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Abstract— This paper extends known results on the stability
analysis of interconnected systems. In particular, a small-gain
theorem for the interconnection of an arbitrary number of
systems via communication channels is presented. Here the
communication between the subsystems is over a delayed,
possibly lossy communication channel. To this end, a notion
of input-to-output stability for functional differential equations
is applied.

I. INTRODUCTION

The ongoing progress in all kinds of fields of engineering
leads to an increase of the complexity of dynamical
systems under consideration. For the analysis of such large
scale systems it is often helpful to consider them as an
interconnection of many subsystems of smaller size. To this
end, small-gain type theorems have proved valuable.
In the late eighties of the last century Eduardo Sontag
introduced the notion of ISS [1]. Beside being of major
interest for the control community on its own, it made
nonlinear extensions of the linear small-gain theorem
possible.
In [2] a small-gain theorem was presented which deals
with the interconnection of two nonlinear systems in a
feedback manner. It has been generalized to deal with the
interconnection of several systems in [3].

In [4] the small-gain condition from [3] is used to construct
an ISS-Lyapunov function for the overall system with the
help of the ISS-Lyapunov functions from the subsystems.
Similar ideas can be found in [5], but [5] is based on the so
called cyclic-small-gain condition.
Work that uses also the cyclic-small-gain condition and is
closer to the spirit of the presented paper is [6]. Beside using
the cyclic-small-gain condition the main difference between
[6] and this paper is that in [6] no “multichannel” setup for
the communication is used.
Furher notable contributions dealing with small-gain type
conditions are [7] respectively [8].

There exist many stability notions which are related to ISS
(see e.g., [9]). One of them is the notion of input-to-output-
practical-stability (IOpS) introduced in [2].
Andrew Teel derived Razumikhin-type theorems for func-
tional differential equations (FDE) in [10] based on the ISS
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Fig. 1. Interconnection of two systems (Σ1, Σ2) in a multichannel way.
The clouds represent the communication which can be delayed or even
lossy. The arrows pointing upwards respectively downwards represent the
external influences.

small-gain theorems from [2].
Polushin et al. presented in [11] a small-gain theorem which
guarantees the IOpS property of the interconnection of two
IOpS systems. In this particular work the communication
of the subsystems is over multiple channels, where each of
those channels can be delayed. The basic setup of the systems
under consideration in [11] can be found in Figure 1.
The motivation for a setup where the communication is over
multiple channels with different delays in each channel is
manifold. Consider for instance a teleoperation in which a
human (master) controls a robot (slave). The robot tries to
maintain formation with several other robots. If one of these
robots approaches an obstacle, it should send a forcefeedback
to the slave, which sends the force information to the
master. So that the human operator can “feel” whenever the
environmental circumstances change for any of those robots.

In [12] we relaxed the condition from [11] with the help
of the small-gain theorem from [3].
In this paper we extend the results from [12] to the case
of an arbitrary number of subsystems which can form an
arbitrary topology. The basic setup of the interconnection of
the system under consideration is depicted in Figure 2.
In the original work [11] there was some kind of hierarchy
between the two subsystems and it is not obvious how
to extend the small-gain condition from [11] to several
subsystems.

The paper is organized as follows. The problem setup
as well as the notion of IOpS for FDEs is presented in
Section II. The main contribution of this paper is presented
in Section III. We will conclude our note with some remarks
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Fig. 2. Interconnection of several subsystems. Again, the clouds represent
the communication in a multichannel way. The operator Ψij describes the
influence of the outputs of the i-th subsystem to the inputs of the j-th
subsystem. The gain operators Γiu describes the influence from the inputs
to the outputs of subsystem i.

in Section IV.

II. PRELIMINARIES

A. Notations

In this section we introduce the class of systems under
consideration and the stability notion we investigate. To this
end we have to define some functional classes and their
multi-dimensional extensions.
A continuous function γ : R+ 7→ R+ is said to belong
to class G, if it is nondecreasing and satisfies γ(0) = 0. A
function γ ∈ G is of class K if it is strictly increasing. If γ
is of class K and unbounded, it is said to belong to K∞.
We write a < b, a, b ∈ Rk if and only if ai < bi ∀i = 1, .., k
(≤, >,≥ are defined analogously). Note that we are com-
paring vectors, therefore we also have to use the negations
�, ≮, ≯, �. The inequality a � b means that there must be
at least one component i of a which is strictly less than the
corresponding component of b i.e., a � b :⇔ ∃i such that
ai < bi. The other negations are defined in a similar manner.
A mapping T : dom T ⊂ Rn

+ → Rn
+ is called a continuous

and monotone operator on dom T , if 1. T is continuous and
2. for all u, v ∈ dom T , u ≤ v implies T (u) ≤ T (v).
A matrix Γ = (γij), γij ∈ K or γij = 0 for i, j = 1, . . . , n
defines a continuous and monotone operator Γ : Rn

+ → Rn
+

by

Γ(s) =
(
max

j
γ1j(sj), . . . ,max

j
γnj(sj)

)T
, for s ∈ Rn

+.

