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Abstract— For two classes of monotone maps on the
n-dimensional positive orthant we show that for a discrete
dynamical system induced by a map the origin of Rn

+ is
globally asymptotically stable, if and only if the map Γ is
such that for any point in s ∈ Rn

+, s 6= 0, the image-vector
Γ(s) is such that at least one component is strictly less than
the corresponding component of s.

One class is the set of n × n matrices of class K∞

functions; these induce monotone operators on Rn

+. Maps
of the other class satisfy some geometric property for an
invariant set.

Keywords— monotone maps, spectral radius, one compo-
nent decrease condition, global asymptotic stability

I. INTRODUCTION

We consider monotone (that is order preserving) maps
which map the nonnegative orthant Rn

+ of the n-
dimensional Euclidean space Rn into itself. Such a map
Γ : Rn

+ → Rn
+ gives rise to an associated dynamical system

defined by

s(k + 1) = Γ(s(k)), for k = 1, 2, . . . (1)

and s(0) = s0 ∈ Rn
+. We endow Rn

+ with the standard
partial order ≥ defined by

x ≥ y ⇐⇒ x − y ∈ Rn
+. (2)

If Γ is linear, the stability condition that the spectral radius
of Γ is less than 1 is equivalent to the operator inequality

there exists no s 6= 0, such that Γ(s) ≥ (s); (3)

note that the latter condition is also meaningful for nonlin-
ear Γ. We call monotone operators Γ satisfying (3) nowhere
increasing (on Rn

+).
The concern of this paper are the relations between

property (3) and global asymptotic stability of (1); for finite
dimensional linear Γ these are of course equivalent.

Monotone maps satisfying (3) arise in the context of
large-scale interconnections of input-to-state stable (ISS)
subsystems. Here the map Γ arises as a matrix whose en-
tries are strictly increasing functions (class K∞-functions),
which describe the interconnection gains between ISS
subsystems. Recently the authors proved in [4] that if there
exists a ‘robustness’ operator D, such D ◦ Γ is nowhere
increasing, then the large-scale interconnection system is
also ISS.
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The first small-gain theorem for the feedback intercon-
nection of two ISS systems was given by Jiang, Teel and
Praly in [8]. Since then many more ISS small-gain type
theorems followed, for references and discussion see [4].

Monotone maps induced by matrices of class K func-
tions and their dynamics are of course a very special
case. The theory of more general monotone maps and
induced dynamics is still an active field of research, see for
example [11] or [12]. In [6] Hirsch and Smith give a state
of the art overview on discrete-time monotone dynamics. A
work related to this article is [1], where Angeli and Sontag
present results on monotone systems that were inspired
by questions in molecular biology modeling. In [2] they
introduce signed graphs for monotone maps, which in the
case of matrices with entries in (K∞∪{0}) agree with the
graphs that we associate to such maps.

We are going to investigate the relations between prop-
erty (3) and global asymptotic stability of the origin (0-
GAS) of (1) for general monotone maps Γ : Rn

+ → Rn
+.

Using only monotonicity we establish (3) as a consequence
of 0-GAS of (1) in Proposition 5.2, while the converse
implication is true for matrices with entries in (K∞∪{0})
if we add a ‘robustness term’ in (3), see Theorem 7.10.
In two dimensions we can swap the matrix structure for
geometrical properties of an invariant set to obtain a similar
result (Proposition 6.3).

A rigorous problem statement will be given in Section II.
Notational foundations and some remarks on class K∞-
functions follow in Sections III and IV. Results requiring
only monotonicity, continuity, and/or condition (3) are
stated in Section V, while Section VI deals with the two
dimensional case. The theory for matrices with entries
in (K∞ ∪ {0}) is presented in Section VII. In this case
the special structure allows for stronger statements. Con-
sequences for large-scale ‘small-gain’ interconnections of
ISS systems are given in SectionVIII.

