥ ‖Sk‖ ε/2.
Then we can choose R1 ∈ R≤T (i, i), such that

‖SkV R1USkx0‖ ≥ ε1‖SkV ‖‖USkx0‖ ≥

ε1‖Sk‖‖V
−1‖−1‖U−1‖−1‖Skx0‖ ≥

(
‖Sk‖

ε

2

)2

.

Note that by construction SkV R1USk ∈
R≤2tk+T+4h(ik, ik). Applying the same arguments
again we can choose R2 ∈ R≤T (i, i), such that

‖SkV R2USkV R1USkx0‖ ≥
(
‖Sk‖

ε

2

)3

.

Arguing inductively we construct times τl with ltk ≤ τl ≤
l(tk + T + 4h) and matrices Tl ∈ Rτl

(ik, ik) with

1

τl

log ‖Tl‖ ≥
l

τl

log
(
‖Sk‖

ε

2

)
≥

l

τl

log 2

≥
1

tk + T + 4h
log 2 > 0.

This contradicts the assumption, that
lim supl→∞

1
τl

log ‖Tl‖ ≤ 0, which follows from ρ̂ = 0.
(ii) A standard argument shows that R∞(i, j) is closed and

by part (i) it is bounded. Thus we have to show, that there are
nonzero elements. Now Lemma 3.3 shows, that there exists a
constant C > 0 and sequences tk → ∞ , Sk ∈ Rtk

(i, j) with
‖Sk‖ ≥ C for all k ∈ N. By (i) the sequence is bounded, so
that it has a convergent subsequence with nonzero limit. By
definition this limit is contained in R∞(i, j).

(iii) As R∞(i, j) ⊂ S∞ (i) it is clear from (i) that S∞ (i)
is nonempty and not equal to {0}. Closedness is immediate
from the definition and so compactness follows from (i).

(iv) This is an easy exercise.
(v) Let tk → ∞, uk ∈ U(i) be sequences such that

Φuk
(tk, 0) → S ∈ S∞(i). Applying Lemma 3.1 we may

assume that there exists a u ∈ U(i) such that Φuk
(s, 0) →

Φu(s, 0), uniformly for s ∈ [0, 2h]. Thus we may write
Φuk

(tk, 0) = Tk exp(Ai2h). Taking a convergent subse-
quence Tk → T shows the assertion.

(vi) Fix i ∈ {1, . . . ,m}. As we have noted the set R(i, i)
is a semigroup, which is irreducible by Proposition 4.1. By
(iv) it is easy to see that if S ∈ R(i, i) ∪ R∞(i, i), and
T ∈ R∞(i, i) then ST, TS ∈ R∞(i, i) (where we have
used the assumption ρ̂ = 0, otherwise some further factors



appear according to (iv)). Using (ii) this shows that R∞(i, i)
is a nonzero semigroup ideal of the irreducible semigroup

R∞(i, i) ∪R(i, i) .

By [22, Lemma 1] this shows irreducibility of R∞(i, i). The
second assertion follows from R∞(i, i) ⊂ S∞(i).

The following interesting observation is obtained through
the previous proof.

Corollary 5.1: Under the assumption of the previous
Lemma 5.1 the set S(A,U) is bounded if ρ̂ = 0.

Proof: If the assertion is false then there exists a
sequence ‖Sk‖ → ∞. This is brought to a contradiction
in the proof of (i) of the previous theorem.

We now define for i ∈ {1, . . . ,m} the function vi : R
n →

R+ by setting

vi(x) := max {‖Sx‖ |S ∈ S∞(i)} . (14)

Using Lemma 5.1 (iii) and (vi) it is easy to see, that for
every i ∈ {1, . . . ,m} the function defined in (14) is a norm
on R

n. The following result shows that in this manner we
have defined a family of parameterized Lyapunov functions
for our system.