For such an operator we will say that Γ ∈ Gn×n. The class
of these matrix-induced operators has some nice properties.
Most relevant is the fact that any finite composition of
matrix-induced operators gives again a matrix-induced
operator and that matrix-induced operators commute with
the max-operation, where the max-operator is understood
elementwise.

The IOpS notion mentioned in the introduction usually
deals with ordinary differential equations. In this note we

are interested in the interconnection of many systems, where
the inputs of the subsystems are delayed. An appropriate
mathematical object to model such a situation are the so
called functional differential equations or FDEs. A FDE is a
differential equation where the right hand side depends on a
function rather than a single point in the state space for every
time instance t. For a detailed introduction to FDEs see [13].
To be more specific, the systems under consideration belong
to a subclass of FDEs which are referred to as time delay
systems.
More precisely, the systems we consider are of the form:

ẋ(t) = f(xd, u
1
d, . . . , u

l
d, t)

y1(t) = h1(xd, u
1
d, . . . , u

l
d, t) (1)

...

yr(t) = hr(xd, u
1
d, . . . , u

l
d, t),

where x is the state of the system, uj , j = 1, . . . , l are
the inputs and yk, k = 1, . . . , r the outputs of the system
all lying in appropriate real finite-dimensional vector spaces.
The subscript d denotes a retarded argument in the following
way xd(t) := {(s, x(s + t)), s ∈ [−td(t), 0]}, td : R 7→ R+.
We assume sufficient regularity of the maps f and hk. Define
‖xd(t)‖ := sups∈[t−td(t),t] |x(s)| (‖yd‖, ‖ud‖, ‖wd‖ are de-
fined analogously), where | · | is the maximum norm. To ease
the presentation we introduce u+

d := (‖u1
d‖, . . . , ‖ul

d‖)T ,
y+

d := (‖y1
d‖, . . . , ‖yr

d‖)T , and y+ := (|y1|, . . . , |yr|)T .
We use this “multichannel” formulation to model and analyze
the effects of certain inputs on certain outputs. A second
advantage of this approach is to have the possibility of
different delays in every “channel” as we will see in the
next section.
The ensuing definition is borrowed from [11].

Definition 2.1: A system of the form (1) is input-to-
output-practical-stable (IOpS) at t = t0 with td(t) ≥ 0, β ∈
Kr×1
∞ , IOpS gains Γ ∈ Gr×l, restrictions ∆x ∈ R+, ∆u ∈

Rl
+ and offset δ ∈ Rr

+ if the conditions ‖xd(t0)‖ ≤ ∆x

and supt≥t0 u+
d ≤ ∆u, imply that the solution of (1) are

well-defined for t ≥ t0 and the following inequalities hold:

sup
t≥t0

y+ ≤ max{β(‖xd(t0)‖),Γ(sup
t≥t0

u+
d ), δ}

and

lim sup
t→∞

y+ ≤ max{Γ(lim sup
t→∞

u+
d ), δ}

again componentwise.
Remark 2.2: The first inequality in Definition 2.1 resem-

bles the global stability property and the second the so called
asymptotic gain property (see e.g. [9]). In the case of a
trajectory based formulation the asymptotic gain property
together with the global stability property is equivalent to
the ISS property.
Motivated by this we use the terminology IOpS although
we provide no proof nor are we aware of a proof of an
equivalence to a trajectory based formulation of the concept.
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B. Problem Setup

Consider n systems of FDEs Σi, i = 1, 2, . . . , n, n ∈ N
of the form

ẋi = fi(xid, u
1
id, . . . , u

li
id, w

1
id, . . . , w

vi

id , t)

y1
i = h1

i (xid, u
1
id, . . . , u

li
id, w

1
id, . . . , w

vi

id , t) (2)
...

yri
i = hri

i (xid, u
1
id, . . . , u

li
id, w

1
id, . . . , w

vi

id , t).

