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Abstract— We consider the class of closed generic fluid
networks (GFN) models. This class contains for example fluid
networks under general work-conserving and priority disci-
plines. Within this abstract framework a Lyapunov method
for stability of GFN models was proposed by Ye and Chen.
They proved that stability of a GFN model is equivalent to
the property that for every path of the model a Lyapunov like
function is decaying. In this paper we construct state-dependent
Lyapunov functions in contrast to pathwise functionals. We
first show by counterexamples that closed GFN models do
not provide sufficient information that allow for a converse
Lyapunov theorem with state-dependent Lyapunov functions.
To resolve this problem we introduce the class of strict closed
GFN models by forcing the closed GFN model to satisfy a
concatenation and a perfectness condition and define a state-
dependent Lyapunov function. We show that for the class of
strict closed GFN models a converse Lyapunov theorem holds.
Finally, it is shown that common fluid network models, like
general work-conserving and priority fluid network models as
well as certain linear Skorokhod problems define strict closed
GFN models.

I. INTRODUCTION

An effective tool to model complex manufacturing sys-
tems, computer systems or telecommunication networks is
the family of multiclass queueing networks. An example for
occurs in semiconductor fabrication, where production lines
are modeled as reentrant lines, which are a special case
of multiclass queueing networks. Especially in the pursuit
of deriving good control strategies for multiclass queueing
networks the question of stability arises. For a long period
a common belief was that a sufficient condition for stability
is that the traffic intensity is strictly less then one. But in
1993 Kumar and Seidman [1] presented a network with
two stations processing four types of jobs which is unstable
although the traffic intensity at each station is less than one.
This example inspired a number of examples with different
service disciplines, like first-in-first-out (FIFO) and priority,
that have surprising properties. In the literature they are
known as the Lu-Kumar network, the Rybko-Stolyar network
or the Bramson network, see e.g. [2] or [3], [4] and [5].
In recent years further disciplines like maximum pressure
and join-the-shortest-queue are investigated [6] ,[7] ,[8].
Rybko and Stolyar [5] and Dai [9] pursued the strategy of
rescaling the stochastic processes that describe the dynamics
of a multiclass queueing network and considered the limit
of the scaling. This limit is called the fluid limit model
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for the queueing network and is a continuous deterministic
analogue. Of course, deterministic models are much easier
to investigate. The great benefit of this approach is, that the
stability of the corresponding fluid limit model is sufficient
for the stability of a multiclass queueing network [9]. A
discussion of the relationship between queueing networks
and fluid models can be found in [2].

Due to this fact the question arises, under which conditions
fluid limit models are stable. A fluid model is called stable
if the fluid level process Q with unit initial level one is
drained to zero in a finite time τ and remains zero beyond
τ . Of course, conditions that guarantee stability depend on
the service discipline of the network. In [10] Chen states
necessary and sufficient conditions for stability of general
work-conserving fluid networks. Stability conditions for fluid
networks under FIFO and priority discipline have been
derived by Chen and Zhang [11], [12]. Often the strategy to
prove these conditions is to use a Lyapunov function. There a
locally Lipschitz function g : RK+ → R+ such that g(x) = 0
if and only if x = 0 is called a Lyapunov function, if there
exists a constant ε > 0 such that for each fluid model solution
it holds that

d [g(Q(t))]
dt

≤ −ε

whenever Q(t) 6= 0 and t is a regular point for g(Q(·)). For
more details see [13]. Within this framework linear Lyapunov
functions of the form

g(Q(t)) = hTQ(t)

where h is some positive vector in RK+ are used to establish a
sufficient condition for the stability of fluid network models
under a priority discipline [12]. The special case for this
where h = (1, ..., 1)T is used the show that a fluid model of a
re-entrant line operating under last-buffer-first-served (LBFS)
service discipline is stable, if the usual traffic condition
ρj < 1 is satisfied for all stations j [13]. This special
case is also used to prove a stability condition for fluid
networks under join-the-shortest-queue discipline [8]. Ye and
Chen investigated fluid networks under priority disciplines by
using piecewise linear Lyapunov functions of the form

g(Q(t)) = max
1≤j≤N

xTj Q(t)

for some nonnegative vectors x1, ..., xN that arise from the
stability condition, for details see [14]. This approach yields
a sharper stability condition for fluid networks under priority
discipline than in [12]. Furthermore, in the verification of a
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stability condition for fluid networks under general work-
conserving disciplines a quadratic Lyapunov function

g(Q(t)) = QT (t)AQ(t)

with a strictly copositive matrix A is used [10]. What all the
works mentioned above have in common is that the existence
of Lyapunov functions are only shown to be sufficient for
stability.

