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Abstract

Global supply chains are complex dynamical systems. Due to nonlinear dependencies between produc-

tion locations, already a perturbation at one location can change the dynamic behavior of the whole

supply chain. As a consequence the supply of customers in time may be at risk. In this paper we

present an approach to supply chain design that maximizes the robustness of a supply chain in regard

to perturbations of the production processes. To this end we consider the fluid approximation of a

dynamic supply chain and assume processor sharing as the production strategy applied at the various

locations. The robustness of the supply chain can be measured by the stability radius that reflects the

smallest perturbation that destabilizes the network. Based on results concerning the stability radius we

set up an optimization problem for the capacity allocation at each production facility. The capabilities

of the approach are demonstrated using a test case.

Keywords: Supply Chain Design, Capacity Management, Global Supply Chains, Integrated Logistics

Track: Global Operations, Strategic Supply Chain Management

1 Introduction

In the last decades several factors (e.g. technological innovation, advanced information and commu-

nication technologies as well as logistics services available world-wide) have driven the development

towards global supply chains. These large-scale networks are composed of external suppliers, sev-

eral plants manufacturing intermediate and/or finished products, distribution and/or sales centers and

transportation assets. In addition to this structural complexity the underlying procurement, manufac-

turing and distribution processes are dynamic. The resulting behavior of the network is often complex

and shaped by nonlinear dynamics. Furthermore, the evolution of internal and external parameters

that determines structural and dynamic properties of global supply chains is not certain. Especially in
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the case of supply chain design the anticipated customer demand as well as the dynamics of the supply

chain have a significant impact on the performance and sustainability of the network. A robust supply

chain design is given by the capability of the network to cope with several possible future scenarios

in an efficient manner. In this context not only locations and transportation links of the supply chain

are chosen but also production capacities at each location for the processed products. Stochastic pro-

gramming and robust optimization are two methods in order to the set up a robust plan. Nevertheless

the planning result strongly depends on the arbitrary chosen deterministic future scenarios. In this

paper we present a new approach to capacity allocation of production locations during the process of

supply chain design. To this end we consider a fluid approximation of a stochastic multiclass queueing

network that can be used to model supply chains. The fluid model facilitates stability and robustness

analysis for such networks. In particular we use the stability radius to quantify the robustness. The

stability radius is given by the smallest perturbation that destabilizes the network. During the process

of network design we aim to maximize the robustness of a supply chain in regard to perturbations of

the production processes. Hence, we seek for a capacity allocation that enables the network to handle

more workload than anticipated. This can be modeled by an increased customer demand. Based on

findings in regard to the stability radius we set up a mathematical program formulation that allows to

find an optimal production capacity allocation.

The outline of the paper is as follows. In Section 2 we provide a literature review that comprises applied

planning systems and methods as well as an introduction to a fluid network model under proportional

processor sharing. This is complemented by an illustrative example, that is used throughout the

paper in order to explain the notions and to valided the results with a test case. Section 3 presents

the theoretical basis for the mathematical optimization formulation that is used to derive a robust

capacity allocation during the network design process. Here, stability of fluid models is defined and

the essential stability characterization by the nominal workload condition is explained. Moreover, the

stability radius is defined and calculated for the test scenario. The optimization problem is introduced
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in Section 4 and followed by the computational analysis in Section 5. The paper closes with some

conclusions and an outlook.

2 Literature review

2.1 Advanced planning systems and methods

A sustainable creation of value is paramount aim of global supply chains and mainly determined by

the network design. This goal is fostered by advanced planning systems (APS) that are applied to such

networks. The underlying structure of APS’s is illustrated by the Supply Chain Planning Matrix [15]

(Figure 1).
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the integration of production and transportation systems do not consider current capabilities, 
level of utilisation of resources and transit-/lead-times. This limitation has special relevance in 
supply chains, where components of production and logistics must be properly integrated so 
that efficiency, responsiveness and flexibility could be achieved and sustained.  

