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Abstract

This paper addresses the problem of verifying stability of networks whose subsystems admit dissipation inequalities of integral
input-to-state stability (iISS). We focus on two ways of constructing a Lyapunov function satisfying a dissipation inequality
of a given network. Their difference from one another is elucidated from the viewpoint of formulation, relation, fundamental
limitation and capability. One is referred to as the max-type construction resulting in a Lipschitz continuous Lyapunov
function. The other is the sum-type construction resulting in a continuously differentiable Lyapunov function. This paper
presents geometrical conditions under which the Lyapunov construction is possible for a network comprising n ≥ 2 subsystems.
Although the sum-type construction for general n > 2 has not yet been reduced to a readily computable condition, we obtain
a simple condition of iISS small gain in the case of n = 2. It is demonstrated that the max-type construction fails to offer a
Lyapunov function if the network contains subsystems which are not input-to-state stable (ISS).

Key words: Nonlinear systems; Interconnected systems; Lyapunov function; Integral Input-to-state stability; Dissipation
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1 Introduction

In order to verify stability of an interconnected system,
the notion of input-to-state stability (ISS) is useful for
dealing with the subsystems which do not admit a finite
linear gain [23]. For example, the ISS small-gain theo-
rem is available for establishing the ISS property of in-
terconnection of two ISS subsystems [16,26]. The notion
of integral input-to-state stability (iISS) has been also
developed to characterize nonlinear systems which are
not finite in the sense of ISS [2]. For the interconnection
of two subsystems, the philosophy of the ISS small-gain

? A preliminary version of this paper was presented at the
48th IEEE Conference on Decision and Control, December
16-18, 2009, Shanghai, China. This paper is supported in part
by Grant-in-Aid for Scientific Research of JSPS under grant
19560446 and 22560449, by German Research Foundation
(DFG) as part of the Collaborative Research Center 637,
and by Volkswagen-Stiftung under grant I/82683-684.
∗ Corresponding author. Tel.+81-948-29-7717. Fax +81-948-
29-7709.

Email addresses: hiroshi@ces.kyutech.ac.jp (Hiroshi
Ito), dsn@math.uni-bremen.de (Sergey Dashkovskiy),
wirth@mathematik.uni-wuerzburg.de (Fabian Wirth).

theorem has been extended to the iISS case [11,14]. On
the other hand, many practical systems such as logis-
tic systems, biological systems, communication networks
and power networks consist of more than two subsys-
tems and have complex interconnection structures. To
address such large-scale systems of ever-increasing im-
portance, the ISS small-gain theorem has been extended
to the case of general networks recently [8,17].

The ISS small-gain theoremwas originally given in terms
of bounds for trajectories. Having Lyapunov functions is
sometimes advantageous in analysis and design of non-
linear systems. A Lyapunov formulation of the ISS small-
gain theorem was given in [15] for the first time, and
extended to the general networks in [7,9,18]. The ISS
Lyapunov functions constructed there are defined as the
maximum among ISS Lyapunov functions of the sub-
systems, which directly yield Lipschitz continuous Lya-
punov functions of the networks 1 . In contrast, the iISS
small-gain theorem developed in [11,14] is proved by

1 Historically, the max-type and the sum-type construction
incorporates the idea of vector and scalar Lyapunov func-
tions, respectively[22,19].
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using the sum of iISS Lyapunov functions of two sub-
systems, which directly results in continuously differen-
tiable Lyapunov functions. With the aim of obtaining
continuously differentiable Lyapunov functions for gen-
eral networks of ISS subsystems, an attempt has been
made in [5] and a max-type Lyapunov function yielding
a dissipative inequality of the network have been derived
from the ISS subsystems defined in the dissipative form
although the constructed Lyapunov function is only Lip-
schitz continuous. Note that the max-type construction
was originally derived in the so-called implication form
[15,7,9,18]. The dissipation form has the advantage that
it unifies the definition of ISS and iISS systems, while
the implication form is invalid for iISS systems which are
not ISS. An attempt to tackle iISS networks was made
in [20]. These investigations show that a new scheme is
required for establishing the stability of networks involv-
ing non-ISS subsystems.

The purpose of this paper is to deal with subsystems
described by dissipative inequalities covering the iISS
property, and to elucidate capabilities, limitations and
relations of the two constructions of Lyapunov functions
for general networks. This paper shows that the max-
type construction yields a dissipation inequality of the
general network consisting of general n subsystems if a
matrix-like small-gain condition holds without any as-
sumption on the interaction with external disturbance.
From the sum-type construction, this paper also derives
a sufficient condition for the stability of the network.
Although the condition has not yet been expressed in a
computationally convenient form for general n, it can be
reduced to a small-gain condition in the case of two sub-
systems. Moreover, this paper proves that the max-type
construction can only deal with ISS subsystems. while
the sum-type construction can handle non-ISS as well
as ISS subsystems. This paper gives geometrical insights
into the capabilities and limitations of the two construc-
tions. In order to avoid confusion, it is made clear here
that the focus of this paper is on how to compose a Lya-
punov function the entire network, which is independent
of another interesting issue of how to formulate inter-
action between individual subsystems such as sum and
maximum [9,6] 2 .

We use the following notation. The symbol | · | stands for
the Euclidean norm. A continuous function ω : R+ :=
[0,∞) → R+ is said to be positive definite and denoted
by ω ∈ P if it satisfies ω(0) = 0 and ω(s) > 0 holds for
all s > 0. A function is of class K if it belongs to P and is
strictly increasing; of classK∞ if it is of classK and is un-
bounded. The symbol Id denotes the identity map. The
symbols ∨ and ∧ denote logical sum and logical prod-
uct, respectively. Negation is ¬. For f, g : R+ → R+, we
use the simple notation lim f(s) = lim g(s) to describe
{lim f(s) = ∞ ∧ lim g(s) = ∞} ∨ {∞ > lim f(s) =

2 For example, one may want to use maximization instead
of the sum on the right side of (1)

lim g(s)}. Note that the ∞ case is included. In a sim-
ilar manner, lim f(s) ≥ lim g(s) denotes {lim f(s) =
∞ ∨ ∞ > lim f(s) ≥ lim g(s)}. For vectors a, b ∈ Rn the
relation a ≥ b is defined by ai ≥ bi for all i = 1, . . . , n.
The relations >,≤, < for vectors are defined in the same
manner. The negation of a ≥ b is denoted by a 6≥ b and
this means that there exists an i ∈ {1, . . . , n} such that
ai < bi. For a function of time t, a dot over its symbol
stands for d/dt. A preliminary version of the material
in this paper was presented at the 48th IEEE Confer-
ence on Decision and Control, December, 2009, Shang-
hai, China.