Before we investigate the question whether the existence
of a Lyapunov function is also necessary for the stability of a
fluid network, we recall briefly the basic idea of a Lyapunov
function from the theory of dynamical systems. For a detailed
description the reader is referred e.g. to [15], [16]. Given a
time-varying dynamical system

ẋ = f(t, x), x ∈ Rn, t ∈ [0,∞) (1)

with initial condition x(t0) = x0 and continuous f , where
the origin is an equilibrium position, i.e. f(t, 0) = 0 for
almost every t ≥ 0. A real map V (t, x) : [0,∞) × Br ⊂
Rn → R that is positive definite and decrescent is called a
strict Lyapunov function for (1), if there exists a continuous
and strictly increasing function w : [0, r) → [0,∞) with
w(0) = 0 such that for every solution x(·) and each interval
I ⊂ [0,∞) one has

V (t2, x(t2))− V (t1, x(t1)) ≤ −
∫ t2

t1

w(||x(t)||)dt (2)

for each t1 < t2 ∈ I provided that x(·) is defined on I and
x(t) ∈ Br for t ∈ I . It is well known that the origin is
uniformly locally asymptotically stable if and only if there
is a strict Lyapunov function.

In order to get a so called converse Lyapunov theorem
for fluid networks Ye and Chen followed a different, more
general approach [17]. They collected the characteristic prop-
erties of fluid networks and defined a generic fluid network
(GFN) model as set Φ of functions Q : R+ → RK+ that
satisfy a few natural properties. A precise description of a
GFN model is given in Section II. They proved that stability
of a GFN model is equivalent to the property that for every
function Q ∈ Φ a Lyapunov like function v : R+ → R+ is
decaying along Q. In particular, v can be chosen as

v(t) =
∫ ∞
t

||Q(s)||ds. (3)

It can be seen that this result differs from that from the
theory of dynamical systems in the sense that the Lyapunov
like function is not state-dependent but a functional that
depends on Q(·). This is undesirable, because the benefit
of Lyapunov’s second method is that trajectories need not
be known, whereas the method of Ye and Chen requires
the knowledge of all solutions. In this paper we define a
state-dependent Lyapunov function and prove a converse
Lyapunov theorem.

This paper is organized as follows. In the Section II we
recall the definition of a GFN model from [17]. Further
we discuss counterexamples to emphasize that the class of
(closed) GFN models is too general to provide a converse

Lyapunov theorem with state-dependent Lyapunov functions.
In the Section III we introduce the class of strict closed
GFN models by forcing the closed GFN models to satisfy
additionally a concatenation and a perfectness property. For
this model class we define a state-dependent Lyapunov
function and prove that within this framework the stability
of a strict closed GFN model is equivalently characterized
by the existence of a state-dependent Lyapunov function. In
Section IV we recall some results from differential inclusions
and viability theory that will be useful in Section V. There
we show that general work-conserving and priority fluid
networks as well as certain Skorokhod problems define strict
closed GFN models.

We collect some notations that will be used throughout
the paper. By RK+ we denote the positive orthant {x ∈ RK :
x ≥ 0}, where ≥ has to be understood component-wise.
Throughout the paper we mostly consider the space (RK+ , || ·
||) with ||x|| :=

∑K
i=1 |xi|. Let CK(R+) denote the space of

continuous functions f : R+ → RK+ . A sequence (fn(t))n
in CK(R+) is said to converge uniformly on compact sets
(u.o.c.) to a continuous function f(t) ∈ CK(R+), if for any
T > 0

lim
n→∞

sup
t∈[0,T ]

||fn(t)− f(t)|| = 0.

We say that a function g : RK+ → R is upper semi-continuous
in a ∈ RK+ , if g(a) ≥ lim supx→a g(x). Of course, g called
upper semi-continuous if it is upper semi-continuous for
every a ∈ RK+ . Further a function g : RK+ → R+ is lower
semi-continuous at a ∈ RK+ if −g is upper semi-continuous
in a ∈ RK+ and g is called lower semi-continuous if g is lower
semi-continuous in every point. Finally, by K we denote
the set of continuous functions w : R+ → R+ that satisfy
w(0) = 0 and are strictly increasing.

II. GENERIC FLUID NETWORK MODELS

In this section we consider generic fluid network models
introduced by Ye and Chen. In [17] they present a Lyapunov
method for characterizing the stability of fluid networks.
The disadvantage of their approach is that it is trajectory
based. That is, the Lyapunov function depends on the path
of the closed GFN model. First we recall from [17] the
definition of a closed generic fluid network (closed GFN)
model and the conditions for a function to be a Lyapunov
function. Then we define a candidate for a Lyapunov function
that does not depend on the path and show that in the
setting it is not continuous in general. Further we give a
counterexample that shows that the concatenation of two
paths is not automatically contained in a closed GFN model.

Definition 1: A nonempty set Φ of functions Q(·) : R+ →
RK+ is said to be a GFN model, if

(a) there is a L > 0, such that for any Q(·) ∈ Φ and
t, s ∈ R+ it holds that

||Q(t)−Q(s)|| ≤ L |t− s|.

(b) Q(·) ∈ Φ implies 1
rQ(r·) ∈ Φ for all r > 0.

(c) Q(·) ∈ Φ implies Q(s+ ·) ∈ Φ for all s ≥ 0.
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Furthermore, if the following condition is also satisfied, then
we call Φ a closed GFN model.

(d) if a sequence (Qn)n ⊂ Φ converges to Q∗ u.o.c, then
Q∗ ∈ Φ.