II. PROBLEM STATEMENT

For a monotone map Γ : Rn
+ → Rn

+, such that Γ(0) = 0,
we are interested in the relations between the following two
properties:

1) Γ � id, that is, by definition for all x ∈ Rn
+, x 6= 0,

we have Γ(x) � x; and
2) the discrete system Σ defined by

Σ : x(0) ∈ Rn
+, x(k +1) := Γ(x(k)), k ∈ N0, (4)

is globally asymptotically stable in 0 (0-GAS), i.e.,



a) (Stability) For every ε > 0 there
exists a δ > 0, such that whenever
‖x(0)‖ < δ, then ‖x(k)‖ < ε for all
k ∈ N.

b) (Attractivity) ∀x ∈ Rn
+ : Γk(x) → 0 as k →

∞.
Note that so far we did not make any continuity assump-
tions whatsoever. We will provide the following answers:
Proposition 5.2 states that 2b) implies 1. Lemma 6.3 gives
the converse implication and even stability for n = 2
for continuous Γ, if in addition for a diagonal robustness
operator D we have D ◦ Γ � id and some constraints
on the geometry of the set ΨΓ, which is to be defined in
equation (6), are satisfied. If Γ is a matrix with entries in
(K∞ ∪ {0}) the same is proved without the restriction on
ΨΓ in Theorem 7.10. Finally, in the context of large-scale
networks of ISS systems this gives a sufficient condition
for the input-to-state stability (ISS) of the interconnected
system, see Theorem 8.1.

III. NOTATION

A. Numbers, ordering

By N we denote the positive integers, by N0 the union
N∪{0}, by R the real numbers, by R+ the nonnegative real
numbers, and by Rn

+ = R+ × . . . × R+ the nonnegative
orthant of Rn. On the latter we have a partial ordering,
which is induced by the componentwise ordering on R:
For x, y ∈ Rn the relation x ≤ y (x < y) is defined
by xi ≤ yi (xi < yi) for all i = 1, . . . , n. While the
definition of ≤ agrees with the one in (2), it is important
to note that the meaning of x < y does not coincide with
the usual meaning, x ≥ y and x 6= y. Consequently, the
notation x � y means that there exists an index i, such
that xi < yi. For maps A,B : Rn

+ → Rn
+ we define

A � B

as a point wise relation with the exception of the origin;
that is, there exists no x ∈ Rn

+, x 6= 0, such that A(x) ≥
B(x). The map A : Rn

+ → Rn
+ is monotone, if for x, y ∈

Rn
+ such that x ≤ y we have A(x) ≤ A(y). A monotone

map A : Rn
+ → Rn

+ is nowhere increasing if A � id.

B. Comparison functions

Recall that a function ρ : R+ → R+ is of class K, or
ρ ∈ K, if ρ(0) = 0, ρ is strictly increasing and continuous.
If, in addition, ρ is unbounded, then we say ρ is of class
K∞ (or, ρ ∈ K∞). Sometimes we enrich these spaces
by the function 0 : R+ → R+ mapping everything to 0,
which we denote by K ∪ {0} or K∞ ∪ {0}. A function
β : R2

+ → R+ is said to be of class KL if it is of class
K in the first argument and, whenever the first argument
is fixed, it is decreasing in the second argument with limit
zero.

C. Matrices of K-functions, ordering for monotone maps
By (K ∪ {0})n×n we denote the set of n × n-matrices

with elements in K∪{0}. Given a matrix Γ ∈ (K∪{0})n×n

and a vector s ∈ Rn
+ we define the vector Γ(s) ∈ Rn

+ by

Γ(s)i :=

n
∑

j=1

γij(sj) for i = 1, . . . , n.

Note, that if all γij are linear, then this definition is
compatible with the usual matrix vector multiplication
from linear algebra.