Here we distinguish between the controlled inputs u and
disturbances w. The dimensions of the state spaces and the
input spaces are as follows xi ∈ Rni , uj

i ∈ Rpij , j = 1, .., li
and wj

i ∈ Rqij , j = 1, .., vi. The output spaces are yj
i ∈

Rkij , j = 1, . . . , ri.
Similar to the last section we have to introduce y+

i :=
(|y1

i |, . . . , |y
ri
i |)T , u+

id := (‖u1
id‖, . . . , ‖u

li
id‖)T , and w+

id :=
(‖w1

id‖, . . . , ‖w
vi

id‖)T .
Assumption 2.3: The systems Σi, i = 1, 2, . . . , n are

IOpS at t = t0 with tid(t) > 0 and restrictions ∆xi ∈ R,
∆ui ∈ Rli , ∆wi ∈ Rvi and offsets δi ∈ Rri . More precisely,
there exist βi ∈ Kri×1, Γiu ∈ Gri×li and Γiw ∈ Gri×vi , such
that for each i = 1, 2, . . . , n and each t0 ∈ R the condition
‖xid(t0)‖ ≤ ∆xi, supt≥t0 u+

id ≤ ∆ui and supt≥t0 w+
id ≤

∆iw imply that the corresponding solution of Σi is well-
defined for all t ≥ t0 and the following inequalities hold

sup
t≥t0

y+
i ≤

max
{
β(‖xid(t0)‖), sup

t≥t0

Γiu(u+
id), sup

t≥t0

Γiw(w+
id), δi

}
(3)

and

lim sup
t→∞

y+
i ≤

max
{

lim sup
t→∞

Γiu(u+
id), lim sup

t→∞
Γiw(w+

id), δi

}
. (4)

If we introduce the following notation

B(x+
d (t0)) = (β1(‖x1d(t0)‖)T , . . . , βn(‖xnd(t0)‖)T )T ,

ΓU = diag{Γ1u, . . . ,Γnu}, ΓW = diag{Γ1w, . . . ,Γnw}

δoff =
(
δT
1 , . . . , δT

n

)T
, u+

d =
(
(u+

1d)
T , . . . , (u+

nd)
T
)T

and
w+

d =
(
(w+

1d)
T , . . . , (w+

nd)
T
)T

we can collect the inequali-
ties from (3) and (4) to obtain

sup
t≥t0

y+ ≤

max
{
B(x+

d (t0)), sup
t≥t0

ΓU (u+
d ), sup

t≥t0

ΓW (w+
d ), δoff

}
, (5)

and, respectively,

lim sup
t→∞

y+ ≤

max
{

lim sup
t→∞

ΓU (u+
d ), lim sup

t→∞
ΓW (w+

d ), δoff

}
. (6)

Before we can describe the interconnection of the n subsys-
tems, we have to introduce a delayed versions of y+

i . To this
end define

ŷ+
i (t) = (|y1

i (t−τ1
i (t))|, . . . , |yri

i (t−τ ri
i )|)T , i = 1, . . . , n

where τ j
i : R → R+, i = 1 . . . n, j = 1, . . . ri are Lebesgue

measurable functions. The functions τ j
i describe the delay of

the j-th component of the output of the i-th subsystem.
To shorten the notation, define

ŷ+(t) =
(
ŷ+
1 (t)T , . . . , ŷ+

n (t)T
)T

.

Assumption 2.4: For the interconnection of the n subsys-
tems we assume that the following holds

u+
d (t) ≡ 0, ∀t < T0 (7)

u+
d (t) ≤ Ψ(ŷ+(t)), ∀t ≥ T0 (8)

where the operator Ψ : R
Pn

i=1 ri

+ → R
Pn

i=1 li
+ , s 7→ Ψ(s) =

(maxj Ψ1j(sj), . . . ,maxj Ψnj(sj))
T

, Ψij ∈ Gli×rj , sj ∈
Rrj

+ for all i, j = 1, . . . , n is of the form

Ψ =


0 Ψ12 · · · Ψ1n

Ψ21 0 · · · Ψ2n

...
...

. . .
...

Ψn1 Ψn2 · · · 0

 .

Remark 2.5: Assumption 2.4 states that there exists a
T0 ∈ R which is the first time instance a connections has
been established. Before that time the input is constant 0.
After T0 the operator Ψij describes how the output of the
jth subsystem influences the input of the ith subsystem. See
Figure 2 for a sketch of the interconnection structure.
To ensure that communication between the subsystems hap-
pens at least sometime, we have to make the following
assumption on the delays.