2.1. Production and Transportation Scheduling Problem 

Resources and their employment level have to be better considered in production and 
transportation systems so that decision making in the dynamic and competitive environment 
of supply chains is enhanced. These systems are nowadays managed by advanced planning 
systems (APS’s). The current underlying structure of APS’s can be illustrated by the Supply 
Chain Planning Matrix (Figure 1).  
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Figure 1 – Supply chain planning matrix (Rohde et al., 2000) 

The matrix comprises modules for the planning tasks that are characterised by time horizon 
and involved business functions. The degree of detail increases and the planning horizon 
decreases by shifting from the long-term to the short-term. In order to align the processes at 
different locations and business functions, planning tasks on the strategic (strategic network 
planning) and tactical level (master planning) are usually carried out by a central planning 
entity. Due to the large amount of data that needs to be considered and the large number of 
decisions, the operational planning is normally carried out independently in a sequential way 
by each location and business function (Fleischmann et al., 2004). These individual planning 
tasks are performed by model-based decision systems that often include the utilisation of 
mathematical models or heuristics for determining optimal solutions. So far, these models do 
not take dynamic environments or perturbations appropriately into account (Scholl, 2001). 
For instance, a breakdown of a machine or a transportation vehicle can be considered as 
internal perturbations. Traffic jams are examples of external perturbations that extend the 
travel time between locations. 

Figure 1: Supply Chain Planning Matrix.

The matrix comprises modules for the planning tasks that are characterized by time horizon and in-

volved business functions. The degree of detail increases and the planning horizon decreases by shifting

from the long-term to the short-term. These consecutive modules allow to handle the complexity of an

overall planning process [6]. The modules are often based on mathematical programming formulations

or heuristics that assume deterministic planning information [16]. However, it can be shown that such

approaches fail to cope with a dynamic environment and the considerable uncertainty of the under-

lying planning information [12]. In particular strategic network planning depends on the evolution of
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customer demand and the duration of the product life cycle. As a consequence the supply of customers

in time may be at risk when either the network configuration or the chosen production capacities are

insufficient. Stochastic programming and robust optimization address uncertainty of relevant param-

eters [13] and are used for robust planning. They are based on a set of deterministic future scenarios

of relevant parameters [8] instead of point estimates. In this context a plan is considered robust as it

remains close to a desired solution for each scenario. These approaches are applied to network design

problems [10], [14], [18], [7] and master planning [1], [4]. Nevertheless, the obtained planning results

depend on the arbitrary chosen scenarios and do not pay attention to the dynamic properties of the

network.

2.2 Description of the fluid model

In this paper we present an approach to supply chain design that maximizes the robustness of a

supply chain in regard to perturbations. This approach incorporates knowledge about the dynamic

behavior of supply chains as well as a consideration of uncertainty. The dynamics of such complex

production networks can be modelled by multiclass queueing networks. Roughly speaking queueing

networks are stable, if the queue length process remains bounded for all times. Dai presented in [5] an

approach to investigate the stability of queueing networks using the so-called fluid limit model. This

fluid approximation model is a continuous deterministic analogue of the discrete stochastic model. The

stability of a corresponding fluid limit model implies the stability of the original queueing network [5].

In comparison to a queueing model the stability of a fluid model can be determined more easily. Since

the evolution of relevant external and internal parameters is not know prior we embed a measure for

robustness of a fluid model with respect to perturbations of the customer demand into our planning

approach. First capabilities of this measure were presented in [17]. There the concept of the stability

radius for dynamical systems [9] is adapted to the case of fluid network models. Perturbations that

exceed the stability radius might lead to instability of the network. In particular this means that the
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customer demand cannot be fulfilled. To this end we consider the fluid approximation of a dynamic

supply chain and assume processor sharing as the production strategy applied at the various locations.

The following model description is a composition of [3, 19]. The considered network consists of lo-

cations Sj with j ∈ J = {1, 2, ..., J} and different types of products Pk with k ∈ K = {1, 2, ...,K}.

