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Abstract

The problem of calculating the maximal Lyapunov exponent (generalized spectral
radius) of a discrete inclusion is formulated as an average yield optimal control prob-
lem. It is shown that the maximal value of this problem can be approximated by the
maximal value of discounted optimal control problems, where for irreducible inclusions
the convergence is linear in the discount rate. This result is used to obtain convergence
rates of an algorithm for the calculation of time-varying stability radii.

1 Introduction

The concept of stability radii was introduced in two papers by Hinrichsen and Pritchard
[18], [19], who analyzed in particular robust stability of systems of the form

z(t+1)=(A+ DAE)z(t), teN, (1)

where A represents the unperturbed system, D and E are given structure matrices of appro-
priate sizes and A is an unknown perturbation matrix. The stability radius is then defined as
the size of the smallest A (measured in some operator norm) for which system (1) becomes
unstable. Both the case of real and complex perturbations were considered. The problem
of calculating stability radii for different perturbation classes has attracted the interest of
several researchers since then. For an overview of the theory the reader is referred to the
survey article [20].

It was soon evident that in the complex time-invariant case the situation is far easier to
analyze than if real perturbations are considered. A formula for the stability radius for a
matrix subject to real time-invariant perturbations was obtained only recently by Qui et al.
in [26] for the case that the perturbations A are measured in the spectral norm. In this case a
feasible algorithm for the calculation of the real structured stability radius has been given by
Sreedhar et al. [27]. However, it has been known from the work of Hinrichsen and Pritchard
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[21] that for the case of real perturbations the stability radius differs if time-invariant or
time-varying perturbations are considered. In particular, it is known that for systems of
type (1) the time-varying stability radius is bounded from above by the time-invariant real
and from below by the complex stability radius. The ratio of these two stability radii may be
arbitrarily large and so these bounds may contain little information. Thus a gap remained
inasmuch as there was no algorithm available for the calculation of real time-varying stability
radii.
In this paper discrete inclusions of the form

z(t+1) e {Ax(t); Ae M}, teN, (2)

are studied, where M is a bounded set of real or complex matrices. Stability and dynamics
of such systems has been studied extensively by Berger and Wang [5], Gurvits [16], Lagarias
and Wang [23] and the author [30]. In particular, equality between the joint and generalized
spectral radius has been shown, which will be our most useful tool. On the other hand
there has been extensive research on the largest Lyapunov exponent of a discrete inclusion
by Barabanov [1], [2], [3], [4], which is essentially the logarithm of the generalized spectral
radius. The method proposed in [1] — [4] for the calculation of the largest Lyapunov exponent,
however, does not lend itself easily to the calculation of stability radii as it becomes the more
expensive the closer the exponential growth rate is to 0. This, however, is the interesting
case when stability radii are considered. Algorithms that are based on the evaluation of
matrix products have been proposed by Gripenberg [13] and Maesumi [24].

In our approach the maximal Lyapunov exponent is formulated as the value of an optimal
control problem on the n — 1 dimensional sphere. The main idea is to approximate the
intrinsically hard problem of calculating maximal Lyapunov exponents by easier ones. These
are the so called discounted optimal control problems with low discount rates. General
convergence properties of value functions of discounted optimal control problems have been
studied by the author [28], [29] and Griine [14]. It has been shown in [28], that in general it
is not possible to approximate average yield optimal control problems by discounted ones.
Here we pursue a different approach which only yields convergence results for the maxima
of the value functions, but which has the added advantage of supplying convergence rates
in the discount rate, which have to our knowledge not been available previously. Also it
is shown that the procedure we present for the calculation of stability radii is reliable in
the sense that the estimates obtained for the stability radius are below the actual stability
radius.

In the continuous-time case there has been substantial work on the Lyapunov spectrum
of time-varying linear systems using an approach introduced by Colonius and Kliemann [9].
This has also led to an investigation of real time-varying stability radii in [7], [8] where
they are examined via a Lyapunov exponent approach, under the assumption of further
controllability properties. An alternative approach to robustness of time-varying systems
via Bohl exponents has been undertaken in [17] and [31].