D. Projections
On Rn

+ for any index set ∅ 6= I ⊂ {1, . . . , n} we denote
by PI : Rn

+ → R#I
+ the projection of the coordinates in

Rn
+ corresponding to the indices in I onto R#I .
The corresponding injection is SI : R#I

+ → Rn
+

mapping x 7→ (x1ei1 + . . . + x#Iei#I
), where we write

I = {i1, . . . , i#I} and denote by (ek)k=1,...,n the standard
basis of Rn

+.
For any index set ∅ 6= I ⊂ {1, . . . , n} and vector x ∈

Rn
+ denote by x|I the vector in Rn

+ with elements

(x|I)i =

{

xi if i ∈ I and
0 otherwise.

E. Graphs, adjacency matrix
With an n × n matrix with entries in (K∞ ∪ {0}) we

associate a (directed) graph G = (V,E) with vertices
V = {1, . . . , n} and edges E ⊂ V × V , which consists
of all ordered pairs (i, j) ∈ V × V such that γij 6≡ 0.
The adjacency matrix of a graph G = (V,E) with V =
{1, . . . , n} and E ⊂ V ×V is the matrix AG := (aij) with

aij =

{

1 if (i, j) ∈ E and
0 else.

Given a ρ ∈ K∞, we define a matrix D := diagn(id +
ρ) := (δij · (id +ρ))n×n, where δij denotes the Kronecker
symbol,

δij =

{

1 if i = j

0 else.

A nonnegative n × n matrix A is irreducible, if for every
i, j ∈ {1, . . . , n} there is a k ∈ N such that the (i, j)-th
entry of Ak is positive, which is denoted by a

(k)
ij > 0. This

can be stated equivalently as that the graph of A is strongly
connected, i.e., from any vertex there is a path to any other
vertex. If the number k can be chosen independently of
(i, j), then A is primitive. If A is not irreducible, then it
is reducible.

In Section VII we will need the graph concept also for
powers of Γ. To this end let Γ ∈ (K∞ ∪ {0})n×n and
consider Γk : Rn

+ → Rn
+ for some k ≥ 1. Clearly, the map

Γk is monotone, continuous and satisfies Γk(0) = 0. With



Γk we associate the graph G = G(Γk) = (V,E), with
vertices V = {1, . . . , n} and edges

E =
{

(i, j) ∈ V × V : ∀x ∈ Rn
+ :

t 7→ Pj(Γ(x + t · ei)),

t ∈ R+ is unbounded
}

=
{

(i, j) ∈ V × V : t 7→ Pj(Γ(t · ei)),

t ∈ R+, is of class K∞

}

.

For notational simplicity we just say that a map Γ has
some of the properties as (ir-)reducibility/primitivity, if the
adjacency matrix AG of the graph G = G(Γ) does have
this property. In the sequel we sometimes refer to AGk as
the adjacency matrix of the graph of Γk.

IV. SOME REMARKS ON K AND K∞ FUNCTIONS

In [4], as well as in the following sections, the notion
D ◦ Γ is used, D being a diagonal matrix with entries in
K∞, Γ a monotone map. Proposition 4.3 states equivalent
formulations of this notion that will be useful in the proof
of Lemma 6.1, but may be of independent interest. We
begin with two technical observations.

Lemma 4.1: For any ρ ∈ K∞, there exist α1, α2 ∈ K∞,
such that

(ρ + id) = (α1 + id) ◦ (α2 + id).

Proof: Choose, e.g., α2 = 1
2ρ and α1 = 1

2ρ ◦ ( 1
2ρ +

id)−1. Then

(α1 + id) ◦ (α2 + id) = α1(α2 + id) + α2 + id =

1

2
ρ ◦ (

1

2
ρ + id)−1 ◦ (

1

2
ρ + id) +

1

2
ρ + id =

(
1

2
ρ ◦ id +

1

2
ρ + id) = ρ + id.

This immediately extends to diagonal operators.
Lemma 4.2: For every D = diagn(id + ρ), ρ ∈ K∞

there exist D̃ = diagn(id + α1) and D̂ = diagn(id +
α2), αi ∈ K∞, i = 1, 2, such that

D = D̃ ◦ D̂.