2 Problem statement

Consider a network Σ whose state vector x(t) =
[x1(t)

T , x2(t)
T , ..., xn(t)

T ]T ∈ RN is governed by
ẋ = f(x, r) and admits the existence of a positive def-
inite and radially unbounded R+-valued C1 function
Vi(xi) satisfying

V̇i(xi) ≤ −αi(Vi(xi)) +
∑
j 6=i

γij(Vj(xj)) + κi(|r|) (1)

along the trajectories xi(t) ∈ RNi for each i = 1, 2, ..., n.
The vector r(t) ∈ RM denotes an exogenous signal. The
property (1) is usually called a dissipation inequality of
a subsystem Σi. It is assumed that αi ∈ K, γij ∈ K∪{0}
and κi ∈ K∪{0} hold. This assumption means that each
subsystem Σi defined with the state xi and the inputs
xj , j 6= i, and r is integral input-to-state stable (iISS),
and that Vi is an iISS Lyapunov function for the indi-
vidual subsystem Σi for each i = 1, 2, ..., n. We borrow
the notions of ISS and iISS properties from the refer-
ences[23,25,2]. Under a stronger assumption αi ∈ K∞,
the system Σi is guaranteed to be input-to-state stable
(ISS), and the function Vi is entitled to be a (dissipa-
tive) ISS Lyapunov function. The original definition of
iISS and ISS is given in terms of trajectories, which is
equivalent to the existence of C1 iISS and ISS Lyapunov
functions, respectively[2,25]. By definition, an ISS sys-
tem is always iISS. The converse does not hold.

Remark 1 The function Vi satisfying (1) is an iISS Lya-
punov function even when αi ∈ P [2]. Nevertheless, to
allow for feedback loops in the network Σ, this paper as-
sumes αi ∈ K which is a strict subset of P. It is proved in
[13] that a feedback interconnection of iISS systems de-
fined with the dissipation inequalities (1) is guaranteed to
be iISS only if for each i the function α̂ii can be bounded
from below by a class K function.

The objective of this paper is to derive conditions under
which the network Σ in total is iISS with respect to input
r and state x through construction of an iISS Lyapunov
function for the overall network. We want to cover ISS
as a special case. To this end, we define operators A,Γ:
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s ∈ Rn
+ 7→ z ∈ Rn

+ by

z = A(s) = [α1(s1), α2(s2), . . . , αn(sn)]
T
,

z = Γ(s) =

[∑
j 6=1

γ1j(sj),
∑
j 6=2

γ2j(sj), . . . ,
∑
j 6=n

γn,j(sj)

]T
.

The operator K: τ ∈ R+ 7→ z ∈ Rn
+ is defined by

z = K(τ) = [κ1(τ), κ2(τ), . . . , κn(τ)]
T
.

The following vectors are also defined:

V (x) = [V1(x1), V2(x2), . . . , Vn(xn) ]
T ,

V̇ (x) = [ V̇1(x1), V̇2(x2), . . . , V̇n(xn) ]
T ,

where V̇i = dVi/dt is the time derivative along the tra-
jectories xi(t) ∈ RNi . Then, the dissipation inequalities
(1) can be compactly written as

V̇ (x) ≤ (−A+ Γ) ◦ V (x) +K(|r|) . (2)

Recall that the relation ≤ for vectors used in (2) is in-
terpreted componentwise. The goal of this paper is to
find a positive definite and radially unbounded function
Vcl : RN → R+ satisfying the dissipation inequality

V̇cl(x) ≤ −αcl(Vcl(x)) + κcl(|r|) (3)

along the trajectories x(t) of the network Σ for some
αcl ∈ P and κcl ∈ K∪{0}. The property (3) guarantees
that the network Σ is iISS with respect to input r and
state x. Furthermore, the network Σ is ISS if αcl ∈ K∞.

3 Nonlinear transformation

In this preliminary section we discuss nonlinear trans-
formations of iISS Lyapunov functions. The techniques
will be essential in the constructions of the following sec-
tions. Consider C1 functions Wi : RNi → R+ given by

Wi(xi) =

∫ Vi(xi)

0

λi(τ)dτ, i = 1, 2, ..., n (4)

for continuous functions λi : R+ → R+. This is nothing
but a nonlinear transformation of Vi(xi) with a conti-
nously differentiable function. We assume that

λi(si) > 0, ∀si ∈ (0,∞), i = 1, 2, ..., n, (5)∫ ∞

1

λi(si)dsi = ∞, i = 1, 2, ..., n, (6)

{αi ∈ K \ K∞ ∧ κi ∈ K ⇒ lim sup
si→∞

λi(si) <∞},

i = 1, 2, ..., n (7)

hold. Consider the operator F : Rn
+ → Rn

+ defined as

F (s) = [ζ1(s1), ζ2(s2), ..., ζn(sn)]
T ,

where we assume that

ζi ∈ K∞, Id− ζi ∈ K∞, i = 1, 2, ..., n. (8)

We will discuss the adequate choice of λi and ζi in the
next sections.

Using these functions, we define the vectors

W (x) = [W1(x1), W2(x2), . . . , Wn(xn) ]
T ,

Ẇ (x) = [ Ẇ1(x1), Ẇ2(x2), . . . , Ẇn(xn) ]
T

along the trajectories xi(t) and the matrices

H(V (x)) =


λ1(V1(x1)) 0 · · · 0

0 λ2(V2(x2))
. . .

...
...

. . .
. . . 0

0 · · · 0 λn(Vn(xn))

 ,

G(|r|) =


η1(|r|) 0 · · · 0

0 η2(|r|)
. . .

...
...

. . .
. . . 0

0 · · · 0 ηn(|r|)

 ,

where the non-decreasing continuous functions ηi :
R+ → R+, i = 1, 2, ..., n, are given by

λ̄i(τ) = max
w∈[0,τ ]

λi(w), (9)

ηi(τ) =


λ̄i ◦ α−1

i ◦ ζ−1
i ◦ κi(τ)
, if lim

w→∞
ζi◦αi(w)>κi(τ),

lim
w→∞

λ̄i(w) , otherwise .