Assumption 2.6: There exists τ∗ > 0 and a piecewise
continuous function τ∗ : R 7→ R+ with τ∗(t2) − τ∗(t1) ≤
t2 − t1 for all t2 ≥ t1 such that

τ∗ ≤ min
i=1,...,n
j=1,...,ri

{τ j
i (t)} ≤ max

i=1,...,n
j=1,...,ri

{τ j
i (t)} ≤ τ∗(t), (9)

and
t− max

i=1,...,n
j=1,...,ri

{τ j
i (t)} → ∞ as t →∞ (10)

for all t ≥ 0.
Remark 2.7: The inequalities (9) say that the delays

should be bounded from above by τ∗(t) and from below
by τ∗. Because of the propagation delay of any physical
system the existence of a lower bound τ∗ is guaranteed.
Basically, (10) states that the delay should not grow faster
than the time itself. In the literature an assumption in the
kind of τ̇∗(t) < 1 can be found to ensure that property.
To account for possible information losses we have to adopt
the more general Assumption 2.6. In [11] a methodology
to satisfy Assumption 2.6 either by timestamping or by
sequence numbering can be found. Time stamping refers to
an approach where each piece of information (a packet if for
instance TCP is used as a communication protocol) is tagged
with the time information when the information was sent.
In sequence numbering each outgoing message is given an
unique number in such a way that the receiver can reconstruct
the correct order (sequence) in which they had been sent.
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III. MAIN RESULT

We find it convenient to define

Γ = ΓU ◦Ψ and G = max
k≥0

Γk . (11)

Let m =
∑n

i=1 ri. Overall, the operator Γ : Rm
+ → Rm

+ is
of the form

Γ(s) =
((

max
j 6=1

{Γ1u ◦Ψ1j(sj)}
)T

,(
max
j 6=2

{Γ2u◦Ψ2j(sj)}
)T

, . . . ,
(
max
j 6=n

{Γnu◦Ψnj(sj)}
)T)T

with s = (s1, . . . , sn)T , si ∈ Rri
+ .

While Γ ∈ Gm×m clearly is a matrix-induced continuous and
monotone operator, G is not necessarily well-defined. We
will see in the next lemma that a small-gain type condition
is precisely what is needed to assure that G is well-defined.

Lemma 3.1: Let Γ be defined as in (11) and assume there
exist δ,∆ ∈ Rm

+ , δ < ∆, such that

lim sup
k→∞

Γk(∆) ≤ δ , (12)

then G(s) is well-defined for all s ≤ G(∆)
Proof: Define ∆∗ = G(∆) = maxl≥0{Γl(∆)}. It

follows from (12) that there exists an l∗ ∈ N such that
∆∗ = max0≤l≤l∗{Γl(∆), δ}. Because the maximum is over
a finite set ∆∗ < ∞ exists. Clearly, Γ(∆∗) ≤ ∆∗. From the
monotonicity of Γ we can deduce

0 ≤ Γk(∆∗) ≤ Γk−1(∆∗) ≤ · · · ≤ Γ(∆∗) ≤ ∆∗.

Hence limk→∞ Γk(∆∗) exists. From (12) and the definition
of lim sup we can derive

lim
k→∞

Γk(∆∗) = lim
k→∞

Γk(max
l≥0

{Γl(∆)})

= lim
k→∞

max
l≥k

{Γl(∆)} = lim sup
k→∞

Γk(∆) ≤ δ

where we have used that Γ(max{a, b}) =
max{Γ(a),Γ(b)}. Simple monotonicity arguments show
that lim supk→∞ Γk(s) ≤ δ for all s ≤ ∆∗. It follows from
similar arguments as above that there exists a k∗ ∈ N such
that G(s) = max0≤k≤k∗{Γk(s), δ} < ∞ for all s ≤ ∆∗.
Hence G(s) is well-defined for all s ≤ ∆∗ and the proof is
complete.

The next lemma is the main technical tool for the proof
of our main theorem.

Lemma 3.2: Let the premise of Lemma 3.1 hold. Then for
all a, b ≤ G(∆) ,

a ≤ max{b, Γ(a)} (13)

implies
a ≤ max

k≥0
{Γk(b), δ} . (14)

Proof: If we apply Γ on both sides of inequality (13),
we obtain

Γ(a) ≤ max{Γ(b),Γ2(a)}.

Substituting this in (13) yields

a ≤ max{b, Γ(b),Γ2(a)}.