Note, as a consequence, for D as in Lemma 4.2, there
exists a D̄ = diagn(id + ρ̄), such that D ≥ D̄ ◦ D̄. This
class K∞ function is defined by ρ̄(t) = min{ρ1(t), ρ2(t)}
for t ≥ 0. So in Proposition 4.3 without loss of generality
we may even assume that D1 = D2 (using monotonicity
of Γ):

Proposition 4.3: For Γ ∈ (K ∪ {0})n×n the following
are equivalent:

(i) ∃ρ ∈ K∞, D = diagn(id + ρ) : Γ ◦ D � id,
(ii) ∃ρ ∈ K∞, D = diagn(id + ρ) : D ◦ Γ � id,

(iii) ∃ρ1, ρ2 ∈ K∞, D1 = diagn(id + ρ1),
D2 = diagn(id + ρ2) : D1 ◦ Γ ◦ D2 � id.

The easy equivalence transformations are omitted.

V. EXPLOITING MONOTONICITY

In this section we investigate the problem stated in
Section II for maps Γ that are only monotone. For some
results we also need continuity of Γ. A first general result
is Proposition 5.2

Lemma 5.1: Let Γ : Rn
+ → Rn

+ be monotone, Γ(0) = 0.
Assume Γ � id. Then for any index set I such that 0 6=
I ⊂ {1, . . . , n}, we have

PI ◦ Γ ◦ SI � id
R

#I

+

.

Proof: The easy proof is left to the reader.
One of the highlights of this section, though not difficult to
prove, is the following statement, that terms of the problem
of Section II for general Γ already property 2b implies
property 1:

Proposition 5.2: Let Γ : Rn
+ → Rn

+ be monotone,
Γ(0) = 0. Then attractivity of x∗ = 0 for the associated
discrete dynamical system implies Γ � id.

Proof: We argue indirectly: Suppose there exists an
x ∈ Rn

+, x 6= 0 such that Γ(x) ≥ x. By monotonicity of
Γ we have Γ2(x) ≥ Γ(x)(≥ x) and inductively Γk(x) ≥
x 6= 0. Hence Γk(x) 6→ 0 as k → ∞, contradicting 2b,
i.e., limk→∞ Γk(x) = 0.

The following result will prove as powerful tool in the
indirect proofs of several results to follow.

Lemma 5.3: Let Γ : Rn
+ → Rn

+ be monotone, Γ(0) = 0.
Then Γ � id implies Γk � id for all k ∈ N.

Proof: We argue indirectly: Suppose there exists an
x ∈ Rn

+, x 6= 0 and a k > 0, such that Γk(x) ≥ x. Define
z := maxl=0,...,k−1 Γl(x). Since the case l = 0 is included
we have z 6= 0 and by monotonicity z ≥ 0. We obtain

Γ(z) ≥ max
l=1,...,k

Γl(x) = max
l=0,...,k

Γl(x)

≥ max
l=0,...,k−1

Γl(x) = z,

which in turn contradicts Γ � id. Hence the lemma is
proved.

If in addition Γ is continuous then already boundedness
of a trajectory of system (1) implies that this trajectory
converges to zero; this fact will be used frequently in the
following.

Lemma 5.4: Let Γ : Rn
+ → Rn

+ be monotone and con-
tinuous, Γ(0) = 0. For fixed x ∈ Rn

+ let {Γk(x)}k=0,1,2,...

be bounded and let Γ � id. Then Γk(x) → 0 as k → ∞.
Proof: Consider the ω-limit set of x

ω(x) := {y : ∃ subsequence {kj}j=1,2,...

s.t. Γkj (x) → y as j → ∞}.

Since any bounded sequence in Rn contains a convergent
subsequence ω(x) is not empty.

Note that by continuity of Γ the set ω(x) is invariant
under Γ: For any y ∈ ω(x) the image Γ(y) is also in ω(x)
and there exists a preimage z ∈ ω(x) such that Γ(z) = y.