Theorem 5.1: Let {A1, . . . , Am} ⊂ R
n×n be a finite

irreducible set and let h ∈ (0,∞). Then the following two
statements are equivalent
(i) ρ̂(A1, . . . , Am, h) ≤ ρ,
(ii) there are norms v1, . . . , vm on R

n with the following
properties:

vi(e
Aitx) ≤ eρtvi(x) (15)

for all t ≥ 0, x ∈ R
n, i = 1, . . . ,m,

vj(e
Ajtx) ≤ eρtvi(x) (16)

for all t ≥ h, x ∈ R
n, i, j = 1, . . . ,m.

If the norms are defined through (14) then (15) and (16) hold
with ρ = ρ̂(A1, . . . , Am, h). Furthermore, for all x ∈ R

n

and all i ∈ {1, . . . ,m}, there exists an j ∈ {1, . . . ,m} and
t ∈ (0, h] such that

vj(exp(Ajt)x) = eρ̂tvi(x) . (17)
Before proving the theorem we would like to point out

the significance of (17). This equation states that at some
bounded time instant where a switching may occur it is
possible to exactly realize the exponential growth rate, with
respect to the parameterized norms vi. Note that this result is
false if the assumption of irreducibility is violated. An easy
example for this is given by a singleton set {A1}. For n > 2
a single matrix is never irreducible, and indeed the solutions
of ẋ = Ax will in general display very different exponential
growth behavior depending on the eigenvalues of A. If x lies
in an eigenspace corresponding to an eigenvalue λi of A the
growth rate of x can only be <λi.

Proof: (of Theorem 5.1) Without loss of generality we
may assume ρ̂ = 0.

(i)⇒(ii): Define the norms vi through (14). For each i ∈
{1, . . . ,m} the function ui :≡ i is contained in U(i). Assume

that for some x ∈ R
n.t ≥ 0 we have vi(e

Aitx) ≥ vi(x).
Then by definition

∥∥TeAitx
∥∥ > vi(x) for some T ∈ S∞(i).

Now Lemma 5.1 (iv) shows that TeAit ∈ S∞(i). So that
vi(x) ≥ ‖TeAitx‖, a contradiction.

A similar argument applies to the case (16), because
eAjt ∈ S(i) for t ≥ h. If we assume vj(e

Ajtx) ≥ vi(x),
then we may choose T ∈ S∞(j) to realize the norm
vj(e

Ajtx) = ‖TeAjtx‖ and again TeAjt ∈ S∞(i).
(ii)⇒(i): It is sufficient to show that all Lyapunov ex-

ponents λ(x, u) are upper bounded by ρ, [1]. So fix 0 6=
x ∈ R

n and an admissible switching signal u. If u has no
discontinuities on an interval of the form (a,∞), where a ≥
0, the assertion is obvious from (15). Otherwise let t0, t1, . . .
denote the switching times of u and let i(k) be such that
u(t) = i(k), for t ∈ [tk, tk+1). Without loss of generality let
t0 = 0, which we may assume as λ(x, u) = λ(x, u(· − t0)).
Then we have by (15), that

vi(0)(exp(Ai(0)t)x) ≤ eρtvi(0)(x) , for t ∈ [t0 + h, t1] ,

and so for t ∈ [t1 + h, t2] it follows, again using (16), that

vi(1)(Φu(t, 0)x)

= vi(1)(exp(Ai(1)(t − t1)) exp(Ai(0)t1)x)

≤ eρ(t−t1)vi(0)(exp(Ai(0)t1)x) ≤ eρtvi(0)(x) .

By induction we obtain for t ∈ [tk + h, tk+1], that

1

t
log

(
vi(k)(Φu(t, 0)x)

)
≤ ρ +

1

t
log(vi(0)(x)) .

As the growth in the intervals [tk, tk + h] is bounded, and
as vi(0) ≤ Cvi, i = 1, . . . ,m for a suitable constant C, this
implies, that λ(x, u) ≤ ρ, as desired.