(10)

Note that the assumption (7) renders the function ηi :
R+ → R+ given by (10) well-defined. With the help of
these definitions, combining the two cases ζi◦αi(Vi(xi))>
κi(|r|) and ζi◦αi(Vi(xi))≤κi(|r|) in (2) proves that (2)
implies

Ẇ (x) ≤ H(V (x))
{
−(Id− F ) ◦A+ Γ

}
(V (x))

+ G(|r|)K(|r|). (11)

Alternatively, the inequality (11) can be expressed as

Ẇ (x) ≤ H(V (x))
{
−(Id+ E)−1 ◦A+ Γ

}
(V (x))

+ G(|r|)K(|r|), (12)
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-

Fig. 1. Geometrical interpretation of (17): Obtuse angle.

where E is defined by

(Id+ E)(s) := [s1+ ε1(s1), s2+ ε2(s2), ..., sn+ εn(sn)]
T

:= (Id− F )−1(s). (13)

Note that εi ∈ K∞ holds since

(Id+ εi) ◦ (si − ζi(si))− si
= −ζi(si) + εi ◦ (si − ζi(si)) = 0

and ζi, Id−ζi ∈ K∞. The relation (13) defines a bijection
between ζi ∈ K∞ and εi ∈ K∞ , i.e., F and E.

The technique applied to the iISS network in this section
is essentially the same as the technique of changing ISS
supply rates proposed in [24].

Remark 2 The choice of ζi(s) ≡ 0, εi(s) ≡ 0 and
ηi(s) ≡ 0 is also valid in (11) and (12) when κi(s) ≡ 0.

4 Sum-type construction

This section considers Lyapunov functions in the form of

Vcl(x) =

n∑
i=1

Wi(xi) (14)

and presents a condition under which the network Σ is
guaranteed to be iISS. In order to select functions λi with
which the sum-type Lyapunov function (14) establishes
the stability of the network, we define mappings from
s ∈ Rn

+ to Rn
+ by

Λ(s) = [λ1(s1), λ2(s2), . . . , λn(sn) ]
T
, (15)

D(s) = [s1+β1(s1), s2+β2(s2), . . . , sn+βn(sn)]
T

(16)

and obtain the following theorem.

Theorem 3 Suppose that there exist continuous func-
tions λi : R+ → R+, i = 1, 2, ..., n, such that (5), (6) (7)
and

Λ(s)TΓ(s) ≤ Λ(s)TD−1 ◦A(s), ∀s ∈ Rn
+ (17)

are satisfied for some β1, β2, ... , βn ∈ K∞. Then the
network Σ is iISS with respect to input r and state x. If

αi ∈ K∞, i = 1, 2, ..., n, (18)

lim inf
si→∞

λi(si) > 0, i = 1, 2, ..., n (19)

are satisfied additionally, the network Σ is ISS. Further-
more, an iISS (ISS) Lyapunov function is given by (14).

Proof. Let θi be defined with

Id− θi = (Id+ βi)
−1. (20)

The property θi ∈ K∞ follows from βi ∈ K∞ and

(Id− θi) ◦ (Id+ βi)(si)− si
= βi(si)− θi ◦ (Id+ βi(si)) = 0.

Pick ζi ∈ K∞ satisfying θi − ζi ∈ K∞. Substituting (17)
for (12), we obtain for Vcl defined by (14)

V̇cl(x)≤−Λ(V )T [((Id+E)−1−D−1)◦A(V )]+
n∑

i=1

κ̂i(|r|),

where κ̂i := ηiκi ∈ K ∪ {0}. Then, from

(Id+ εi)
−1 − (Id+ βi)

−1 = θi − ζi (21)

we obtain

V̇cl(x) ≤ −
n∑

i=1

λi(Vi(xi))[(θi − ζi) ◦ αi(Vi(xi))]

+
n∑

i=1

κ̂i(|r|)

≤ −
n∑

i=1

α̂i(Vi(xi)) +
n∑

i=1

κ̂i(|r|),

where α̂i(s) = λi(s)[(θi−ζi)◦αi(s)]. Since αi∈K implies
(θi−ζi)◦αi ∈ K, the property (5) yields α̂i ∈ P, i =
1, 2, .., n. Let χ : R+ → R+ denote the definite integral
in (4), i.e., Wi(xi) = χi(Vi(xi)). The properties (5) and
(6) ensure χi ∈ K∞. Hence, Wi(xi) is positive definite
and radially unbounded. Defining W(s) = {w ∈ Rn

+ :
s =

∑n
i=1 wi}, we arrive at (3) with

αcl(s) = min
w∈W(s)

n∑
i=1

α̂i ◦ χ−1
i (wi), κcl(s) =

n∑
i=1

κ̂i(s)

for αcl ∈ P and κcl ∈ K ∪ {0}. From χi ∈ K∞, i =
1, 2, ..., n, it follows that Vcl in (14) is positive definite
and radially unbounded. Thus, the function Vcl is an
iISS Lyapunov function of the network Σ. If (18) and
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(19) hold additionally, we choose α̂i(s) = λi(s)[(θi−ζi)◦
αi(s)], where

λi(s) = inf
τ∈[s,∞)

λi(τ).

The properties (18), (19) and (5) imply (θi − ζi) ◦ αi ∈
K∞ and α̂i ∈ K∞. Therefore, the property αcl ∈ K∞
guarantees that Vcl is an ISS Lyapunov function. 2

A geometrical interpretation can be given to (17) in The-
orem 3 in terms of the two vector-valued functions Λ(s)
and M(s) := −D−1 ◦ A(s) + Γ(s). The angles enclosed
by the two vectors are greater than or equal to 90◦ for
all s ∈ Rn

+ if and only if (17) holds. Such vectors are il-

lustrated in Fig.1, where M(s) = [m1(s),m2(s)]
T and

Λ(s) = [λ1(s1), λ2(s2)]
T .

From a different viewpoint, the scalar condition (17) im-
posed on vectors in Rn

+ states that a nonlinear combi-
nation of the sums of γij(sj)’s is less than or equal to a
nonlinear combination of αi(si)’s. In this sense, the func-
tions γij in total are required to be small in comparison
to the functions αi in total, which looks like a small-gain
condition. In the case of n = 2, we can make this ob-
servation precise and we can explicitly obtain a vector
Λ(s) solving the geometrical problem and fulfilling (5),
(6), (7) and (19) as explained in the following.

Theorem 4 Let n = 2. Suppose that

{αi ∈ K\K∞ ⇒ γ3−i,i ∈ K\K∞ ∪ {0}}, i = 1, 2
(22)

holds. If there exist β1, β2 ∈ K∞ satisfying

D ◦ Γ(s) 6≥ A(s), ∀s ∈ R2
+ \ {0}, (23)

there exists a continuous function Λ : Rn
+ → Rn

+ of the
form (15) such that (5), (6), (7), (17) and (19) hold.