Every type of product is processed exclusively at one location. The mapping s : {P1, ...,PK} −→

{S1, ...,SJ} determines which type of product is processed by which location and generates the so-

called constituency matrix C, with cjk = 1 if s(Pk) = Sj or cjk = 0 else. For every location the set

C(Sj) := {Pk ∈ {P1, ...,PK} : s(Pk) = Sj} is nonempty. Further every type of product Pk has the

exogenous arrival rate αk and the process rate µk of products per time unit. After a product of type

Pk has been processed at location s(Pk) it either leaves the network or becomes a product of another

type Pl, with l ∈ K. Further plk denotes the proportion of processed products of type Pl that become

products of type Pk. Hence 1−
∑K

l=1 plk is the part that leaves the network. The corresponding K×K

matrix P is referred to as the transition matrix. It is assumed P has (the) spectral radius strictly less

than one, i.e. all products leave the network. The initial amount of products is represented through

the K dimensional vector Q(0). The model of the network is given by (α, µ, P,C) and Q(0).

The performance is described by the K dimensional product level process {Q(t) : t ≥ 0} and the K

dimensional allocation process {T (t) : t ≥ 0}. The amount of products Pk in the network at time t

is denoted by Qk(t) and the total amount of time in the interval [0, t] that location s(k) has devoted

to processing products of type Pk is denoted by Tk(t). For brevity and to keep a clear representation

we omit the capital calligraphy letters in the subscript. The next step is to fix a policy that rules the

order how the arriving products are processed at each location.

We use the so-called head-of-the-line proportional processor discipline (HLPPS). Under this discipline

all nonempty product types present at a location are produced simultaneously proportional to their

product level. Head-of-the-line means that a location processes only one product of each type at a each

time. The location allocation rate Ṫk(t) for type k products is proportional to the fluid level of each
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product type k present at time t. That is,

Ṫk(t) =
Qk(t)∑

l∈C(j)Ql(t)
when

∑
l∈C(j)

Ql(t) > 0.

We note that even when the location is empty, Ṫk(t) may still be positive. Finally the idle time process

Y = {Y (t) : t ≥ 0} is introduced, i.e. Yk(t) denotes the cumulative time that location s(Pk) idles in

the interval [0, t]. With M = diag(µ) the dynamics of the fluid network under HLPPS discipline can

be summarized as follows

Q(t) = Q(0) + α t− (I − P T )MT (t) ≥ 0, (1)

W (t) = CM−1Q(t), (2)

Y (t) = et− C T (t), (3)

Yj(t) can only increase when Wj(t) = 0, for all j ∈ K, (4)

Ṫk(t) =
Qk(t)∑

l∈C(j)Ql(t)
when

∑
l∈C(j)

Ql(t) > 0. (5)

Equation (4) describes the work-conserving property of the network. That is, the idle time for a

product type Pk increases if and only if Qk(t) = 0, i.e. there is no product of type Pk in the network

waiting for being processed. Relation (1) is called the flow balance relation. Any pair (Q(t), T (t)) that

satisfies (1)-(4) is called a fluid solution of the HLPPS fluid network. The set of all feasible fluid level

processes is denoted as

Φ = {Q(t) : ∃T (t) such that (Q(t), T (t)) is a fluid solution }.

The total fluid mass in the network at time t is given by the sum of the fluid level processes of every

type of product. Since the fluid level processes Qk(t) of each product type Pk is nonnegative we use
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the following notation

||Q(t)||1 =
K∑
k=1

Qk(t).

Example 1 Throughout this paper we consider a network where three types of products are produced

at two locations. A schematic illustration is given in Figure 2. The parameters for the test scenario

are

α =


0.15

0.15

0.10

 , µ =


0.6

0.9

0.5

 , P =


0.25 0.15 0.20

0.05 0.25 0.15

0.20 0.25 0.10

 , C =

 1 0 0

0 1 1

 .
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Figure 2: Fluid network with two locations under HLPPS discipline.

3 Stability and robustness analysis

Stability of a fluid network model provides a sufficient condition for the stability of the correspond-

ing multiclass queueing network. Queueing networks are stable, if the queue length process remains

bounded for all times. As fluid networks are deterministic there are three possibilities for the fluid level

processes. It becomes (identically) zero past some finite time τ , remains constant or tends to infinity.

8



Definition 1 A fluid network Φ is said to be stable, if there exists a finite time τ ≥ 0 such that

Q(τ + ·) ≡ 0

for any Q(·) ∈ Φ with ||Q(0)||1 = 1.