Condition (a) states that the functions Q(·) are Lipschitz
continuous, where condition (b) is a scaling property and
condition (c) is a shift property. The content of condition (d)
is that the set Φ is closed in the weak∗ topology of L∞.
Any element Q(·) of Φ is called a path (of Φ) and the set
of paths with initial level one is denoted by Φ(1) = {Q(·) ∈
Φ : ||Q(0)|| = 1}. A further notation that will be used later
is for x ∈ RK+ the set Φx = {Q(·) ∈ Φ : Q(0) = x}.
Moreover we adapt from [17] the definition of stability of a
GFN model.

Definition 2: A GFN model Φ is said to be stable, if there
exists a τ > 0, such that Q(τ + ·) ≡ 0 for any path Q(·) ∈
Φ(1).

The Lyapunov method to investigate stability of closed
GFN models presented in [17] is as follows. A GFN model Φ
is said to satisfy the L-condition, if there exist three class K-
functions wi : R+ → R+, i = 1, 2, 3 such that for any GFN
path Q ∈ Φ there exists an absolutely continuous function
v(t) such that the following conditions hold for almost all
t ≥ 0.

w1(||Q(t)||) ≤ v(t) ≤ w2(||Q(t)||) (4)
v̇(t) ≤ −w3(||Q(t)||) (5)

The corresponding converse Lyapunov theorem is then.
Theorem 1: A GFN model Φ is stable if and only if the

L-condition is satisfied. In particular, given Q the function
v can be chosen as

v(t) =
∫ ∞
t

||Q(s)||ds. (6)

As mentioned in the introduction the drawback of this
definition is that the Lyapunov function is path-dependent
and does not depend on the state of the network, which is the
basic idea of a Lyapunov function for a dynamical system.
We denote by A(Φ) = {x ∈ RK+ : ∃Q(·) ∈ Φ, Q(0) = x}
and define the following candidate V : A(Φ)→ R+ by

V (x) = sup
Q(·)∈Φx

∫ ∞
0

||Q(s)||ds. (7)

In the sequel we assume that A(Φ) = RK+ . The function
V can be interpreted as a measurement of the state x in
the sense that V (x) represents the total possible fluid mass
that the network has to deal with. This raises the question
of the regularity of V . Of course, we aim for the Lyapunov
function continuous dependence on the state. In the frame of
Definition 1 the following can be stated.

Proposition 1: If Φ is a stable closed GFN model, then
the function V is upper semi-continuous.

Proof: Let x ∈ RK+ and (xn)n ⊂ RK+ be a sequence
that converges to x. As Φ is stable the set {V (xn) : n ∈ N}
is bounded. Hence there exists a subsequence (xkl

)l such
that

lim sup
n→∞

V (xn) = lim
l→∞

V (xnl
) = lim

l→∞

∫ ∞
0

||Qnl
(s)||ds

with Qnl
(0) = xnl

. Now we consider the family {Ql(·) : l ∈
N }. Since Φ is stable the family {Ql(·) : l ∈ N } is bounded.
By condition (a) in Definition 1 there is a single Lipschitz
constant for any path Ql(·) of the family {Ql(·) : l ∈ N }
and thus the family is equicontinuous. By the theorem of
Arzela-Ascoli there exists a subsequence which converges
u.o.c. to some Q∗(·) with Q∗(0) = x. Since the model is
closed it follows that Q∗(·) ∈ Φ. Hence by the definition of
V it holds that

lim sup
n→∞

V (xn) = lim
l→∞

∫ ∞
0

||Qnl
(s)||ds =

∫ ∞
0

||Q∗(s)||ds

≤ V (x).

We are interested in the continuity of V . Hence we need
to look whether V is also lower semi-continuous.

Example 1: Let K = 2 and

Φ =
{(

(x1 − t)+

(x2 − t)+

)
,

(
(c− 1

2 t)
+

(c− 1
2 t)

+

)
, x1, x2, c ∈ R+

}
.

It is easy to check that Φ is a closed GFN model. We consider
x0 = (1, 1)T and xn = (1 + 1

n , 1−
1
n )T . It holds that

lim
n→∞

V (xn) = lim
n→∞

∫ ∞
0

(1 +
1
n
− t)+ + (1− 1

n
− t)+dt

= lim
n→∞

1
2

(
(1 +

1
n

)2 + (1− 1
n

)2

)
= 1

< 2 =
∫ 2

0

2(1− 1
2
t)dt = V (x0).

So V defined by (7) with asymptotically stable fixed point
is not lower semi-continuous.

Remark 1: The example shows that in the frame of Defi-
nition 1 our candidate V is not continuous in general.

A further major property of a Lyapunov function V for a
dynamical system is, that V is decreasing along trajectories.
The trajectories in the context of closed GFN models are the
paths. The next example addresses this problem.

Example 2: Let K = 2 and

Φ =
{(

(x1 − 2 t)+

(x2 − 4 t)+

)
,

(
(c− 2 t)+

(c− 2 t)+

)
, x1, x2, c ∈ R+

}
.