Proof. It can be verified that the condition (23) is equiv-
alent to the logical sum of

(Id+ β1) ◦ γ12 ◦ α−1
2 ◦ (Id+ β2) ◦ γ21(τ) < α1(τ),

∀τ ∈ (0,∞) (24)

and

(Id+ β2) ◦ γ21 ◦ α−1
1 ◦ (Id+ β1) ◦ γ12(τ) < α2(τ),

∀τ ∈ (0,∞) (25)

Note that the expression (24) (resp. (25)) implic-
itly requires limτ→∞ α2(τ) ≥ limτ→∞ γ21(τ) (resp.
limτ→∞ α1(τ) ≥ limτ→∞ γ12(τ)). The existence of β1,
β2 ∈ K∞ achieving the above logical sum is the same as
the existence of β1, β2 ∈ K∞ achieving ≤ for s ∈ R+

instead of < for s ∈ R+ \ {0} in the logical sum of (24)

and (25). Indeed, the substitution βi = βi/2 allows us
to change ≤ into <. Hence, the condition (23) is equiv-
alent to the iISS small-gain condition presented in [14].
The function Vcl in (14) is identical with the one em-
ployed in [11,14], and the corresponding inequality (17)
is the same as the one solved in [11,14]. Moreover, the
property (22) implies that one of the properties

(A1) lim
τ→∞

α1(τ) = ∞ ∧ lim
τ→∞

α2(τ) = ∞,

(A2) lim
τ→∞

α1(τ) = ∞ ∧ lim
τ→∞

γ12(τ) <∞,

(A3) lim
τ→∞

α2(τ) = ∞ ∧ lim
τ→∞

γ21(τ) <∞,

(A4) lim
τ→∞

γ12(τ) <∞ ∧ lim
τ→∞

γ21(τ) <∞,

is satisfied. It is also verified that

(24) ∧ (A2) ∧ ¬(A1) ⇒ (A4)

(25) ∧ (A3) ∧ ¬(A1) ⇒ (A4)

hold. Hence, the non-decreasing functions λ1(s1) and
λ2(s2) derived in [14] achieve (5), (6), (7), (17) and (19)
for n=2. If γi,j(sj)≡0 holds for some i 6=j, we can always
use sufficiently small γi,j ∈K when we invoke [14]. 2

In the n = 2 case, the components λ1(s1) and λ2(s2) of
Λ(s) are derived explicitly in [11,14], and the property
(23) agrees with the small-gain condition in [14]. To give
a geometrical insight into the condition (23), define the
open set

Ω−− := {s = [s1, s2]
T ∈ R2

+ : −A(s) + Γ(s) < 0} (26)

whose closure contains {0}. The boundary layer is given
by the two curves l1: α1(s1) = γ12(s2) and l2: α2(s2) =
γ21(s1). By the definition of 6≥, the property (23) implies
Ω−− 6= ∅ and it is a connected set dividing R2

+ \{0} into
two disjoint sets. The existence of β1, β2 ∈ K∞ requires
that the thickness of Ω−− does not shrink to zero as we
go far away from the origin s = 0. In other words, the
class K∞ property of β1 and β2 implies that the distance
between the two curves l1 and l2 increases unboundedly
as the distance from the origin increases. The interpre-
tation is illustrated by Fig.2, which shares the idea of
topological separation with the classical input-output
approach [27,21]. The obtuse angle problem posed by
Theorem 3 is recast into the topological separation with
Ω−− by Theorem 4 in the case of n = 2. The converse
direction holds in the following sense.

Proposition 5 Let n = 2. Suppose that there exist con-
tinuous functions λi : R+ → R+, i = 1, 2, ..., n, such
that (5) and

Λ(s)TΓ(s) < Λ(s)TA(s), ∀s ∈ Rn
+ \ {0} (27)

is satisfied. Then, the set Ω−− is non-empty, connected
and unbounded.
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(a) Unbounded in

all directions.

(b) Unbounded in a
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Fig. 2. Geometrical interpretation of (23) and (37): Topo-
logical separation.

Proof. Define

Ω
++

:= {s = [s1, s2]
T ∈ R2

+ : −A(s) + Γ(s) ≥ 0}. (28)

Unless the set Ω−− is non-empty, connected and un-

bounded, the set Ω
++\{0} is not empty. In such a situa-

tion, we have Λ(s)T [−A(s)+Γ(s)] ≥ 0 for s ∈ Ω
++ \{0}

due to (5). This contradicts (27). 2

Proposition 5 can be also observed from the fact that
the angles enclosed by Λ(s) and −A(s) + Γ(s) cannot

be greater than 90◦ for s ∈ Ω
++ \ {0}. Note that the

property (27) is implied by the existence of β1, β2 ∈ K∞
satisfying (17). Theorem 4 precisely clarifies the converse
of Proposition 5 with such β1, β2 ∈ K∞ in the case of
n = 2.

Remark 6 When we consider only 0-GAS (i.e., global
asymptotic stability of x = 0 for r(t) ≡ 0 or K(s) ≡ 0),
the requirement βi ∈ K∞ in Theorem 3 can be relaxed
into βi ∈ P and Id + βi ∈ K∞ for i = 1, 2, ..., n. Note
that using < in (17) with D = Id cannot always ensure
0-GAS since it cannot exclude the no-gap case [1]. It is
known that in the no-gap case information on αi and γij
is not sufficient to conclude 0-GAS. Property (17) with
positive definite βi’s ensures that the no-gap case does
not occur. Likewise, inequality (23) with D = Id cannot
guarantee the 0-GAS. In order to avoid the no-gap case,
we need to add an assumption as in [14].

Remark 7 Since we do not assume αi ∈ K∞ in this
paper, we do not resort to A−1. This contrasts vividly
with the developments in [5] applicable exclusively to ISS
subsystems. The difference appears in (17) and (23) in a
natural manner. Theorem 4 not only proves a conjecture
made in [5] for n = 2, but also covers iISS subsystems.

5 Max-type construction

In this section, we define a locally Lipschitz function
Vcl : RN → R+ by

Vcl(x) = max
i=1,2,...,n

Wi(xi). (29)

Alternatively, we can write the above Vcl as

Vcl(x) = max
i=1,2,...,n

ψ−1
i (Vi(xi)), (30)

where ψi ∈ K∞ is given by

ψ−1
i (si) =

∫ si

0

λi(τ)dτ. (31)

Note that the right hand side of the above equation is
guaranteed to be of class K∞ by (5) and (6). An appar-
ent feature of the max-type Lyapunov function (29) is
its Lipschitz continuity, while the sum-type Lyapunov
function (14) is continuously differentiable.

For interconnected ISS systems, some studies derive Lya-
punov functions of the form (30), e.g., [15,7,9,18]. The
following theorem demonstrates that the max-type Lya-
punov function is not useful if at least one subsystem is
only iISS.