The paper is organized as follows. In Section 2 we present the class of systems that is
studied, we introduce the time-varying stability radius and show a preliminary convergence
result. Section 3 is devoted to the average yield optimal control problem that character-
izes maximal Lyapunov exponents. The associated discounted optimal control problems are
introduced and some known properties of the corresponding value functions are discussed.
A further point is to analyze yields along periodic trajectories which may be used to ap-
proximate the optimal value. In Section 4 we discuss convergence of the maximum of the



discounted value functions to the generalized spectral radius. It is then shown how these
results apply to the problem of approximating time-varying stability radii. In Section 5 a
numerical example is presented to illustrate the results.

2 Preliminaries
Let K =R, C and consider a stable time-invariant system

z(t+1) = Agz(t), teN
z(0) = =z €K,
where Ay € K"*" and the spectral radius satisfies 7(A4g) < 1. Time-varying uncertainty of

this system may be modeled in the following manner: Let Ay € M C K"*" be bounded and
consider the discrete inclusion

z(t+1) € {Az(t); Ae M}, teN (3)
.’L‘(O) = 1z, €K".
A sequence {z(t) }sen is called a solution of (3) with initial condition zy if (0) = z, and for

all ¢ € N there exists an A(t) € M such that z(t + 1) = A(t)z(t). We denote the set of all
finite products of length ¢ by

Si:={A({t—-1)...A(0); A(s) e M,s=0,...,t—1}.
Exponential stability of the discrete inclusion (3) may now be defined as follows.

Definition 2.1 (Exponential stability) The discrete inclusion (8) is called exponentially
stable, if there exist constants ¢ > 1,3 < 0 such that

1Se|| < cePt,  forallt >0, S,€S;. (4)

Two quantities which have been studied in [5] in order to analyze exponential stability of
discrete inclusions are the joint and the generalized spectral radius. We depart slightly from
the conventions in this area in that we take logarithms of all quantities, as is the custom
if Lyapunov exponents are considered. Let M C K"*" be fixed, let || - | be some operator
norm on K"*" and define:

1 . 1
p(M) = sup{logr(S); S € Sit,  pu(M) = sup{ log|ISill 5 S € Si} -
Theorem 4 in [5] states that for bounded M the following equality holds

p(M) := Jim pr(M) = limsup p,(M) . (5)

t—o0

It is easy to see that (3) is exponentially stable iff p(M) < 0. Furthermore, we have for all
t>1

AM) < p(M) < (M) (6)
The concept of stability radius may now be formulated as follows, see also [7]. Assume we are
given an increasing family U := {M.,;; v > 0} of bounded subsets of K**" ie. M, C M.,
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if y1 < 9. M, is the set of admissible perturbations at the perturbation intensity v. We will
assume that v = 0 represents the case, when no perturbations are present i.e. My = {Ap}.
The role model we have in mind when considering the family {M,, v > 0} is given by an
increasing family of convex sets where U, is a bounded convex subset of K**" with 0 € U;
and for all v > 0 the uncertainty is modeled by M., := yU; + Ay. This set-up contains in
particular affine linear perturbations, perturbation structures of feedback type considered in
[18], [21], positive systems studied in [22], and periodic systems [31] as subclasses. Given
the family U/ the problem is then to find the smallest v such the discrete inclusion given by
M., is not exponentially stable.

Definition 2.2 (Stability radius) Let K = R,C. For an increasing family U, such that
{Ag} = M, we define the time-varying stability radius of Aq by

Tw(Ao, U) := inf{7y; p(M,) > 0}. (7)

For our later analysis we need the following result on the convergence of p;(M) to p(M).
Recall that M C K"*" is called irreducible if only the trivial subspaces {0} and K" are
invariant under all matrices A € M. Otherwise M is called reducible.

Lemma 2.3 Let K=R,C. Assume that M C K"*" is bounded.

(i) If M is irreducible, then there exists a constant M > 0 such that for all t > 1

(M) = p(M)| < MET".

(1) If M 1is reducible then there exists an M > 0 such that for all t > 1

M) — p(M)] < ETIo8T.