It is easy to check that Φ is a closed GFN model. Now
consider the following two paths

Q1(t) =
(

(20− 2 t)+

(22− 4 t)+

)
, Q2(t) =

(
(20− 2 t)+

(20− 2 t)+

)
.

It holds that Q1(1) = Q2(1) = (18, 18)T and further

V (Q1(0)) = 130
1
4
, V (Q1(1)) = 162.

Thus it holds that

V (Q1(1))− V (Q1(0)) = 162− 130
1
4
> 0.

Remark 2: The second example shows that in the frame-
work of Definition 1 there is a path of a stable closed GFN
model on that our candidate is not decreasing although the
closed GFN model is stable.
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III. MAIN RESULTS

In this section we present a way out of the dilemma
by adding two conditions to the closed GFN model and
defining the Lyapunov function in a slightly different way.
The main result is that our definition of a Lyapunov function
and the already introduced candidate V are appropriate to
prove a converse Lyapunov theorem for strict closed GFN
models. The road map is as follows. First we present the
two additional conditions for the closed GFN model. Then
we state our definition for a Lyapunov function. After that
we show that under this conditions our candidate (7) is
continuous. In the sequel we prove the main theorem.

Definition 3: A set Q of functions Q(·) : R+ → RK+ is
said to be a strict closed GFN model, if

(a) it is a closed GFN model
(e) for any Q∗ ∈ Q holds that if Qn(0) → Q∗(0) there

exists a Qn(·) ∈ Q that converges u.o.c. to Q∗(·).
(f) for two GFN paths Q1(·), Q2(·) ∈ Q that coincide for

a time t∗ ∈ R+, the concatenation at time t∗ is also a
path of Q.

Now we define a Lyapunov function that does not depend
on the path of the strict closed GFN model.

Definition 4: Given a strict closed GFN model Q a con-
tinuous function V : A(Q)→ R+ is said to be a Lyapunov
function, if there exist class K functions wi : R+ → R+, i =
1, 2, 3 such that

w1(||x||) ≤ V (x) ≤ w2(||x||) (8)

V (Q(t2))− V (Q(t1)) ≤ −
∫ t2

t1

w3(||Q(s)||) ds (9)

for all 0 ≤ t1 ≤ t2 ∈ R+ and all paths Q(·) ∈ Q.
Next we show that condition (e) is the appropriate con-

dition for continuity of our candidate V . To be precise,
condition (e) closes the gap from upper semi-continuity to
continuity.

Proposition 2: If Q is a stable strict closed GFN model,
then V is continuous.

Proof: We show that V is lower semi-continuous as
the continuity of V follows then together with Theorem 1.
Let x∗ ∈ RK+ and Q∗(·) ∈ Q such that Q∗(0) = x∗. Further
let (xn)n be a sequence that converges to x∗. By condition
(e) in Definition 3 there exists a sequence (Qn(·))n of paths
in Q with Qn(0) = xn that converges u.o.c. to Q∗(·). As
Q is stable and using the same arguments as in the proof of
Theorem 1,

V (x∗) =
∫ ∞

0

||Q∗(s)||ds = lim
n→∞

∫ ∞
0

||Qn(s)||ds

≤ lim inf
n→∞

V (xn).

That is, V is lower semi-continuous.
Now we state the main theorem, its proof is very close to

that in [17].
Theorem 2: A strict closed GFN model Q is stable if and

only if it admits a Lyapunov function. In particular V can

be chosen as

V (x) = sup
Q(·)∈Qx

∫ ∞
0

||Q(s)||ds.

Proof: First we show that the existence of a Lyapunov
function is sufficient for stability. Let V be a Lyapunov
function for Q. From (8) it follows that V (Q(t)) ≥ 0 and
inequality (9) implies that

V (Q(t2))− V (Q(t1)) ≤ 0

for all t1 ≤ t2 ∈ R+. So V (Q(·)) is monotone decreasing
and bounded. In order to show that V (Q(t)) tends to zero
as t goes to infinity assume that there exists a c ∈ R+ with
c > 0 such that

lim
t→∞

V (Q(t)) = c.

Then for all t ≥ 0 it holds that

0 < c ≤ V (Q(t)) ≤ w2(||Q(t)||) (10)

and further 0 < w−1
2 (c) ≤ ||Q(t)||. It also holds that 0 <

w3(w−1
2 (c)) ≤ w3(||Q(t)||). Now observe that from (9) it

follows that

V (Q(t))− V (Q(0)) ≤ −
∫ t

0

w3(||Q(s)||)ds

≤ −
∫ t

0

w3(w−1
2 (c))ds

≤ −w3(w−1
2 (c)) t

and hence limt→∞ V (Q(t)) = −∞, which is a contradiction
to (10). Consequently

lim
t→∞

V (Q(t)) = 0. (11)

By (8) it follows that

lim
t→∞

||Q(t)|| = 0.