As you can see in Figure 2 every location Sj has not only products to serve that are arriving from

outside but also products that transit within the network. This so-called effective arrival rate for each

class is denoted by λk and is given by

λk = αk +
K∑
l=1

λl plk. (6)

As the spectral radius of P is less than one, this can be written as λ = (I − P T )−1 α. Corresponding

to this location Sj has the so-called nominal workload

ρj =
∑

k∈C(j)

λk
µk
, (7)

that can be rewritten as ρ := CM−1λ. Putting this together one obtains the following representation

of the nominal workload that will be used throughout the paper

ρ = CM−1 (I − P T )−1 α. (8)

Sometimes ρ is also referred to as the traffic intensity. Clearly a necessary condition for the stability

of a fluid network is that for every location Sj the nominal workload is strictly less than one. By using

the J-dimensional vector e = (1, ..., 1)T this is

ρ < e. (9)
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Here < has to be understood componentwise. Condition (9) is necessary for fluid networks under any

service discipline. However, a sufficient condition depends on the service discipline, i.e. fluid networks

may be stable under some discipline but not under another, see [11]. The following theorem states

that condition (9) is also sufficient for HLPPS fluid networks [2].

Theorem 1 A HLPPS fluid network is stable if and only if ρ < e.

The nominal workload for the test scenario in Example 1 is

ρ =

 0.5396

0.8217

 .

As you can see the nominal workload of station S1 is 54%. This suggests that this station can deal

with a higher exogenous arrival rate than α1 = 0.15. But at the same time as α1 increases the total

arrival rates λ2 and λ3 for the product types P2 and P3 are increasing as well as the nominal workload

ρ2 of station S2. For this reasoning there are disturbances for α1 that are manageable for the network,

but the application of this disturbances to α2 or α3 might already lead to instability. The stability

radius quantifies the minimal magnitude of admissible perturbations of the external arrival rate that

destabilize the network. To obtain this we perturb the arrival rate by adding a vector δ ∈ RK
+ and

consider the fluid network (αδ, µ, P, C), where αδ := α + δ. The quantity of interest is then ||δ||1, i.e.

the smallest perturbation that already destabilizes the network. Thus according to [17] we define the

following.

Definition 2 The stability radius of the network (α, µ, P,C) is

r(α, µ, P,C) = inf{ ||δ||1 : (αδ, µ, P, C) is not stable }. (10)
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To make presentation shorter we use the notion

ρ(δ) = CM−1 (I − P T )−1 (α+ δ). (11)

Since the condition (9) is necessary and sufficient for the stability for HLPPS fluid networks the stability

radius can be described by

r(α, µ, P,C) = min { ||δ||1 : ρ(δ) 6< 1 } . (12)

Here 6< means that there exists at least one component of ρ that is greater or equal than one. This

reflects the fact that for some location Sj the nominal workload is at least one and thus the network

is unstable.

To give a geometric interpretation of the previous definition and the equivalent representation (12) of

the stability radius we focus on location S2 from Example 1. That is, we consider one location that

processes two types of products. In Figure 3 the light grey domain represents the set of all arrival

rates that satisfy condition (9). So (α2, α3) of the test scenario is an interior point of the light gray

domain. The dark grey picmented domain represents the largest neighborhood Br(α) around α that is

completely in the light grey domain, where the radius of Br(α) is the stability radius. To be precise, for

any arrival rate from the interior of Br(α) the network is stable, while for arrival rates on the boundary

of Br(α) the stability of the network cannot be guaranteed.

To calculate the stability radius we look for the smallest disturbance δ ∈ RK
+ such that ρj(δ) ≥ 1 for

at least one location Sj , i.e.

max
j∈J

ρj(δ) ≥ 1. (13)
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α

α 2

3

Figure 3: Illustration for the stability radius for one station serving two product types.

Consequently the stability radius can be calculated by the following optimization problem

min
K∑
k=1

δk (14)

such that max
j∈J

ρj(δ) ≥ 1. (15)

Applying this scheme to the test scenario of the present paper leads to the stability radius r(α, µ, P,C) =

0.0547781 and a corresponding additional arrival rate δ = (0, 0, 0.0547781)T .