We define z := supω(x) which is finite. For every y ∈
ω(x) we have z ≥ y and hence Γ(z) ≥ Γ(y). By invariance



this yields Γ(z) ≥ sup{Γ(y) : y ∈ ω(x)} = z. But this
contradicts Γ � id if z 6= 0. Hence ω(x) = {0}.

In the following we will occasionally make use of
properties of the sets defined below. Suppose an operator
Γ : Rn

+ → Rn
+ is given. Then define

ΨΓ
i := {s ∈ Rn

+ : (Γ(s))i ≤ si} (5)

ΨΓ :=

n
⋂

i=1

ΨΓ
i = {s ∈ Rn

+ : Γ(s) ≤ s} (6)

ΩΓ
i := {s ∈ Rn

+ : (Γ(s))i < si} (7)

ΩΓ :=

n
⋂

i=1

ΩΓ
i = {s ∈ Rn

+ : Γ(s) < s}. (8)

If there is no ambiguity regarding the operator Γ, then
we will omit the north-east index Γ. Obviously we have
Ωi ⊂ Ψi, i = 1, . . . , n.

Lemma 5.5: Let Γ : Rn
+ → Rn

+ be monotone and
continuous, Γ(0) = 0. Then the following are equivalent:

(i) Γ � id
(ii)

⋃n

i=1 Ωi = Rn
+ \ {0}.

Proof: This is easily seen, so the proof is left to the
reader.

The next result has interesting consequences: Under
mild assumptions there are points x ∈ Rn

+ arbitrarily far
away from the origin, such that for every initial value
s0 ∈ Rn

+ with s0 ≥ x for system (1) the corresponding
trajectory is attracted to 0.

Proposition 5.6: Let Γ : Rn
+ → Rn

+ be monotone and
continuous, Γ(0) = 0. Then Γ � id implies Ω ∩ Sr 6= ∅
for all r > 0, where Sr denotes the sphere around the
origin in Rn

+ of radius r > 0 with respect to the 1-norm,
Sr = {s ∈ Rn

+ :
∑n

i=1 si = r}.
For the proof of this proposition we need a famous

result, that we state here for the convenience of the reader:
Theorem 5.7 (Knaster-Kuratowski-Mazurkiewicz, 1929):

Let ∆n denote unit n-simplex, and for a face σ of ∆n let
σ(0) denote the set of vertices of σ.

If a family {Ai|i ∈ ∆
(0)
n } of subsets of ∆n is such that

all the sets are closed or all are open, and each face σ of ∆n

is contained in the corresponding union
⋃

{Ai|i ∈ σ(0)},
then there is a point common to all the sets.

Proof: The original proof for closed sets was given
in [9], while the formulation above is taken from [7] and
was proved in [10].

Proof: [Proof of Proposition 5.6] Note that Sr

for r > 0 is a simplex with vertices r · ei, i =
1, . . . , n. Each (nonempty) face spanned by r · ei, i ∈
I ⊂ {1, . . . , n}, fulfills the assumptions of the Knaster-
Kuratowski-Mazurkewicz theorem, i.e., it is contained in
the union

⋃

I(Ωi ∩ Sr). Then the KKM-theorem implies
that

⋂n

1 (Ωi ∩ Sr) 6= ∅.
Lemma 5.8: Let Γ : Rn

+ → Rn
+ be monotone, Γ(0) = 0,

Γ � id. Then each trajectory of Σ given by (4) starting in
Ψ is bounded.

Proof: This follows easily by monotonicity of Γ,
since x0 ∈ Ψ implies Γ(x0) ≤ x0 and iterated application

of Γ gives

0 ≤ x(k) = Γk(x0) ≤ Γk−1(x0) ≤ . . . ≤ Γ(x0) ≤ x0

for all k ≥ 1.
As a consequence we have the following intermediate

result, that is also used in the companion paper [5].
Proposition 5.9: Let Γ : Rn

+ → Rn
+ be monotone and

continuous, Γ(0) = 0, Γ � id. Then every trajectory of
system (1) starting in ΨΓ is attracted to 0.