Now fix an r ∈ (0, 1) and consider a Q ∈ Q(1). Since Q(·)
tends to zero, there exists an s > 0 such that ||Q(s)|| = r
and ||Q(t)|| > r for all t ∈ [0, s). Observe that from (8) and
(9) it follows that

0 ≤ V (Q(s)) = V (Q(0)) + V (Q(s))− V (Q(0))

≤ w2(1)−
∫ s

0

w3(||Q(t)||) dt ≤ w2(1)−
∫ s

0

w3(r)dt

≤ w2(1)− w3(r) · s

and further

s ≤ w2(1)
w3(r)

=: tr.

This tr satisfies that for all Q ∈ Q(1) it hold that

min{t ≥ 0 : ||Q(t)|| = r} ≤ tr. (12)

Next we prove that for all Q ∈ Q(1) there exists a τ ∈ [0,∞)
such that min{t ≥ 0 : ||Q(t)|| = 0} ≤ τ . So we construct
for any given Q ∈ Q(1) a sequence 0 = τ0 < τ1 < τ2 < ...
such that

||Q(τk)|| = rk for k = 1, 2, ... .

M. Schönlein and F. Wirth • Stability of Fluid Network Models and Lyapunov Functions 

874



In the beginning we use the scale and shift property and (12)
to conclude that there is a t1 ≤ tr such that∣∣∣∣∣∣1

r
Q(r · 0 + t1)

∣∣∣∣∣∣ = 1.

So we choose τ1 = t1. By repeating this, i.e. by choosing
t2 ≤ tr such that∣∣∣∣∣∣∣∣1r

(
1
r
Q(rt2 + t1)

) ∣∣∣∣∣∣∣∣ = 1

and definig τ2 := rt2 + t1 we get ||Q(τ2)|| = r2. Through
successive continuation in this manner we obtain

τk = rk−1tk + rk−2tk−1 + ...+ t1

such that ||Q(τk)|| = rk. The sequence (τk)k is Cauchy, as

τk − τk−1 = rk−1 tk ≤ rk−1 tr for k = 1, 2, ... .

and consequently has the limit τ := limk→∞ τk. For the
limit τ the following is true

||Q(τ)|| = ||Q( lim
k→∞

τk)|| = lim
k→∞

||Q(τk)|| = lim
k→∞

rk = 0

for all Q(·) ∈ Q(1) as (12) holds for all Q(·) ∈ Q(1). Thus
it remains to show that any Q(t) ∈ Q(1) stays zero for all
t ≥ τ . So consider a t ≥ τ . As wi ∈ K for i = 1, 2 and as
V is a Lyapunov function for Q the following holds

0 ≤ w1(||Q(t)||) ≤ V (Q(t)) ≤ V (Q(τ))
≤ w2(||Q(τ)||) = w2(0) = 0.

This shows the stability of the GFN model.
Conversely let Q be stable. Then there is a τ > 0 such

that Q(τ + ·) ≡ 0 for all paths Q(·) ∈ Q(1). We define the
following comparison functions

w1(r) :=
r2

2L
, w2(r) := r2 (1 + Lτ) τ, w3(r) := r

and show that our candidate

V (x) = sup
Q(·)∈Qx

∫ ∞
0

||Q(s)||ds

is a Lyapunov function. AsQ satisfies the Lipschitz condition
(a) it follows that

||Q̃(s)|| ≥ ||Q̃(t)|| − L(s− t) (13)

for all s ≥ t. In particular for t = 0 that is

||Q̃(s)|| ≥ ||Q̃(0)|| − Ls. (14)

Using the last inequality we get the following estimate from
below

V (x) = supeQ(·)∈Qx

∫ ∞
0

||Q̃(s)|| ds ≥ supeQ(·)∈Qx

∫ ||x||
L

0

||Q̃(s)|| ds

≥ supeQ(·)∈Qx

∫ ||x||
L

0

(||x|| − Ls ) ds

= supeQ(·)∈Qx

{
||x|| ||x||

L
− ||x||

2

2L

}
=
||x||2

2L
= w1(||x||).

To obtain an estimate from above consider Q̃(·) ∈ Qx. Note
that by the scale property it follows that 1

||x|| Q̃(||x||s) ∈
Q(1) and further the stability of Q implies that

Q̃(s) = 0 ∀ s ≥ ||x||τ. (15)

The triangle inequality together with the Lipschitz condition
imply that for all s ∈ [0, ||x||τ ] it holds that

||Q̃(s)|| ≤ ||Q̃(0)|| + L||x||τ = ||x|| (1 + Lτ). (16)

With (15) and (16) an estimate from above is derived as
follows

V (x) = supeQ(·)∈Qx

∫ ||x||τ
0

||Q̃(s)|| ds

≤ supeQ(·)∈Qx

∫ ||x||τ
0

||x|| (1 + Lτ) ds

= ||x||2 (1 + Lτ) τ = w2(||x||).

Now consider the decrease condition

V (Q(t2))− V (Q(t1)) =

supeQ(·)∈QQ(t2)

∫ ∞
0

||Q̃(s)|| ds− supeQ(·)∈QQ(t1)

∫ ∞
0

||Q̃(s)|| ds.