Remark 1 This scheme enables us to quantify for a given network, i.e. for given α, µ, P and C the

robustness of the network with respect to perturbation of the exogenous arrival rates. Further we note

that the stability radius is a property of a given system. Consequently different values of α, µ, P or C

lead to different stability radii.

The goal of this paper is to use this scheme to derive for a network with given topology, represented by

P,C, and given arrival rate α an capacity allocation setup such that the magnitude of the admissible

perturbations of the arrival rate is maximized. That is, we aim to derive service rates µ∗ such that the

corresponding stability radius r(µ∗) has the largest value. So we have to solve the following optimization
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problem

max r(µ) (16)

such that CM ≤ z, (17)

for a given vector z ∈ RJ
+ that describes the capacity bounds of the locations in the network. As the

objective function r(µ) itsself is a solution of an optimization problem we need to derive a way to

calculate the stability radius that depends on µ. So we look again at the optimization problem (14),

(15). For brevity we denote B(µ) = CM−1(I − P T )−1. Then the workload condition ρ(δ) 6< e can be

written as

B(µ)δ 6< e−B(µ)α. (18)

Since the J×K matrix B(µ) contains only nonnegative entries the left hand side of the above conditions

is a weighted sum in δ, with nonnegative weights. So a perturbation with minimal 1-norm is of the

form δ∗ = (0, ..., 0, δk, 0, ..., 0)T for some k ∈ K. The fact that δ∗ satisfies (18) can be written as

max
j
{B(µ)jkδk} ≥ 1− (B(µ)α)j . (19)

Thus another representation of the stability radius, where the dependency on µ is expressed, is

r(µ) = min
k∈K

{
1− (B(µ)α)j
maxj B(µ)jk

}
. (20)

4 Optimization model for the capacity allocation

In this section we setup an optimization model to maximize the stability radius. That is, for a network

with given α, P and C the goal is to a find process rates µ∗ such that the stability radius of the
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corresponding network (α, µ∗, P, C) has the largest stability radius. Based on the derived representation

(20) of the stability radius that depends on µ, we make the following assumptions.

4.1 Assumptions

The stability radius is given by the smallest positive perturbation that when added solely to the arrival

rate of a product type leads to instability. This holds no matter which arrival rate is disturbed. The

total production capacity of each location is limited and is shared between the different product types.

We aim to find a capacity allocation such that the stability radius corresponding to this network is

maximized under all feasible processing rates.

4.2 Nomenclature

Sets

K product types

J locations / production facilities

setCj,k set, that determines which product type k is served at which location j

Parameters

αk External arrival rate of products of type k

bj Maximal Service rate of production facility j that is available for servicing products assigned to

the considered production facility

Pl,k Routing matrix that determines for product type l which kind of product type k it becomes after

it is processed

Cj,k Constituency matrix, that determines which product type is served be a certain production

facility

14



Il,k Identity matrix of product types

R Inverse matrix of (I − P T )

z Capacity allocation bound

L Large scalar (big M)

Variables

µk Service rate of product k at the assigned production facility

∆ Maximal perturbation of the arrival rate of each product type in the case that the other product

types are not disturbed (measure for the stability radius)

ρj,k Workload of each production location j in the case that the arrival rate αk of product type k is

disturbed

CMj,k Auxiliary matrix CM−1

Aj,k Auxiliary matrix CM−1(I − P T )−1

Binary variables

Xj,k Binary variable denoting that production location j has nominal workload ρj = 1 if the arrival

rate αk of product type k is disturbed

4.3 Mathematical model

First the two auxiliary matrices are calculated, where Aj,k describes the relation between the arrival

rate α and the nominal workload ρ, see (8).

CMj,k = Cj,kµ
−1
k (j ∈ J , k ∈ K) (21)

Aj,k =
∑
j

CMj,kRl,k (j ∈ J , k ∈ K) (22)
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The workload of each production facility is given as follows if the arrival rate of product type k is

disturbed.