Proof: (i) As M is irreducible, there exists a norm on K" that induces an operator norm
v on K™ satisfying for all ¢ > 1 sup{v(S;) ; Sy € S;} = e#M)t see [1] Theorem 2. As all
norms on finite dimensional vector spaces are equivalent it follows with (6) that

1 1 1

0 < - log sup ||Si|| = p(M) < —log sup cv(S;) — p(M) = —loge. (8)
t St€St 3 St€St t

This proves the assertion.

(ii) Without loss of generality (i.e. after a suitable change of basis) all matrices A € M are

of the form

[ All A12 PR PR Ald ]
0 A22 A23 e Agd
a=| 0 0 As .
| 0 0 Ay

where each of the sets M;; :== {A;; A € M},i=1...d is irreducible. If p(M) = —oo then
pa(M) = p(M) and there is nothing to show. Otherwise, let K* = V; ... V; be the
corresponding decomposition. By Lemma 2 (c) in [5] it holds that p(M) = max;—1 .4 p(M)
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and as in part (i) we may choose norms v; on V;, ¢ = 1,...,d which induce matrix norms
(also denoted by v;) satisfying maxg,cs, vi(Sis) = /M)t Let o := max{w;;(Ay), 1 <
i < j <d, A e M} where w;; is the operator norm for the linear maps from V; to V;
induced by the norms v;,v;. On K" we may consider the norm ¥(z) = max;—1,_qv;(z;) if
z = (x1,...,2q), which induces the operator norm 9(A) = max;—; 4 2?21 w;;(A;;). Again
this is an equivalent norm and so we obtain for ¢t > d

1 1 .
0 <~ log sup [|Sil| = p(M) < ~log sup ci(S:) = p(M)

S.€8, StESt
[ edr(M) plQ(GP(M),t) pld(ep(M)’t) |
< Liog colt-Dp(M) E : —pM), (9
0 ... 0 et M)

- = o

where the p;;,1 <1 < j < d are polynomials in e”™) and ¢ whose coefficients depend on «
and d and whose degrees depend on d. Thus there exists a polynomial p(t) satisfying

1

0 < 7 log sup ||, = p(M) <
t StESt

1

t

for some M large enough. This implies the assertion. o

~& | =

fog e+ |7~ p(M) — p(M)] + | T logp(1) < - (log e+ dlp(M)| + M(1 + log(t))

By the results of Barabanov [1] and Gurvits [16] it is known that if the set of matrices M
is exponentially stable and bounded then the same holds true for the closure of its convex hull
clconv(M). Thus all considerations can be restricted to affine perturbations and compact
M. The following general assumption will be made throughout the remainder of this paper.

Assumption 2.4 Let K=R,C. We assume that U = {M., ; v > 0} satisfies:
(1) Mo = {Ao}.
(1) The family U is increasing in .
(i11) For all v > 0 the set M, is compact and convet.
(iv) For all v > 0 it holds that V,, := {x € K* ; Az =0, VA € M, } = {0}.

Note that Assumption (iv) is without loss of generality for robustness analysis as V/, is a linear
subspace and we can study exponential stability on the quotient space K" /V,, if necessary.



3 Infinite horizon optimal control

In this section we aim to show how to formulate the stability radius problem as an infinite
horizon optimal control problem. In order to do this we introduce exponential growth rates
of trajectories, following the approaches taken in [7], [14], [30].

Definition 3.1 (Lyapunov exponent) Given a sequence A € MY and an initial condi-
tion xy € K* \ {0} the Lyapunov exponent corresponding to (xg, A) is defined by

1
Azp, A) = limsup n log [|[A(t —1)...A(0)zo]|, (10)
t—o00
where we use the convention log 0 = —oo.

From (6) it is easy to see that
p(M) = sup{A(zo, A); 20 € K* \ {0}, A € M"},

which is the quantity studied in [1] — [4]. Note that in order to characterize exponential
stability of time-varying systems it is not sufficient to consider Lyapunov exponents, but
rather Bohl exponents have to be introduced, see [10] or [25]. However, it follows from (5)
that for discrete inclusions determined by a bounded set of matrices the maximal Lyapunov
and Bohl exponents coincide.