From condition (f) it follows that

V (Q(t1)) = supeQ(·)∈QQ(t1)

∫ ∞
0

||Q̃(s)|| ds

≥
∫ t2

t1

||Q(s)|| ds+ supeQ(·)∈QQ(t2)

∫ ∞
0

||Q̃(s)|| ds

=
∫ t2

t1

||Q(s)|| ds+ V (Q(t2)).

and hence

V (Q(t2))− V (Q(t1))

≤ −
∫ t2

t1

||Q(s)|| ds = −
∫ t2

t1

w3(||Q(s)||) ds.

Thus together with Proposition 2 we see that V is a Lyapunov
function.

IV. ELEMENTS FROM CONTROL THEORY AND
DIFFERENTIAL INCLUSIONS

We want to apply the main theorem to fluid network
models that work under a specific discipline. SO we have to
show that the additional conditions (e) and (f) are satisfied
in each case. In order to go for condition (e) we make
use of concepts that are common in control theory and
involve differential inclusions. Clearly a detailed description
of the dynamics of a fluid network depends on the specific
discipline that is used. But one part of the dynamics of fluid
network models that have all service disciplines in common
is the so called flow balance relation

Q(t) = Q(0) + αt− (I − PT )MT (t). (17)
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Here α represents the inflow rate, µ denotes the outflow rate,
M = diag(µ) and P is the transition matrix. The initial
value or level of the fluid network is given by Q(0). A
basic property of the fluid level process Q as well as the
allocation process T (t) is that both processes are Lipschitz
continuous [10] and hence differentiable almost everywhere.
So for almost all t ∈ R+ the flow balance relation (17) can
also be written as

Q̇(t) = α− (I − PT )MṪ (t), Q(0) = x. (18)

Now we consider the derivative of the allocation process
as the control variable, i.e. u(t) = Ṫ (t). Note that u is
measurable. The allocation process is determined through
the service discipline. So each service discipline has a set
of admissible controls U(Q), where u ∈ U(Q) if and only
if u ∈ RK+ satisfies some allocation conditions that are
specific to the discipline. As mentioned in [10] the allocation
process need not be unique and so for every t ∈ R+ there
are different possibilities to choose u(t). But the admissible
control values u depend on the fluid level process Q(t)
through the allocation conditions. Consequently we consider
the set of admissible control values as a set U(Q(t)). Thus
the flow balance relation (18) can also be expressed by a
differential inclusion of the form

Q̇(t) = α− (I − PT )Mu(t) =: f(Q(t), u(t)), Q(0) = x

with u(t) ∈ U(Q(t)). Often U is referred to as the feedback
map. By setting

F (Q) = f(Q,U(Q)) =
⋃

u∈U(Q)

f(Q, u) (19)

we rewrite this as a closed loop differential inclusion

Q̇ ∈ F (Q), Q(0) = x. (20)

In the following we state some results from the theory of
differential inclusions that will be useful to show that specific
fluid networks satisfy the conditions (e) and (f). Let X any
Y be two normed spaces and consider a differential inclusion

ẋ(t) ∈ F (x(t)) (21)

with initial condition x(0) = x0 ∈ X . Let SF (x0) denote
the set of all solutions of (21) starting at x0 ∈ X . Before we
can state the existence theorem we have to define when a
set-valued map is Lipschitz. A set-valued map F : X  Y
is called Lipschitz around x ∈ X if there exist a positive
constant λ and a neighborhood U ⊂ Dom(F ) of x such that

F (x1) ⊂ F (x2) + λ ||x1 − x2||BY

for all x1, x2 ∈ U , where BY = {y ∈ Y : ||y|| ≤ 1}. The
existence theorem is as follows [18, Corollary 5.3.2].

Theorem 3: Assume that F : X  X is Lipschitz on the
interior of its domain. Then for any x0 ∈ Int(Dom(F )) and
v0 ∈ F (x0) there exists a T > 0 and a solution x(·) to (21)
defined on [0, T ] and satisfying x(0) = x0 and ẋ(0) = v0.

The next theorem of Filippov [18, Theorem 5.3.1 and
Corollary 5.3.3] states conditions such that the solution of

the differential inclusion depends Lipschitz continuously on
the initial condition.

Theorem 4: Assume that F : X  X is Lipschitz with
constant λ and has closed values on the interior of its domain.
Let y(·) ∈ SF (y0) be a given absolutely continuous function.
Then

d(y(t),SF (x0)(t)) ≤ ||x0 − y0|| eλt

so that the solution map SF is lower semi-continuous.