∆

Γ(∆)
Γ2(∆)

Γ3(∆)

Γ4(∆)
··

Γk(∆)
δ

Fig. 3. Sketch of the evolution of the gain operator Γ starting from ∆.
Assuming that condition (12) holds, the iteration of Γk(∆) will end up in
the small box of size δ.

Repeat this procedure k times to obtain

a ≤ max{b, Γ(b),Γ2(b), . . . ,Γk(b),Γk+1(a)}.

If we choose k large enough we can use (12) to get

a ≤ max{G(b), δ}.

From Lemma 3.1 we know that G(b) is well-defined and we
can write

a ≤ max
k≥0

{Γk(b), δ}

and the proof is complete.
Usually, small-gain type conditions compare some operator
with the identity. As we will see in the next lemma, condition
(12) can also be interpreted in this manner.

Lemma 3.3: Let the premise of Lemma 3.1 hold. then

Γ(s) � s ∀s ∈ [δ, G(∆)], s 6= δ.
Proof: We will prove this by contradiction. So assume

there exists s ∈ [δ, G(∆)] such that Γ(s) ≥ s. From
the monotonicity of Γ it follows readily that Γk(G(∆)) ≥
Γk(s) ≥ s ≥ δ. Realizing that this contradicts (12) finishes
the proof.

Remark 3.4: From the following example it can be seen
that the converse of Lemma 3.3 does not hold. Consider the
following operator.

T =
(

2 id 0
0 1

2 id

)
It is easy to verify, that T ∈ G2×2 and T (s) � s ∀s ∈
[δ, G(∆)], for arbitrary ∆, δ ∈ R2, δ > 0, ∆ > δ. On the
other hand T k(s), k →∞ is unbounded, contradicting (12).
From the last example we see that we have to exclude the
possibility of unbounded growth. The next lemma shows
that a descent in one single point is needed to ensure that
property.

Lemma 3.5: Let Γ be defined as in (11). If there exist an
a ∈ Rm

+ and some k ∈ N such that Γk(a) < a, then there
exists b < a such that

lim sup
k→∞

Γk(a) ≤ b.
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Proof: Choose an l > k. Then the following holds

0 ≤ Γl(a) ≤ · · · ≤ Γk+1(a) ≤ Γk(a) < a.

This is a bounded and monotone sequence. Hence

lim
r→∞

Γr(a) = b

exists. The proof is finalized by noting that b < a, which
follows from Γk(a) < a.
For a more detailed presentation of the topological properties
of such monotone operators see [14].

Before we state the main contribution of this paper we
introduce ∆x = (∆x1, . . . ,∆xn)T , ∆u = (∆T

u1, . . . ,∆
T
un)T

and ∆w = (∆T
w1, . . . ,∆

T
wn)T .

Theorem 3.6: Suppose the system (2), satisfies Assump-
tions 2.3, 2.4 and 2.6 and that there exist δ,∆ ∈ Rm

+ ,
0 ≤ δ < ∆, such that the following local small-gain
condition holds:

lim sup
k→∞

Γk(∆) ≤ δ . (15)

Then the following assertions hold: The operator G is well-
defined on the order interval [δ,∆]. If in addition G(∆) >
∆∗∗, where

∆∗∗ = G (max{B(∆x),ΓW (∆w), δoff}) , (16)

and
Ψ(∆∗∗) ≤ ∆u (17)

holds, then system (2) is IOpS at t = T0 in the sense of
Definition 2.1 with

td(T0) =
max

i=1,...,n
{tid(T0)}+ τ∗(T0) + τ∗(T0 − τ∗(T0)) . (18)

More precisely, the conditions x+
d (T0) ≤ ∆x , supt≥T0

w+
d ≤

∆w imply that the following inequalities hold

sup
t≥T0

y+ ≤ max
{

G
(

max
{
B(x+

d (T0)),

ΓW ( sup
t≥T0

w+
d ), δoff

})
, δ
}

, (19)

and

lim sup
t→∞

y+ ≤

max
{

G
(

max
{
Γw(lim sup

t→∞
w+

d ), δoff

})
, δ
}

. (20)

Remark 3.7: Equation (18) takes into account the delays
of the individual systems (tid) coming form Assumption 2.3
as well as the maximal communication delay comming from
Assumption 2.6.