Proof: This follows from Lemma 5.8 and Lemma 5.4.

So far we only considered attractivity of the origin of
Rn

+, but neglected stability. As it turns out, the latter is a
consequence of the first:

Lemma 5.10: Let Γ : Rn
+ → Rn

+ be monotone and
continuous, Γ(0) = 0 and Γ � id. If every trajectory of
system (4) is attracted to the origin, then the origin is also
stable for system (4).

Proof: By Proposition 5.6 and given ε > 0 we may
choose a y ∈

⋂n

i=1 Ωi∩Sε, where Sε denotes the sphere of
radius ε in Rn

+ with respect to the 1-norm. Define δ > 0,
δ ∈ R, by

δ := sup{d ∈ R, d > 0 : x < y ∀x ∈ Bd(0) ∩ Rn
+},

where Bd(0) denotes the open ball of radius d with respect
to the 1-norm around the origin. Clearly for |x| < δ we
have x < y. By the choice of y we have Γ(y) < y, and
hence y > Γ(y) ≥ Γ2(y) ≥ . . . The same applies for
|x| < δ, hence |Γk(x)| < ε, for all k ≥ 0, which proves
stability.

As a consequence of Proposition 5.9 we obtain:
Corollary 5.11: Let Γ : Rn

+ → Rn
+ be monotone and

continuous, Γ(0) = 0, Γ � id. If for a initial value s0 ∈ Rn
0

of system (1) there exists a k ≥ 0 and some y ∈ Ψ, such
that s(k) ≤ y, then the corresponding trajectory converges
to 0.

Another easy but important consequence is the next
statement, that relies on the two preceding results: If the
set Ψ is unbounded in every component, then (1) is 0-GAS.

Proposition 5.12: Let Γ : Rn
+ → Rn

+ be monotone and
continuous, Γ(0) = 0, Γ � id. If for every x ∈ Rn

+ there
exists a y ∈ Ψ, such that y ≥ x, then the origin of Rn

+ is
GAS for system (1).

Proof: For every initial value s0 of (1), there exists
a y ∈ Ψ such that y ≥ s0. By monotonicity of Γ we have
Γk(s0) ≤ Γk(y) for all k ≥ 0. The remainder follows by
application of Proposition 5.9 and Lemma 5.10.

For completeness, we state the by now obvious result:
If Γ is bounded, then we immediately get 0-GAS of (1).

Lemma 5.13: Let Γ : Rn
+ → Rn

+ be monotone, contin-
uous, and bounded, such that Γ � id. Then system (1) is
0-GAS.

Proof: Note that Γ(0) = 0 is a consequence of Γ � id
and continuity. Now apply Lemma 5.4 and Lemma 5.10.



VI. TWO DIMENSIONAL CASE

For Γ a n× n matrix with entries in (K∞ ∪ {0}) it has
been shown in [4] that

D ◦ Γ � id for some D = diagn(id + ρ), (9)

where ρ ∈ K∞, is sufficient to deduce that (1) is 0-GAS.
In the case n = 2 we provide a dichotomy for more

general Γ, such that if (9) holds, then for a subsequence
at least one component of each trajectory of (1) converges
to 0:

Lemma 6.1: Let Γ : R2
+ → R2

+ be monotone and
continuous, Γ(0) = 0. Suppose there exists an operator
D : R2

+ → R2
+, D = diag2(id + ρ), ρ ∈ K∞, such that

D ◦ Γ � id. Suppose further, that for some x0 ∈ R2
+ the

orbit O(x0) = {Γk(x)}k=0,1,2,... is unbounded. Then there
exists a subsequence {kj}j∈N0

such that as j → ∞ exactly
one of the following holds:

(i) (Γkj (x0))1 ↗ ∞ and (Γkj (x0))2 ↘ 0,
(ii) (Γkj (x0))1 ↘ 0 and (Γkj (x0))2 ↗ ∞.