One tool for the study of Lyapunov exponents has been the projection onto the projective
space, known as Bogolyubov’s projection. It is based on the fact that in continuous time
the angular component of the system may be decoupled from the radial one and can be
studied independently. For our purposes it will be sufficient to consider the projection onto
the sphere S%‘l and to neglect the identification of opposite points. Note that all possible
Lyapunov exponents can be realized starting from points on the sphere.

In our discrete-time system we do not exclude the possibility that the origin may be
reached from non-zero states. However, Assumption 2.4 (iv) prevents this from happening
too often. Denote M(z) := {A € M ; Az # 0} and MN(z) := {A € MY ; A(t)...A(0)x #
0,Vt € N}. By Assumption 2.4 (iv) it holds for all z # 0 that M(z) # 0, MN(z) # 0. With
this notation the projected inclusion corresponding to our linear inclusion (3) is given by

E(t+1) € {%;AEM(&@))}, teN (11)
6(0) - foES%ﬁl.

We denote the solution of (11) corresponding to an initial value & € SE ' and a control
sequence A € MN(&) by &(+;&, A). In order to obtain the Lyapunov exponent A(zg, A)
from a trajectory &(-; zo/||zol, A) of (11) we define for £ € SE™', A € M(€)

q(§, A) == log || A¢]|. (12)
A straightforward calculation yields the following expression for Lyapunov exponents.

Lemma 3.2 Let K=R,C. For & e St !, A € MY it holds that

)\(é:O,A):{ Eri:jur)moo% b a(E(s; €, A), A(s) Aee/l\f(go) 13)



Thus Lyapunov exponents may interpreted as average yields along trajectories on the sphere.
We can now begin to explore the relationship between discounted and average yield optimal
control problems. For § > 0 consider the d-discounted yield

o =it £ A). A A N
J5(&,A) = { ;;06 q(§(t; & A), A(2)) : Eelé\e/l. () (14)
The associated value functions are given by
Vs(€) == sup Js(&,A),  Vo(§) == sup A(&A). (15)

AeMN AecMN

Remark 3.3 (i) The stability radius can now be formulated in terms of value functions in
the following sense. Let K = R, C and Ay € K"*". Furthermore, let &4 C K"*" satisfy
Assumption 2.4 then

rw(Ag,U) = inf{y > 0; sup V,,(&) > 0},

gesp!

where 1, denotes the value function of the average yield problem corresponding to M.,.
(ii) Note that for every A € MYN(§) the expression for Js5(€, A) is well defined. In fact,
it holds that the infinite sum is either absolutely convergent, or the partial sums tend to
—oo. This may be seen as follows. Define f,(t) := max{0,e%q(&(t;z,A), A(t))} and
f(t) = min{0, e %q(£(t; 2, A), A(£))}. Then

t t

D le P aEls; z, A), Al)) = Y fuls) + 1f-(s)] -

s=0 s=0

The infinite sum over f, (s) exists as M is bounded, so that S°'_, f1(s) + f_(s) converges
absolutely iff lim; ;oo S ._, f_(s) is a real number. If this is not the case then for every ¢ > 0
there exists a T € N such that for all ¢ > T it holds that >’ _, e %q(&(s;x, A), A(s)) < —c.

O

The discounted optimal control problem is far easier to analyze, which is why one tries
to obtain a relation between it and the average yield problem. The following theorem
summarizes some known properties of V5 and V. For details we refer to [6] Chapter V.

Theorem 3.4 Let K = R/C. Let M C K"*" satisfy Assumption 2.4 (i) and (iv) and
consider the optimal control problems given by (11), (13)-(15). The following properties
hold

(i) (Bellman’s principle of optimality)
For allt €N, & € S it holds that

t—1

Vs(€) = sup | e q(&(s;z0, A), A(s)) + e "V5(E(t; 20, A)) | . (16)
AeMi(éo) | 2o

(1) Vs is bounded and continuous.