Theorem 8 Let Vcl be defined by (30), and let V ◦
cl(x; ẋ)

denote the Clarke generalized derivative at x in the direc-
tion of ẋ. If there exist continuously differentiable ψi ∈
K∞, i = 1, 2..., n, such that all differentiable trajecto-
ries 3 x(t) ∈ RN fulfilling (1) with αi ∈ K, γij ∈ K∪{0}
for r(t) ≡ 0 satisfy

V ◦
cl(x; ẋ) ≤ 0, ∀x ∈ RN , (32)

then∑
j 6=i

lim
τ→∞

γij(τ) ≤ lim
τ→∞

αi(τ), i = 1, 2, ..., n. (33)

Proof.To prove the claim by contradiction, suppose that∑
j 6=i

lim
τ→∞

γij(τ) > lim
τ→∞

αi(τ) (34)

holds for some i = p ∈ {1, 2, ..., n}. Let

Mp := {x ∈ RN : ψ−1
p (Vp(xp)) > ψ−1

j (Vj(xj)), ∀j 6= p},

Lp :=

{
x ∈ RN :

∑
j 6=p

γpj(Vj(xj)) > lim
τ→∞

αp(τ)

}
.

Since the ψ−1
i ’s are of classK∞, the setMp is unbounded

in all directions, i.e., Mp contains a sequence {xp,k ∈
RN}, k = 1, 2, ..., such that Vi(x

p,k
i ) → ∞ for all i =

3 Here, the trajectories are not necessarily associated with
differential equations of the form ẋ = f(x, r). Using the
technique developed in [14], we can also address the existence
of a corresponding differential equation in Theorem 8.
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1, 2, ..., n when k → ∞. This fact and (34) ensure Mp ∩
Lp 6= ∅. Recall that if Vcl is differentiable at x, then its
Clarke generalized derivative coincides with the usual
directional derivative at this point x. Also note that Vcl
is differentiable in Mp by the definition (30). Property

(1) with r(t)≡0 yields V̇cl(x) ≤ ξ(x) for x∈Mp, where

ξ(x) := λp(Vp(xp))
{
−αp(Vp(xp)) +

∑
j 6=p

γpj(Vj(xj))
}
.

By assumption, in the set Mp, the function ξ(x) is the

smallest upper bound of V̇cl(x) covering all trajectories
x(t) ∈ RN defined with (1). The definition of Lp implies

ξ(x) > 0, ∀x ∈Mp ∩ Lp. (35)

OnMp∩Lp the function Vcl in the form of (30) is differ-
entiable. Since the Clarke generalized derivative agrees
with the directional derivative of Vcl at differentiable
points. the property (35) contradicts (32). 2

The property (33) means that each subsystem Σi is ISS
with respect to input xj , j 6= i and state xi [25]. Theorem
8 can be interpreted as follows: In the construction of a
Lyapunov function of the form (30), the function ψ−1

i
needs to ensure that if the maximum of (30) is attained
for the i-th subsystem, then the decay of the particular
subsystem appears as the decrease of the function Vcl.
Thus, the max-type construction requires that each sub-
system be decaying when its state is large. However, this
property is not guaranteed when a subsystem is iISS.

It is stressed that the property (33) is not a necessary
condition for the stability of the network Σ. It is rather
a fundamental limitation of the max-type construction
of Lyapunov functions. In contrast to the max type con-
struction, the sum-type construction presented in Sec-
tion 4 can lead us to the stability of the network Σ
even if the property (33) is violated. In fact, in the case
of n = 2, the inequality (24) can be satisfied even if
γ12(∞) > α1(∞) as long as γ21(∞) < α2(∞). In the
same way, the inequality (25) can be satisfied even if
γ21(∞)>α2(∞) as long as γ12(∞)<α1(∞).

If we restrict our attention to networks of ISS subsys-
tems. we can derive the dissipation inequality (3) for the
stability of Σ based on the max-type Lyapunov function.
Using the mapping from R+ → Rn

+ defined by

Ψ(τ) = [ψ1(τ), ψ2(τ), . . . , ψn(τ) ]
T
, (36)

the following demonstrates this fact.

Theorem 9 Suppose that there exist continuous func-
tions λi : R+ → R+, i = 1, 2, ..., n, such that (5), (6) (7)
and

D ◦ Γ(Ψ(τ)) ≤ A(Ψ(τ)), ∀τ ∈ R+ (37)

are satisfied for some β1, β2, ..., βn ∈ K∞. Then the
network Σ is iISS with respect to input r and state x. If
(18) and (19) are satisfied additionally, the network Σ
is ISS. Furthermore, an iISS (ISS) Lyapunov function is
given by (29).

Proof. Suppose that ψi ∈ K∞, i = 1, 2, ..., n fulfill all
the requirements in Theorem 9. Assume for the moment
that, for x 6= 0, themaximum in (29) is attained uniquely
by the i = p ∈ {1, 2, ..., n}, i.e.,

ψ−1
p (Vp(xp)) > ψ−1

j (Vj(xj)), ∀j 6= p. (38)

Let [Γ(s)]p denote the p-th component of the vector Γ(s).
Then, for Vcl(x) defined in (29), the inequality (12) yields

V̇cl(x) ≤ λp(Vp(xp))
{
−(Id+ εp)

−1αp(Vp)

+ [Γ(V )]p
}
+ ηp(|r|)κp(|r|). (39)

Since the definition of Γ and (38) ensure

[Γ(V )]p = [Γ([ψ1◦ ψ−1
1 (V1(x1)), ..., ψn◦ ψ−1

n (Vn(xn))])]p

≤ [Γ(Ψ ◦ ψ−1
p (Vp(xp)))]p ,

we obtain

V̇cl(x)≤λp(Vp(xp))
{
−(Id+εp)

−1◦αp(ψp◦ ψ−1
p (Vp(xp)))

+ [Γ(Ψ ◦ ψ−1
p (Vp(xp)))]p

}
+ ηp(|r|)κp(|r|)

from the definition of A. Now, let θp ∈ K∞ be computed
with (20). Pick ζp ∈ K∞ satisfying θp − ζp ∈ K∞. From
the p-th row of (37), ψp ∈ K∞ and (21) it follows that