Proof: [of Theorem 3.6] The fact that G is well-defined
on [δ,∆] follows from Lemma 3.1. Now consider system (2)
and assume

x+
d (T0) ≤ ∆x and sup

t∈[T0,∞)

w+
d ≤ ∆w. (21)

It remains left to show that the restrictions on the input ∆u

hold for all positive times. To this end we will first establish

that the output is bounded up to some time Tmax. Then we
will show that Tmax = ∞. After showing that the trajectory
of the interconnected system exists for all positive times the
claim follows by an application of our small-gain argument
(Lemma 3.2).
Assumption 2.3 together with (5), (21) as well as causality
arguments imply that

y+
d (T0) ≤ max{B(∆x),ΓW (∆w), δoff}.

With the help of (7), (8) and Assumption 2.6 we can deduce

sup
t∈[T0−td(T0),T0+τ∗]

u+ ≤ Ψ(max{B(∆x),ΓW (∆w), δ})

≤ Ψ(∆∗∗),

where the last inequality follows from (16). From the last
inequality together with (17) we see that the restrictions on
the inputs are satisfied for t ∈ [T0− td(T0), T0 + τ∗]. Hence
there exists Tmax > T0 +τ∗ such that the solutions of (2) are
well-defined for all t ∈ [T0, Tmax). Now we want to show
that

sup
t∈[T0,Tmax)

y+
d ≤ ∆∗∗. (22)

We will prove (22) by contradiction. So assume there exists
T1 ∈ [T0, Tmax − τ∗) such that

sup
t∈[T0,T1]

y+
d ≤ ∆∗∗ and sup

t∈[T0,T1+τ∗]

y+
d � ∆∗∗. (23)

Combining (5), (18), (21) with (8) and Assumption 2.6, we
obtain

sup
t∈[T0,T1+τ∗]

y+
d ≤

max
{

B(∆x),ΓW (∆w),Γ( sup
t∈[T0,T1]

y+
d ), δoff

}
.

From the definition of (16) it is easy to see that Γ(∆∗∗) ≤
∆∗∗. Hence we can deduce with the help of the first
inequality in (23)

sup
t∈[T0,T1+τ∗]

y+
d ≤ max{B(∆x),ΓW (∆w),∆∗∗} = ∆∗∗,

which contradicts the second inequality in (23). This contra-
diction proves (22).
Next we want to show that Tmax = ∞. Again we will prove
this by contradiction. Due to the IOpS assumption on the
subsystems and (21) Tmax < ∞ implies

sup
t∈[T0,Tmax)

u+ � ∆u. (24)

From (8) and (17) we can see that (24) implies

Ψ

(
sup

t∈[T0,Tmax)

ŷ+

)
� Ψ(∆∗∗).

Because of the monotonicity of Ψ and the fact that sup ŷ+ ≤
sup y+

d we get

sup
t∈[T0,Tmax)

y+
d � ∆∗∗,

Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems – MTNS 2010 •  5–9 July, 2010 • Budapest, Hungary

1481



which contradicts (22), hence Tmax = ∞.
Summarizing, the restrictions on the inputs hold for all t ∈
[T0,∞) and thus together with (21) we conclude that the
solutions are well-defined for all positive times. Hence we
can use (5) to get

sup
t≥T0

y+
d ≤

max
{

B(x+
d (T0)),ΓW ( sup

t≥T0

w+
d ),Γ( sup

t≥T0

y+
d ), δoff

}
.

Using Lemma 3.2 we conclude

sup
t≥T0

y+
d ≤ max

{
max
k≥0

Γk
(

max{B(x+
d (T0),

ΓW ( sup
t≥T0

w+
d )), δoff}

)
, δ
}

,

which can be easily rewritten to get (19). Similarly we can
use (6) together with Lemma 3.2 to get

lim sup
t→∞

y+
d ≤

max
{

max
k≥0

Γk
(
max{ΓW (lim sup

t→∞
w+

d (t)), δoff}
)
, δ
}

.

Realizing that this can be brought into the form (20) finishes
the proof.

IV. CONCLUSION AND FUTURE WORK

In this paper we have continued our work on small-gain
type conditions from [12]. Namely, we have presented a
small-gain theorem which uses the notion of IOpS for FDEs
to ensure that the interconnection of an arbitrary number of
subsystems is again IOpS. In particular we have considered
the case where the communication is over delayed, possible
lossy communication channels.
The use of the maximum formulation of the ISS property has
proved quite valuable. One of the main reasons is, that the
maximum commutes with monotone operators. Sometimes
it is more natural or convenient to use different types of
the ISS formulation (e.g., the sum formulation) or even a
mixed version of different formulations, see e.g., [15]. In [16]
we will continue our work on small-gain conditions for ISS
systems to handle a more general class of ISS formulations.
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