(#i) (Hamilton—Jacobi-Bellman equation)
Vs 1s the unique bounded solution of the difference equation

Inf [V(&) — eV (£(1;&, A)) — (&, A)] = 0. (17)

(iv) (Bellman’s principle of optimality I1I)
For all t € N it holds that

Vo(€) = Agjg@ )Vo(f(t;x, A)). (18)

4 Convergence analysis and numerical results

The important fact given by the previous Theorem 3.4 is that V5 may be characterized via
the difference equation (17). A considerable amount of effort has been spent in recent years
on numerical methods for such equations. It remains to analyze the relation between Vs and
Vb, so that we can make use of the results of these efforts. To this end let us first examine
properties of the different values along periodic trajectories. This may then be employed in
the analysis of trajectories evolving in eigenspaces. In the following statement we use the
symbol A(t+ -) to denote the sequence obtained by shifting A.

Proposition 4.1 Let & € SE ', A € MN(&) be such that there exists a p > 1 satisfying
(1) A(t+p) = A(t) for allt € N,

(i) £(t+ p; &, A) = £(t; &0, A) for all t € N.
Then the following statements hold:

(7’) )‘(§0a )_ Zt OQ( (t 60,A)5A(t))‘
(1) maxo<i<p-1(1 —e7°) J5(E(t; €0, A), At + ) > Mo, A).

Proof: To abbreviate notation let f(t) := q(£(¢; &, A), A(t)). It holds that f(t+p) = f(¢)
for all ¢ € N. Assertion (i) follows as the following limits exist

1 kp—1 1 p—1
li = lim — = — .
tl>nolo Z f(s = ihe kp ; f(s) P = f(s)

To show (ii) let 6 > 0 be arbitrary. Note that for 0 < ¢ < p — 1 it holds by periodicity that
Js(&(t; &0, A), At + )

1 e~0 e—é(p—l)
— mf(t)+mf(t+1)+---+7_pr(t+p—1)_

1—e
Summing up these equalities for 0 < ¢ < p — 1 we obtain

p—1 p—1 p—1 _
> Js(E(t 6, A), A = Zl flt+k) = 1_652]” (19)

Dividing by p we obtain that the average of the discounted values exceeds (1—e %)t \(&, A),
which implies (ii). O



The preceding proposition is particularly useful, when considering trajectories evolving in
eigenspaces given by a periodic sequence A. For an eigenvalue p of S; € S; let E(u) denote
the corresponding eigenspace, or if K = R and p ¢ R, let E(u) denote the real part of the
sum of the eigenspaces corresponding to p, fi.

Corollary 4.2 Let K = R,C, S; € S; and & € E(u),||&]| = 1 for some p € o(Sy). Let
A € MY be a t-periodic sequence satisfying Sy = A(t —1)...A(0). Then for all § >0

max (1 — =) J5(€(s: €0, A), As +)) > Ao, A) = ~log |
0<s<t—1 t

Proof: If 4 = 0 all quantities involved are —oo and there is nothing to show. If 0 # p € K
then pu& = Si&y so & is a fixed point under the projected system and we can directly apply
Proposition 4.1. The same argumentation is valid if K = R and pu = re™ with 2 €Qas
then P&y = |u|P& = SPE&y for some p > 1 and again Proposition 4.1 may be applied. To
consider the remaining case that p = re™ with “ ¢ Q note that in any neighborhood of
the matrix S; there exist matrices B such that E(u) is still an eigenspace to a complex pair
of eigenvalues p/, i’ arbitrarily close to u, 7, but such that p/ = re’ where o' is a rational
multiple of 7. (This may be done by transforming S; into (complex) Jordan normal form
and changing the diagonal of the Jordan blocks corresponding to u to p' and transforming
back. Note that we do not claim that B € &;, in general this will be false. Here we just
make use of the fact that the definition of .J; makes sense for such B.) Then B may be
represented as B = B(t — 1) ... B(0) where for each s B(s) is arbitrarily close to A(s). The
assertion now follows from the fact that for such matrices Js and A depend continuously on
the periodic continuation of S;, resp. B and for B the assertion holds by an application of
Proposition 4.1. o

We are now in a position to prove the first main result on the convergence of the value
functions.