V̇cl(x) ≤ −λp(Vp(xp))[(θp−ζp) ◦ αp(Vp(xp))] + κ̂p(|r|)

holds for κ̂p := ηpκp ∈ K ∪ {0}. Therefore, there exists
α̂i ∈ P such that

V̇cl(x) ≤ −α̂p(Vp(xp)) + κ̂p(|r|) (40)

is satisfied. The functions (θp − ζp) ◦ αp and α̂p are of
class K∞ if (18) and (19) hold. Repeating (40) for p ∈
{1, 2, ..., n} and using Vcl(x) = ψ−1

p (Vp(xp)) implied by
(38), we have

V̇cl(x) ≤ −min
i
α̂i ◦ ψi(Vcl(x)) + max

i
κ̂i(|r|) (41)

for all x ∈ RN where the maximization in (29) is
uniquely defined. The set of such points is an open and
dense in RN . For the rest of the proof, we can employ
the arguments in [4,3,9]. Since the locally Lipschitz
continuous function Vcl is the maximization of C1 func-
tions Vi, the Clarke subgradient of Vcl in x ∈ Rn can be
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computed by the set

∂ClVcl(x) = conv { 5
(
σ−1
i ◦ αi ◦ Vi

)
(xi) :

σ−1
i ◦ αi(Vi(xi)) = Vcl(x)} ,

where conv {·} denotes the convex hull. As we have (41)
for each of the extremal points of ∂ClVcl(x), the dissi-
pation inequality (41) holds in terms of the Clarke gen-
eralized derivative for each ζ in the Clarke subgradient.
Thus, the function Vcl given in (29) is a Lipschitz contin-
uous iISS (ISS) Lyapunov function for the network Σ. 2

Although Theorem 9 does not explicitly state that each
subsystem Σi is assumed to be ISS with respect to input
xj , j 6= i and state xi, it is imposed implicitly. Since
ψi’s are class K∞ functions, the condition (37) implies
(33), which amounts to the ISS of Σi, i = 1, 2, ..., n, [25].
This fact is consistent with Theorem 8. In contrast to
Theorem 9 of the max type, the sum-type construction
presented in Section 4 can deal with iISS subsystems
which are not ISS. The limiting value of (17) does not
result in a restriction like (33) since the parameter Λ(s) is
“multiplied” on both sides of (17). It is worthmentioning
that, to obtain the stability of the network Σ, some of
the subsystems Σi is necessarily ISS but not all, which
is proved for n = 2 in [14].

Theorem 9 does not require the αi’s to be of class K∞
which are assumed in [5]. Although both Theorem 9 and
the result in [5] deal with ISS subsystems, Theorem 9
allows us to get rid of transformation into αi∈K∞ [24]
which may give rise to unnecessary conservativeness in
practice. The geometrical interpretation used in [5] for
class K∞ αi’s (originating from [9]) can be still applied
to the condition (37) derived for classK αi’s. The vector-
valued functionΨ(τ) is an infinite length path that starts
at the origin for τ = 0 and grows unboundedly as τ → ∞
inside the topological separator Ω−− defined by (26).

Now, we address the existence of such a path Ψ solving
(37). The following theorem presents a condition guar-
anteeing the existence, which is a consequence of the re-
sults developed in [9].

Theorem 10 Assume that αi, i = 1, 2, ..., n, are C1

class K∞ functions satisfying

d

dτ
αi(τ) > 0, ∀τ ∈ (0,∞), i = 1, 2, ..., n (42)

and that Γ is irreducible, [9]. Suppose that there exist
β1, β2, ..., βn ∈ K∞ satisfying

D ◦ Γ(s) 6≥ A(s), ∀s ∈ Rn
+ \ {0}. (43)

Then, there exist continuously differentiable functions

ψi ∈ K∞, i = 1, 2, ..., n such that (37) and

d

dτ
ψi(τ) > 0, ∀τ ∈ (0,∞), i = 1, 2, ..., n (44)

are satisfied. Moreover, if

lim
τ→∞

d

dτ
αi(τ) > 0, i = 1, 2, ..., n (45)

holds, the property

lim sup
τ→∞

d

dτ
ψi(τ) <∞, i = 1, 2, ..., n. (46)

is achieved additionally.

Proof. By virtue of αi ∈ K∞, the property (43) is equiv-
alent to

D ◦ Γ ◦A−1(s) 6≥ s, ∀s ∈ Rn
+ \ {0}. (47)

The results in [9] with smoothing [10] guarantees the ex-

istence of C1 functions ψ̂i ∈ K∞, i = 1, 2, ..., n satisfying

D ◦ Γ ◦A−1(Ψ̂(τ)) < Ψ̂(τ), ∀τ ∈ (0,∞), (48)

d

dτ
ψ̂i(τ) > 0, ∀τ ∈ (0,∞), i = 1, 2, ..., n, (49)

where Ψ̂ = [ψ̂1, ψ̂2, ..., ψ̂n]
T . Setting Ψ(τ) = A−1 ◦ Ψ̂(τ),

we arrive at (37). The properties (49) and (42) ensure
the differentiability of ψi and (44). We obtain (46) from
(45) if

lim sup
τ→∞

ψ̂′
i(τ) <∞, i = 1, 2, ..., n (50)

holds. If (50) is not satisfied by a particular Ψ̂ achieving
(48) and (49), we can always find a continuously differ-

entiable ρ ∈ K∞ such that replacing Ψ̂ by Ψ̂(ρ) achieves
(48), (49), and (50). To see this, define

F (τ) := max
i
ψ̂′
i(τ).

LetG denote the antiderivative of F satisfyingG(0) = 0.
This function G is of class K∞ since we have

ψ̂′
1(τ) ≤ F (τ) ≤

n∑
i=1

ψ̂′
i(τ), ∀τ ∈ R+

for ψ̂i ∈ K∞, i = 1, 2, ..., n. Define ρ(τ) = G−1(τ) which
is of class K∞. Then, we have

ρ′(τ) · ψ′
i(ρ(τ)) ≤ ρ′(τ) · F (ρ(τ)) = F (ρ(τ))

G′(ρ(τ))
= 1

i = 1, 2, ..., n.

8



Therefore, the component functions of the vector Φ̂(ρ)
are of class K∞ and achieve (48), (49) and (50). 2

It is stressed that (7) is automatically satisfied by αi ∈
K∞, i = 1, 2, ..., n. Note that the properties ψi ∈ K∞,
i = 1, 2, ..., n, and (44) imply (6) and (5). The property
(46) ensures (19). Hence, the above theorem guarantees
the existence of solutions {λi} to the problem posed by
Theorem 9 in the case of α1, ..., αn ∈ K∞. Theorem 10
can be considered as the extention of the idea in Jiang et
al. [15] for two subsystems to n ≥ 2 subsystems. Theo-
rem 10 also removes the technical assumption mentioned
in Section 5 of [5]. The twofold assumption was unde-
sirable since it is imposed on intermediate variables ap-
pearing in technical steps. The trick introduced in Sec-
tion 3 to put aside the exogenous signals plays the key
role in removing one part of the assumption. The other
part is replaced by the explicit assumption (42) (and
(45) in the presence of r).