V. APPLICATIONS TO SOME FLUID NETWORKS

In this section we show that our main result can be
applied to some special fluid networks. In particular we
show that fluid networks under general work-conserving and
priority disciplines satisfy the additional conditions (e) and
(f) given in Definition 3. The following description of a fluid
network is taken from [17]. A fluid network consists of K
different fluid classes and J stations, where the fluids are
processed. Let K := {1, ...,K} and J := {1, ..., J}. There
is a (possibly not injective) map s that prescribes which
fluid class is processed at which station. Fluid class k is
exclusively processed at station s(k). For every station the set
C(j) := {k ∈ K : s(k) = j} can without loss of generality
assumed to be nonempty. The corresponding J×K matrix C
is called the constituency matrix, where cjk = 1 if s(k) = j
and zero else. Further we introduce two nonnegative vectors
α, µ ∈ RK+ and a K × K substochastic matrix P . Where
αk denotes the exogenous inflow rate of fluid class k and
µk denotes the potential outflow rate of fluid class k. The
matrix P will be referred to as the flow transfer matrix. The
element pkl of P denotes the proportion of the outflow of
class k which turns into fluid class l. So 1−

∑K
l=1 pkl is the

part of the outflow of class k that leaves the network. The
flow transfer matrix is assumed to have spectral radius strictly
less than one, i.e. all fluids eventually leave the network. The
initial fluid level is represented through the K-dimensional
vector Q0. The fluid network is described by (α, µ, P,C)
with initial fluid level Q0. The performance is described by
the K-dimensional fluid level process {Q(t) : t ≥ 0} and
the K-dimensional allocation process {T (t) : t ≥ 0}, where
Qk(t) denotes the amount of class k fluids in the network
at time t and Tk(t) denotes the total amount of time during
the interval [0, t] that station s(k) has devoted to processing
fluid class k. A precise description of the dynamics of a fluid
network depends on the service discipline.

A. Fluid networks under general work-conserving disci-
plines

The dynamics of a fluid network under general work-
conserving service discipline can be summarized as follows

Q(t) = Q0 + α t− (I − PT )MT (t) ≥ 0, (22)
T (0) = 0 and T (·) is nondecreasing, (23)
I(t) = et− C T (t) and I(·) is nondecreasing, (24)

0 =
∫ ∞

0

(C Q(t))T dI(t), (25)
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where M = diag(µ). Equation (25) describes the work-
conserving property of the network and relation (22) is called
the flow balance relation. In general the allocation process is
not unique. Any pair (Q(t), T (t)) that satisfies (22)-(25) is
called fluid solution of the work-conserving fluid network.
The set of all feasible fluid level processes is denoted as

QC = {Q(t) : ∃T (t) : (Q(t), T (t)) is a fluid solution }.

Before we prove a theorem that guarantees the existence of
such a work-conserving allocation process we bring the con-
ditions (23)-(25) into the context of differential inclusions.
That is, Ṫ (t) = u and

u ≥ 0, e− Cu ≥ 0, (CQ(t))T · (e− Cu) = 0. (26)

So the set of admissible controls is

UC(Q) :=
{
u ∈ RK+ : (26) are satisfied

}
.

We consider the following set-valued map

GC(Q) =
⋃

u∈UC(Q)

{
α− (I − PT )Mu

}
(27)

and the corresponding differential inclusion

Q̇ ∈ GC(Q), Q(0) = x. (28)

Using this approach we are able to give an alternate proof
for the Theorem 2.1 in [10]. That is, a fluid network under
general work-conserving service discipline and given initial
level has at least one solution.

Theorem 5: For any fluid network (α, µ, P,C) with initial
level x the set QC is nonempty.

Proof: The set UC(Q) is compact and by condition (26)
the mapping

Q 7→ UC(Q)

is Lipschitz. Hence, G in (28) is Lipschitz and applying
Theorem 3 completes the proof.

In [17] it is shown that QC defines a closed GFN model.
So we only have to prove that the conditions (e) and (f) are
satisfied. The key tool to proving condition (e) is Theorem 4,
which is often called Filippov’s theorem in the literature.

Proposition 3: QC is perfect.
Proof: To show that QC satisfies condition (e) in the

Definition 3 we make use of Filippov’s Theorem. So what
is left to show is that GC has closed valued. This follows
from the fact that UC(Q) is compact.

Proposition 4: QC satisfies the concatenation property.
Proof: Since for every x ∈ RK+ the set of solutions

SGC
(x) is nonempty, it follows immediately that the con-

catenation property is satisfied.
Summarizing we obtain.
Theorem 6: The work-conserving fluid network QC is a

strict closed GFN model.

B. Fluid networks under priority disciplines

The priority service discipline distributes different priori-
ties to the fluid classes that are processed at one location.
This is done via a permutation mapping π : K → K.
To be precise, let s(l) = s(k) for l, k ∈ K then fluids
of class l have higher priority than fluids of class k, if
π(l) < π(k). That is, fluids of class k are not processed
as long as the fluid level of class l is greater than zero. For
each k ∈ K the set of fluid classes that are processed at
the same location s(k) that have higher priority is denoted
by Hk = {l : l ∈ C(s(k)), π(l) ≤ π(k)}. To derive a
description of fluid network under the priority discipline π
we introduce the unused capacity process Y (t). That is Yk(t)
is denotes the cumulative remaining capacity of location
s(k) for processing fluids of classes that have strictly lower
priority than fluids of class k. The dynamics can be described
as follows

Q(t) = Q0 + α t− (I − PT )MT (t) ≥ 0, (29)
T (0) = 0 and T (·) is nondecreasing, (30)

Yk(t) = t−
∑
l∈Hk

Tl(t) and Y (·) is nondecreasing, k ∈ K

(31)

0 =
∫ ∞

0

Qk(t) dYk(t), k ∈ K. (32)

Any pair (Q(t), T (t)) that satisfies (29)-(32) is called fluid
solution of the fluid network under the priority discipline π.
The set of all feasible fluid level processes is denoted as

QP = {Q(t) : ∃T (t) : (Q(t), T (t)) is a fluid solution }.