Theorem 4.3 Let K=R,C and M C K" be bounded.

(i) If M is irreducible then there exists a constant M > 0 such that for all 6 > 0

| max (1— e °)V;5(&) — p(M)| < M(1—e%) < M§.

gesp!

(i) If M is reducible then there ezists a constant M > 0 such that

| max (1— e )V5(&) = pM)| < M(1 - e )(1 — log(1 — ™).

gesp!
(iii)
lim max (1 — e ®)V5(¢) = inf max (1 — e ?)V;(€) = p(M).

6—0 EES%_l >0 §ES§_1

Proof: We need the following preliminary remarks. Replacing M by e{=?*) M we obtain
a new discrete inclusion with p(e(=?™) M) = 0. Note that the dynamics of the projected



system (11) remain unchanged. Denote the discounted value function given by the new
discrete inclusion by Vs. An easy calculation shows that

(1= e)Vs(e) = p(M)| = |(1 = e)Ti(8)

and thus it is sufficient to prove (i) and (ii) for p(M) = 0, which we assume from now on.
For all t € N we have that p,(M) < p(M) = 0 by (6). Using Corollary 4.2 we obtain
that for all t > 1
max (1 - ¢ *)V3(€) > (M),
£eSg
and thus maxgegﬁfl(l — e )V5(€) > supyen p(M) = 0 for all § > 0. It remains to find upper
bounds for the maximum of the discounted value functions.
As an intermediate step we claim that for all finite trajectories £(s, &y, A),s =0,...,t it

holds that ,

Ze“ssq(g(s,go’A)’ A(s)) <

s=0
prM) + e ° (20 (M) = pr(M)) + ...+ e ((t+ 1)pe1 (M) — 1p(M)) .
This may be seen by induction. For ¢ = 0 the assertion is clear by definition of p;(M).

Assume the statement is shown for ¢ — 1 and consider a sequence q(£(s, &, A), A(s)),s =
0,...,t, where t > 1. By definition of p,(M) it holds that

[y

tf

q(£(s,€0, A), A(s)) < tpi(M).

I
<)

S

In order to maximize the expression

we may assume that

t

> (s, &0, A), A(s)) = (t+ 1)prya (M) -

s=0

As the factor of ¢(£(t, &, A), A(t)) in (20) is the smallest it is optimal to choose the first ¢
elements of the sequence such that their sum is as large as possible i.e. equal to tp(M).
This choice implies that

q(€(t, 6, A), A1) < (T + 1)1 (M) — tpe(M) .

Together with the induction assumption this shows our claim. Setting po(M) equal to some
constant, it follows that

glgé%%(f) <D e (s D)peni (M) =sps (M) = (1=e ) Y e P (s+1)ps (M) . (21)
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(i) Multiplying by (1 — e~%) and using Lemma 2.3 (i) there exists an M; > 0 such that the
right hand side of (21) is bounded as follows

o0

max (1 —e™?)V5(¢) < My(1 —e™0)? Ze_‘ss(s +1)(s+ 1) =M1 —-e?).
fES%_I s=0

The remaining inequality is clear.
(ii) Using the assumption and Lemma 2.3 (ii) we obtain from (21) that

max (1 — e ™) V5(¢) < Mi(1—e)>> e (s+1)(s+1)7" (1 +log(s + 1))
668%_1 s=0
and it remains to obtain a bound for
(1—e%)? Z e log(s+1)=(1—e7%) Z e % (log(s + 1) — log(s)) .
5=0 s=1

Using the mean value theorem this can be bounded by

©  —4ds

<= = o (1) (22)

1—e?

s=1

This completes the proof of (i) and (ii). (iii) is an immediate consequence of these statements
and Corollary 4.2 (ii). o

Remark 4.4 (i) Note that in both cases of the preceding proof the speed of convergence
is determined by the factor M; which is intrinsically given by the problem as the
difference between the norm originally used and the norm given as the invariant norm
of the discrete inclusion, or in the reducible case, by the number of irreducible blocks
and their respective constants relating the original norm and the Barabanov norm wv.