Remark 11 When we only consider 0-GAS in Theorem
9 with α1, ..., αn ∈ K∞, the condition (37) can be replaced
by

Γ(Ψ(τ)) < A(Ψ(τ)), ∀τ ∈ R+ \ {0} (51)

in view of the proof of Theorem 9 with κi = ηi = ζi =
εi = 0 and θi ∈ P. In this case, the condition (43) is
replaced by

Γ(s) 6≥ A(s), ∀s ∈ Rn
+ \ {0}. (52)

Remark 12 An operator Γ is irreducible if and only if
the network is strongly connected in the sense of a directed
graph. There are cascades in Σ if Γ is reducible. For such
a network, we can apply Theorem 10 to each irreducible
block, and then use the fact that cascades of ISS systems
are ISS [24]. Alternatively, we can introduce sufficiently
small γij so that Γ becomes irreducible and the solvability
of (43) remains unchanged.

Remark 13 For the 0-GAS, the inequality (51) of the
existence of an omni-directionally unbounded path ψi,
..., ψn ∈ K∞ and the corresponding condition (43) of
the topological separation with Ω−− can be obtained with-
out resorting to the construction of a Lyapunov func-
tion Vcl of the network Σ. Indeed, in [20], these two con-
ditions are derived in the framework of the monotone
systems theory (i.e., Lemma 3.13 of [20]). Generalizing
that kind of approach to the case of stability with respect
to the external signals r(t) 6≡ 0 is by no means easy
as it has been commonly observed [1]. From (51) with
ψi ∈ K∞, i = 1, 2, ..., n, the property lims→∞ αi(s) > 0,
i = 1, 2, ..., n, is derived in [20]. As discussed in Section
6, the condition (51) with ψi ∈ K∞, i = 1, 2, ..., n, is an
excessive requirement in view of the 0-GAS of the net-
work.

Remark 14 The property (52) obtained for 0-GAS and
α1, ..., αn ∈ K∞ can be shown to be equivalent to the
small-gain condition derived for ISS subsystems given in
the implication form [9]. Since α1, ..., αn are of class
K∞, we can use (Id+ `i) ◦α−1

i (
∑

j sj) as monotone ag-

gregation functions (MAFs) for any `i ∈ P such that
Id+`i ∈ K∞, i = 1, 2, ..., n. Then, the components γij of
Γ become fictitious gains of the subsystems 4 . For this pair
of a vector of MAFs and a gain matrix, the approach in
[9] gives the sufficient condition (Id+L)◦A−1◦Γ(s) 6≥ s
for the 0-GAS of Σ, where L(s) = [`1(s1), ..., `n(sn)]

T .
From this condition and αi ∈ K∞ the inequality (52)
follows. If the components of Γ are unbounded, the ful-
fillment of (52) implies the existence of a function L as
above achieving (Id + L) ◦ A−1 ◦ Γ(s) 6≥ s. In the the
presence of an external input r, the preceding work [9]
modifies (51) as (5.3) with an additional parameter rep-
resenting the external input. The reduction to a matrix
gain-like condition similar to (43) can be achieved under
additional structural assumptions on the MAFs such as
(5.10) and (M4) of [9] or by decomposing the operator
A−1 ◦ Γ into components with some conservativeness. It
is worth noting that the approach in [9] needs A−1 ◦ Γ
instead of (43) with no inverse maps for constructing ψi.
This is due to the fact that the function Vcl constructed in
this paper satisfies the dissipation inequality (3) for the
network Σ while the one in [9] does not necessarily satisfy
(3). It is interesting that (43) can be shown to be equiva-
lent to D ◦ A−1 ◦ Γ(s) 6≥ s with respect to the existence
of not necessarily identical βi ∈ K∞ under appropriate
assumptions on A and Γ.

6 Discussions

6.1 Max vs. sum

The condition (43) derived for the max-type construc-
tion is identical to the topological separation condition
(23) for the sum-type construction in the case of n = 2.
Hence, according to Theorem 8 that demonstrates the
fundamental limitation of the max-type construction,
there appears to be a fatal gap between (43) and the
unbounded path condition (37) requiring ψi ∈ K∞ for
all i = 1, 2, ..., n when the subsystems are only iISS. We
do not have such a gap between (43) and the obtuse an-
gle condition (17). To elaborate this point, recall the set
Ω−− whose boundaries are given by l1: α1(s1) = γ12(s2)
and l2: α2(s2) = γ21(s1) on the s1-s2 plane (see Fig.2).
The unboundedness of Ω−− in the s3−k direction is
equivalent to the ISS property of Σk since the unbound-
edness is identical with αk(∞) ≥ γk,k−3(∞) and we can
invoke [25]. Figure 2 (ii) illustrates the case where only
Σ2 is ISS and Ω−− is unbounded only in the s1 direc-
tion. The topological separation property (43) does not

4 Each row of Γ can be considered as a combined gain with
respect to the output αi(Vi).
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necessarily imply that the set Ω−− is unbounded in both
s1 and s2 directions. However, Theorem 8 has demon-
strated that, if we use the max-type Lyapunov function
(29), the property (33) must hold. This means that the
separator Ω−− is necessarily unbounded in both s1 and
s2 directions as in Fig.2 (i). Indeed, it is straightfor-
ward to verify that the sufficient condition (37) using
ψ1, ψ2 ∈ K∞ for the max-type Lyapunov function (29)
requires the set Ω−− to be unbounded in both s1 and s2
directions. Thus, the condition (37) with ψ1, ψ2 ∈ K∞,
i.e., the omni-directionally unbounded path condition,
is much more demanding than the topological separa-
tion (43). In contrast, the obtuse angle condition (17) for
the sum-type construction allows Ω−− to be bounded
in some si direction. Indeed, Theorem 4 proves that one
subsystem Σk of Σ1 and Σ2 is allowed to be non-ISS,
which is identical to the boundedness of Ω−− in the s3−k

direction. In such a case, the condition (37) cannot be
met if we require ψ3−k ∈ K∞.

In this way, whether the separator Ω−− is allowed to be
bounded in a direction and whether ψi 6∈ K∞ is allowed
capture the difference between the capability of the sum-
type and max-type construction of Lyapunov functions.
As far as ISS subsystems are concerned, such a difference
does not appear. As a matter of fact, if we restrict our
attention to networks of two ISS subsystems, we can
summarize as follows:

Proposition 15 Let n = 2. Assume α1, α2 ∈ K∞ ∩
C1, (42) and (45). Suppose that there exist β1, β2 ∈ K∞
satisfying (23). Then, the following hold:

(i) There exist continuous functions λ1, λ2 : R+ → R+

such that (5), (6) (17) and (19) are satisfied.
(ii) There exist continuous functions ψ1, ψ2 ∈ K∞ such

that (5), (6), (37) and (19) are satisfied.