Again we bring this into the context of differential inclusions.
The constraints for k ∈ K are here

u ≥ 0, 1−
∑
l∈Hk

ul ≥ 0, Qk · (1−
∑
l∈Hk

ul) = 0 (33)

and the set of admissible controls is

UP (Q) :=
{
u ∈ RK+ : (33) are satisfied

}
.

Note that UP (Q) is compact and Q 7→ UP (Q) is Lipschitz.
Thus from Filippov’s Theorem the following can be con-
cluded.

Theorem 7: The set QP is nonempty and perfect.
In order to prove that QP is a strict closed GFN model

it remains to show that the concatenation property holds, as
the validity of the conditions (a)-(d) is shown in [17, Lemma
3.5]. Some straightforward arguments lead to the following
result.

Proposition 5: QP satisfies the concatenation property.
Thus the following holds true.
Theorem 8: The fluid network under priority discipline

QP is a strict closed GFN model.

VI. THE LINEAR SKOROKHOD PROBLEM

Another possible way to approximate a multiclass queue-
ing network is to consider the so called diffusion limit.
This limit can be regarded as a semi-martingale reflected

Proceedings of the 19th International Symposium on Mathematical Theory of Networks and Systems – MTNS 2010 •  5–9 July, 2010 • Budapest, Hungary

877



Brownian motion (SRBM). Similar to the fluid limit, a
sufficient condition for the stability of the SRBM is the
stability of the linear Skorokhod problem (LSP) [19]. The
following description is taken from [20] and [17]. Let R
be a J × J matrix, θ ∈ RJ and X0 ∈ RJ+. The pair
(X,Y ) ∈ CJ(R+) is said to solve the LSP (θ,R) with initial
state X0, if they jointly satisfy

X(t) = X0 + θt+RY (t) ≥ 0, (34)
Y (0) = 0 and Y (·) is nondecreasing, (35)

0 =
∫ ∞

0

Xj(t) dYj(t), j = 1, ..., J. (36)

The first question that arises is, which conditions guarantee
the existence of a solution of the LSP(θ,R). In oder to state
such a condition a J×J matrix R is said to be an S-matrix,
if there exists an x ≥ 0 such that Rx > 0, and is said
to be completely-S if all of its principal submatrices are
S-matrices. The following theorem from [21, Theorem 1]
contains the desired statement.

Theorem 9: The LSP(θ,R) has a solution (X,Y ) if and
only if the matrix R is completely-S.

Analogous to the previous subsections we define

QLSP = {X(t) : ∃Y (t) : (X(t), Y (t)) satisfy (34)− (36)}.

Note that Theorem 9 states only the existence of a solution.
In general the solution is not unique, for a counterexample
see e.g. [21].

Definition 5: A LSP(θ,R) is said to be stable if, for any
number ε > 0 and any X ∈ QLSP with ||X0|| = 1, there
exists a τ ≥ 0 such that ||X(τ + ·)|| < ε.

To ensure that the setQLSP is nonempty, Theorem 9 states
that R has to be completely-S. In [17, Theorem 5.2] it is
shown that in this case Definition 5 is equivalent to Definition
2. To derive a necessary and sufficient condition for stability
of the linear Skorokhod problem we have to show that QLSP
is a strict closed GFN model. The next lemma from [21,
Lemma 1] or [17, Lemma 5.1] contains that QLSP satisfies
the Lipschitz condition.

Lemma 1: If the matrix R is completely-S, then there ex-
ists a constant M such that any solution (X,Y ) of LSP(θ,R)
is Lipschitz continuous with constant M .

The fact that QLSP is closed follows from Proposition
1 in [21]. Furthermore that the scale, shift property hold is
stated in [22, Section 2]. A straightforward argument shows
the validity of the concatenation property.

Proposition 6: QLSP satisfies the concatenation condition
(f).

It remains to show that QLSP is perfect. Again we bring
the linear Skorokhod problem into the context of differential
inclusions. That is, let Ẏ (t) = u and

G(X) =
⋃

u∈ULSP (X)

{θ +Ru} , (37)

where the set of admissible controls ULSP is determined
through the conditions

u ≥ 0, Xj uj = 0, ∀ t ≥ 0, j = 1, ..., J. (38)

While it is clear that the set described by (38) is unbounded
on the boundary of the positive orthant, Lemma 1 may be
used to see that the effective set of controls is bounded. The
corresponding differential inclusion is of the form

Ẋ(t) ∈ G(X(t)), X(0) = X0. (39)

Using this formulation it is again possible but more involved
to obtain the following result, which we do not prove here
for reasons of space.

Theorem 10: QLSP is a strict closed GFN model.
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