(ii) The convergence results of the previous theorem are formulated with respect to the
factor (1 — e™%) as this simplifies some arguments. It is however easy to derive state-
ments on the convergence of 6V (which is the case usually considered for continuous
time systems) as it can be easily seen that the convergence §/(1 — e™%) — 1 is linear.

O

Let us also note the consequences of the previous theorem for the approximate calculation
of time-varying stability radii. By definition the time-varying stability radius is the infimum
of the set {y ; p(M,) > 0}. Let us assume that the sets M., are compact and the map
v+ M., is continuous with respect to the Hausdorff topology. Then the map

g:v— p(M,)

is also continuous (see [1]), g(ruw(Ao,U)) = 0 and g is clearly monotone by Assump-
tion 2.4 (ii). Thus it follows that

A _
C(Z/I) 1= sup {CER; 1imsup g(rtv( O,Z/l) h,)

< —cpy>0.
h10 h o }_

The number ¢(/) may be interpreted as the supremum of the gradients of those linear
functions that have their zero in r4,(Ag,U) and are larger than g on some interval of the
form [a, 74 (Ao, U)], where a < r4(Ag,U). Let us note in passing that this constant has
relations to the superdifferential of ¢ in 74, (A, U).
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Theorem 4.5 Let K = R,C and Ay € K"". Let U satisfy Assumption 2.4, then the
following properties hold.

(i) For all § > 0 it holds that
riw(Ao,U) > 15(Ag,U) = inf{y; max (1 —e™*)V5,(€) > 0}. (23)

-1

(ZZ) TtU(A(),U) th(s_)o’f‘,;(Ao,U).
(i4) If c(U) > 0 then there exist § > 0 and a constant M > 0 such that for all0 < § < §
Teo(Ag, U) — 15(Ag,U) < M(1 —e7%)(1 —log(1 —e™?)).

If, furthermore, M, is irreducible for all v > 0 then M may be chosen such that for
all0<d <o
’f'tv(Ao,U) - 7'5(140,1/{) S M(1 — 6_6) .

Proof:

(i) If v > ri(Ao, U), then 0 < p(M,) < max,gn1(1— e %)Vs.(€) by Theorem 4.3 (iii).
Thus v > rs(Ao,U).

(i) If v < 74 (Ao, U), then p(M,) < 0 and by Theorem 4.3 (iii) there exists a J, such
that for all 0 < ¢ < 4, it holds that max,.gn-1(1 — e )Vs.,(£) < 0, and therefore for
0 <0 < 4§, it follows v < rs(Ao,U) < (Ao, U). Letting v tend to 74, (Ao, U) from
below shows the assertion.

(iii) To abbreviate notation let a(8) := (1 — e ?)(1 —log(1 — e%)). Choose £ > 0 small
enough such that ¢(i/) — e > 0. Then there exists an 1 > 0 such that

9(7) < () = &)(y = r(Ao, U)) for all 7y € [ryy (Ao, U) = 1, 710 (Ao, U)].

By Theorem 4.3 (ii) for every v € [ry (Ao, U) — 1, 71,(Ao, U)] there exists an M, > 0
such that

max (1 — ™) Vs, (€) < (cU) = €)(7 = reu(Ao,U)) + Mya(8) .

gesp~!

As the constant M given by the proof of Lemma 2.3 (ii) depends on the number d
(which is bounded by n) and the norms v; (which also determine «) it follows that
M = sup{M, ; v € [rw(Ao,U) — n,7(Ao,U)]} exists. Denote the zero of the right
hand side in the above equation by

M
cU) —¢

Then for all 0 < § < §’ small enough so that Ma(§)(c(U) — &)™" < n we obtain

f(s = TtU(A(),U) — CL((S) S T(S(A(),Z/{) .

Ttv(A(),U) - TJ(A07U) S ’rt’u(AOau) - 77:5 = CL((S) .

M
cU) —¢
The claim for the irreducible case follows the same way by replacing a(d) by ¢ and

using Theorem 4.3 (i).