It remains to prove the final statement. Note that in the
proof (i)⇒(ii) we have already seen that for the norms
defined in (14) the conditions (15) and (16) hold with ρ =
ρ̂(A1, . . . , Am, h). So fix x ∈ R

n and i ∈ {1, . . . ,m} and
t ≥ 0. Let S ∈ S∞(i) be such that ‖Sx‖ = vi(x). By
Lemma 5.1 (iv) there exist j ∈ {1, . . . ,m} and exp(Ajt) ∈
Rt(i, j), T ∈ S∞(ĵ) such that S = T exp(Ajt) for a suitable
t ∈ (0, h]. Then, using the definition of the norms vi and the
equivalence (i)⇔(ii) of this theorem, that we have just seen,
we obtain

vi(x) = ‖Sx‖ = ‖T exp(Ajh)x‖

≤ vj(exp(Ajh)x) ≤ vi(x) .

Thus equality holds throughout. This shows the assertion.
The previous result may also be formulated in differential

terms. To this end we recall that the subgradient of a norm
‖ · ‖ at a point x 6= 0 is given by the normed dual vectors.
The dual norm ‖ · ‖∗ is defined by

‖y‖∗ := max{|〈x, y〉| | ‖x‖ ≤ 1} .

A vector y is now a normed dual vector to x if ‖y‖∗ = 1
and

‖x‖ = 〈y, x〉 .



We denote the (convex) set of subgradient of the norm ‖ · ‖
in the point x by

∂P ‖x‖ := {y | y is normed dual vector to x} . (18)

Corollary 5.2: Let {A1, . . . , Am} ⊂ R
n×n be a finite

irreducible set and let h ∈ (0,∞). Then the following two
statements are equivalent
(i) ρ̂(A1, . . . , Am, h) ≤ ρ,
(ii) there are norms v1, . . . , vm on R

n with the following
properties:

〈y,Aix〉 ≤ ρ for all y ∈ ∂P vi(x) , (19)
〈y,Aje

Aix〉 ≤ ρ for all y ∈ ∂P vi(x) , (20)

The norms may be chosen such that (19) and (20) hold with
ρ = ρ̂(A1, . . . , Am, h).

Proof: It is sufficient to show that (19) is equivalent
to (15) and that (20) is equivalent to (16). This however is
clear from general results of nonsmooth analysis.

Finally let us point out how the results generalize to
reducible systems. We have already pointed out in (13) that
in the reducible case, the matrices may be simultaneously
transformed to upper block triangular form. With this form,
the growth rate is determined by the blocks on the diagonal.

Corollary 5.3: Let {A1, . . . , Am} ⊂ R
n×n be a finite set

and let h ∈ (0,∞). Then the following two statements are
equivalent
(i) ρ̂(A1, . . . , Am, h) < ρ,
(ii) there are norms v1, . . . , vm on R

n with the following
properties:

vi(e
Aitx) ≤ eρtvi(x) (21)

for all t ≥ 0, x ∈ R
n, i = 1, . . . ,m,

vj(e
Ajtx) ≤ eρtvi(x) (22)

for all t ≥ h, x ∈ R
n, i, j = 1, . . . ,m.

Note that we have dropped the assumption of irreducibility
and no statement of the form (17) can be made.

Proof: The proof (ii)⇒(i) is just as in the proof of
Theorem 5.1.

To prove the converse note that an easy calculation shows
that the assumption implies that for each i the set

{e−ρtΦu(t, 0) | u ∈ U(i)}

is bounded. We claim that the norms

vi(x) := max ‖e−ρtΦu(t, 0)‖

satisfy the assertion. This may be seen as follows: If u ∈
U(i), then Φu(t, 0) exp(A(i)t) ∈ S(i). Then for all t ≥ 0
and all x ∈ R

n we have

vi(exp(A(i)t)x) = max
s,u∈U(i)

‖e−ρsΦu(s, 0) exp(A(i)t)x‖

≤ eρtvi(x) .

This shows (21) for the norms vi. The second assertion
can be shown by exactly the same argument applied to
exp(A(j)t) for t ≥ h.

VI. CONCLUSIONS

A converse Lyapunov theorem has been presented for
linear switching systems with dwell time. A particular feature
is that in the generic irreducible case, the growth rate can be
realized exactly at possible switching times. A more refined
statement can be found in [1].
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