ρj,l =
∑
k

Aj,k(αk + ∆ · δlk) (j ∈ J , l ∈ K) (23)

Here we used the notation of the so-called Kronecker delta

δlk =


1 for l = k

0 else.

Equation (24) enforces that the nominal workload of location j is greater or equal to one, if and only

if exactly the exogenous arrival rate of product type k is disturbed.

ρj,k ≥ 1− (1−Xj,k)L (j ∈ J , k ∈ K) (24)

Equation (25) ensures that the nominal workload does not exceed 1.

ρj,k ≤ 1 (j ∈ J , k ∈ K) (25)

Condition (26) guarantees that the nominal workload of exactly one location equals one for a pertur-

bation with exactly one strictly positive component.

∑
j

∑
k

Xj,k = 1 (26)
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The allocation capacity of each location j is bounded by zj .

∑
k∈ setCj,k

µk ≤ zj (j ∈ J ) (27)

The objective function maximize the perturbation that can be added to each arrival rate individually

before the whole network becomes unstable. This number reflects the stability radius.

max ∆ (28)

5 Computational analysis

We applied the optimization model from Section 4 to the introduced test case. The parameters of the

network are chosen as follows.

α =


0.15

0.15

0.10

 , P =


0.25 0.15 0.20

0.05 0.25 0.15

0.20 0.25 0.10

 , C =

 1 0 0

0 1 1

 , z =

 1

2



and L = 1000. In the case that the production capacity allocation is pre-given (µ = (0.6, 0.9, 0, 5)T )

the stability radius of the test case is ∆ = 0.055. Table 1 shows the workload ρj,k of each production

location j in regard to the disturbed product type k. Column one shows for instance the workload of

the two production locations if only product type 1 is disturbed by ∆. Since the stability radius reflects

the smallest perturbation that leads to instability Table 1 shows that the network becomes instable at

location 2 if a perturbation of magnitude ∆ = 0.055 is added to the arrival rate of product type 3.
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ρj,k k = 1 k = 2 k = 3

j = 1 0.606 0.488 0.507

j = 2 0.899 0.949 1.000

Table 1.

The allocation of available production capacity to the different product types at a certain production

location is performed by the mathematical program of Section 4. In the following we set the maximal

production capacity of location 2 to 1.4, which equals the sum of the required production capacities of

product type 2 and 3 in the fixed case. Furthermore we set the available production capacity at location

1 to 1. The obtained capacity allocation by the program is µ1 = 0.397, µ2 = 0.722 and µ3 = 0, 678.

Moreover the stability radius takes a value of 0.077. The workload of each of the production locations

for the individually disturbed arrival rates of the production types are given by Table 2.

ρj,k k = 1 k = 2 k = 3

j = 1 1.000 0.747 0.787

j = 2 0.891 0.989 1.000

Table 2.

Table 2 shows that the network becomes instable when a perturbation of magnitude 0.077 is added

either to the arrival rate of product type 1 or product type 3. In this context it is remarkable that

the stability radius can be increase by 40% without adding additional production capacity. Moreover,

the in total required capacity can be reduced by 10.15% with an advanced capacity allocation. These

promising results demonstrate the capabilities of our approach for a robust capacity allocation.

6 Conclusion and outlook

In this paper we have introduced a new approach to robust capacity allocation at production locations

for a sustainable supply chain design. In particular we focused on the question how the production
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capacity at a certain location within a supply chain should be allocated to the processed product types

in order maximize the robustness of the whole network. To this end we introduced a fluid network

model under proportional processor sharing that approximates a multiclass queueing network. In this

context stability of fluid models was defined and the essential stability characterization by the nominal

workload condition was explained. Moreover, the stability radius was introduced as a measure for the

robustness of the supply chain. This measure is utilized by a mathematical program formulation that

maximizes the robustness by choosing an appropriate capacity allocation at each production location to

the processed product types. The obtained computational results are very promising and demonstrate

the potential for an improved robustness. This kind of robustness ensures that as long as deviations

from the assumed demand level stay below the stability radius the network keeps stable and hence is

able to satisfy customer demand. In the future other sources of perturbations have to be considered

as well as different service disciplines. Furthermore the approach might be integrated in the original

network design problem.
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