O
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Figure 1: Comparison of the real structured, the complex structured and the time-varying
stability radius

5 An Example

At the heart of the calculation of time-varying stability radii is the algorithm for the solution
of the discrete Hamilton-Jacobi-Bellman equation, as described in [11], [12] and [14]. For
this a discount rate ¢, a discretization of S%ﬁl, and a discretization of the set of admissible
control values U, have to be chosen. A bound on the discretization error due to the dis-
cretization of the state space and the perturbation space has been obtained in Theorems 2.3
and 2.9 of [15] and we do not pursue this question here. Using these existing algorithms
maxgesﬁ_l(l — e7%)V;(€) may be calculated and used as an approximation of the maximal
Lyapunov exponent. A bisection algorithm may then be applied to obtain r5(A,U) as an ap-
proximation of the stability radius 74 (A,U). To make a clear distinction between the value
rs(A,U), which is theoretically defined and the values that are the result of the numerical
algorithm, we denote the latter by 75(A,U).

Example 5.1 To consider a three-dimensional example let

0 1 O 0

A(u) = 0 0 1 +10 u[(] 1 O] (24)
Loy 1 1
10 2

and U; := {u € R, |u] < 1}. It is easy to see that for all ¥ > 0 and all b € R the set
M., (b) = Ay(b) + yU; is irreducible. With these data we obtain an uncertainty model of
feedback type and the results presented in [20] may be compared with the results on the

13



time-varying stability radius. The real stability radius may be obtained by the following
simple calculation. The characteristic equation of Ay(b) is given by

1 1
PA) =X+ 2 —bh— — = 2
and it is straightforward to see that Ay(b) is stable iff —0.94 < b < 0.6 and for these values
of b the real time-invariant stability radius satisfies

re(Ao(b); D, E) = min{| — 0.94 — b], 0.6 — b]}. (27)

The complex stability radius r¢(Ag(b); D, E) can be calculated using the MATLAB routine
Stabrad-Bruinsma, by L. Schwiedernoch. From [21] it follows that

rr(Ao(b); D, E) 2 71, (Ao(b); D, E) > rc(Ao(b); D, E) . (28)

We calculated an approximation of the Lyapunov-stability radius with discount rate 6 = 0.01,
a discretization of 100 sample points for the control value interval U, = [—p, p] and a grid
on S2 consisting of 900 vertices. The three different stability radii are shown in Figure 1.

The value b = —0.165 has been chosen to study the convergence of rs. To this end
75(Ao(—0.165), U) was calculated for § from 107 to 2-1072. The result is shown in Figure 2,
where the discount rate is displayed on a logarithmic scale to the base 10. The rate of
convergence is of order 1 in ¢ as predicted by the theory. In fact, using the MATLAB polyfit
function we obtain that

rs(Ao(—0.165); D, E) ~ —0.6212 6 + 0.6629

where the least squares error is 6.7174 - 107%. The difference between the linear and the
second order fit in § = 0 is 1.7686 - 10~% showing that a linear fit is adequate.

6 Conclusion

We have presented an approach to the calculation of time-varying stability radii that provides
for linear convergence in the discount rate if the corresponding discrete inclusion is irreducible
and a further condition on the growth of the maximal Lyapunov exponent with respect to
the perturbation intensity v at the stability radius is satisfied.

The results indicate that an algorithm of the following kind may be feasible in the irre-
ducible case:
1. Calculate r5,,¢ =1,...,k for 6, > ... > §; > 0.
2. Perform a linear fit through the data points.
3a. If the least squares error is below some precision constant then stop and use the zero of
the linear fit as an estimation for ry,.
3b. Otherwise increase k and calculate rs, ., for d; > g1 > 0. Continue with 2.

A topic of further research is to obtain error estimates for algorithms of this type.

Acknowledgment The author would like to thank Lars Griine for his help in using his pro-
gram for solving discrete Hamilton-Jacobi-Bellman equations and Andrew Paice for helpful
discussions on several points of the paper.
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Figure 2: 75 for small discount rates, b = —0.165.
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