This above is a direct consequence of Theorems 4 and 10.
The property (7) is satisfied by α1, α2 ∈ K∞. As Propo-
sition 15 demonstrates, under the unified condition (23),
we can obtain ISS Lyapunov functions for the network
Σ of ISS subsystems based on the two approaches. The
extension of this unification to the general n subsystems
case has not yet been accomplished. Proposition 15 has
been first proved for the linear case with the general n in
[5]. Indeed, in the case of linear A, Γ, D, both the prob-
lems posed in Theorem 3 andTheorem 9 can be solved by
theorems of the Perron-Frobenius type. A necessary and
sufficient condition for the solvability is ρ(ΓA−1) < 1,
where ρ(·) denotes the spectral radius [5]. The functions
Λ and Ψ are obtained as a suitable lefteigenvector and
a right eigenvector, respectively.

6.2 Translating solutions for ISS subsystems

This section shows a technique to compute Λ for the
sum-type construction by making use of a solution Ψ

to the max-type construction in the case of n = 2. It
is stressed that, as demonstrated by Theorem 8, such
translation is possible only when all the subsystems are
ISS. For simplicity, we consider

βi(τ) = ciτ, i = 1, 2. (53)

The following presents a formula for the conversion.

Theorem 16 Let n = 2. Assume α1, α2 ∈ K∞. Suppose
that there exist ψ1, ψ2 ∈ K∞ such that (37) is satisfied
with (53) for some c1, c2 > 2. Then, the choice

Λ(s) =

[
λ1(s1)

λ2(s2)

]
=

[
−P2 ◦ ψ ◦ ψ−1

1 (s1)

−P1 ◦ ψ ◦ ψ−1
2 (s2)

]
, (54)

P (s)=

[
P1(s)

P2(s)

]
=−D−1

H ◦A(s) + Γ(s), DH(s)=

 c1
2 s1

c2
2 s2


satisfies (5), (7), (17) and (19) with (53) for another pair
of c1, c2 > 1.

Proof.The property (37) and the definition ofDH imply

P (ψ(τ)) ≤ −Γ(ψ(τ)) ≤ 0, ∀τ ∈ R+. (55)

Let τi = ψ−1
i (si) for each i = 1, 2. Then,

Λ(s)TP (s) = −P2(ψ(τ1))P1

([
ψ1(τ1)

ψ2(τ2)

])

− P1(ψ(τ2))P2

([
ψ1(τ1)

ψ2(τ2)

])
.

If Pi([ψ1(τ1), ψ2(τ2)]
T ) ≤ 0 holds for i = 1, 2, the prop-

erty (55) yields

Λ(s)TP (s) ≤ 0 for s =

[
ψ1(τ1)

ψ2(τ2)

]
. (56)

We next assume that P2([ψ1(τ1), ψ2(τ2)]
T ) > 0 and

P2(ψ(τ1)) + P2

([
ψ1(τ1)

ψ2(τ2)

])
≤ 0 (57)

hold. Using P1(ψ(τ2)) ≤ 0 guaranteed by (55) again, we
have

Λ(s)TP (s) ≤ −P2(ψ(τ1))

[
P1

([
ψ1(τ1)

ψ2(τ2)

])
− P1(ψ(τ2))

]
.
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Since combination of P2([ψ1(τ1), ψ2(τ2)]
T ) > 0 and (55)

implies τ1 > τ2, we have

P1

([
ψ1(τ1)

ψ2(τ2)

])
− P1(ψ(τ2)) < 0.

Thus, we arrive at (56). In the same manner, we obtain
(56) in the case where P1([ψ1(τ1), ψ2(τ2)]

T ) > 0 and

P1(ψ(τ2)) + P1

([
ψ1(τ1)

ψ2(τ2)

])
≤ 0 (58)

hold. Note that Pi([ψ1(τ1), ψ2(τ2)]
T ) > 0 cannot hold

for i = 1, 2 simultaneously due to (55) and the definition
of Pi. The properties (58) and (57) are implied by

P1(ψ(τ2)) + P1

([
0

ψ2(τ2)

])
≤ 0,

P2(ψ(τ1)) + P2

([
ψ1(τ1)

0

])
≤ 0,

respectively. The above pair is again guaranteed by (55).
Therefore, we have reached

Λ(s)P (s) ≤ 0, ∀s ∈ R2
+

with c1/2 > 1 and c2/2 > 1, which corresponds to (17).
Finally, the first inequality in (55) and ψi ∈ K∞ imply
(5) and (19). The definition of P yields (7). 2

Although different pairs of solutions are available in
[11,14], making a choice from many Lyapunov functions
is sometimes advantageous in systems analysis and de-
sign. The solutions {λ1, λ2} presented in [11,14] are bet-
ter than the solutions obtained through Theorem 16 in
the sense not only that c1, c2 > 1 for (37) is satisfac-
tory in [11,14], but also that the solutions in [11,14] can
establish the stability of the network even when some
subsystems are only iISS.

7 Concluding Remarks

This paper has demonstrated that the sum-type con-
struction not only provides us with continuously differ-
entiable Lyapunov functions directly for networks, but
also covers the class of iISS subsystems which are not
ISS, while the max-type construction based on Lipschitz
continuous Lyapunov functions requires the subsystems
to be ISS. It should be stressed that this is neither a lim-
itation of the small-gain approach nor a necessary con-
dition for the stability of the network. The ISS require-
ment is the fundamental limitation of the max-type way
to construct Lyapunov functions. Solutions fulfilling the

stability condition derived in the max-type construction
are available in [15] for two subsystems, and computable
by utilizing [9,18] for n subsystems. In contrast, solv-
ing the stability condition in the sum-type construction
has been harder, and the formulas in [11,14] apply only
to n = 2. However, the sum-type Lyapunov function
can actually establish stability of the network even when
some subsystems are not ISS. This paper has demon-
strated the relationship between the nonlinear transfor-
mations in the sum-type and the max-type construction.
In the n = 2, it has been proved that restricting to ISS
subsystems allows the solvability conditions in the two
types of construction to agree with each other. Finally,
it is worth mentioning that Theorem 4 and Proposition
15 (i) can be also proved for n > 2 by making use of the
result reported recently in [12] if Σ is restricted to a cycle
network. They are omitted since their proof need large
space. Generalization of Theorem 4 and Proposition 15
(i) to networks in general structure is not known and it
is an interesting topic of future research.
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