Proof: First note, that by assumption and Lemma 4.2
there exist operators Di = diag2(id + ρi), ρi ∈ K∞, i =
1, 2, such that D1◦D2 = D and therefore D1◦Γ◦D2 � id.
By Lemma 5.3 we even have D1 ◦ ΓL ◦ D2 � id for all
L ≥ 1.

Since O(x0) is unbounded, necessarily one compo-
nent must be unbounded, and without loss of general-
ity that is the first component. So we have to show
that (Γkj (x0))2 ↘ 0 as j → ∞.

We may pick a subsequence {kj}
∞
j=0 such that the first

component of

(x1(kj), x2(kj))
T := x(kj) := Γkj (x0)

is strictly monotone and unbounded. The sequence x2(kj)
must be strictly decreasing, since otherwise we would have
x(kj+1) ≥ x(kj), but we know x(kj+1) � x(kj).

It remains to prove that x2(kj) decreases to zero. So
suppose there exists a constant C > 0 such that x2(kj) ↘
C. Then for ε ∈]0, ρ1(C)[ there exist j′ ∈ N and ε′ < ε
such that

x(kj′) =

[

x1(kj′)
C + ε′

]

> 0.

Now for l ≥ 1 we have

x(kj′+l) = ΓL(x(kj′)) for some L = L(l)

=

[

x1(kj′+l)
C + ε′′

]

for some ε′′ = ε′′(l)

≤ ΓL(D2(x(kj′)))

≤ D1 ◦ ΓL ◦ D2(x(kj′)),

where ε′′ < ε′. The second component of the last line can
be estimated

[D1 ◦ ΓL ◦ D2(x(kj′))]2 ≥ (id + ρ1)(C + ε′′)

> C + ρ1(C) > C + ε > x2(kj′)

and for the first component we find

[D1 ◦ ΓL ◦ D2(x(kj′))]1 > x1(kj′+l) > x1(kj′).

Together this gives a point x(kj′) > 0 such that

D1 ◦ ΓL ◦ D2(x(kj′)) ≥ x(kj′)

in contradiction to D1 ◦ ΓL ◦ D2 � id. Hence we must
have C = 0. This proves the lemma.

In the following example all assumptions of Lemma 6.1
are satisfied, but nonetheless only the second component of
trajectories with certain initial values converge to 0, while
the first component diverges.

Example 6.2: Fix some real constants λ ∈]0, 1[ and µ ≥
0. Let Γ : R2

+ → R2
+ be given by

Γ

([

s1

s2

])

=

[

λs1 + s2
1s2 + µs2

λs2

]

for all s = (s1, s2)
T ∈∈ R2

+.
The map Γ fulfills Γ(0) = 0, is continuous, monotone,

and for D = (1 + α)idR2
+

, where 0 < α < 1/λ − 1, it
satisfies D ◦ Γ � id, as can easily be seen. (Just consider
the cases (s1 = 0, s2 > 0) and s2 = 0 separately.) If s0 =
(s0

1, s
0
2)

T > 0 is such that s0
1 > 1/(λs0

2), then the trajectory
of (4) starting in s0 is unbounded in the first component:
The condition s1(k) > 1/(λs2(k)) with s(k) > 0 implies
s1(k+1) = s1(k)(λ+s1(k)s2(k)+µs2(k)) > s1(k)/λ >
1/(λ2s2(k)) = 1/(λs2(k + 1)) and clearly s(k + 1) > 0.
By induction we obtain a trajectory that converges to 0
in the second component and diverges in the first one.
Hence the monotone system induced by Γ is not 0-GAS.
Geometrically we have

Ω1 = {s ∈ R2
+ : λs1 + s2

1s2 + µs2 < s1}

=

{

s ∈ R2
+ : s1 > 0, s2 <

(1 − λ)s1

s2
1 + µ

}

Ω2 = {s ∈ R2
+ : λs2 < s2} = {s ∈ R2

+ : s2 6= 0}.

The picture in Figure 1 is drawn for λ = 1/2 and µ =
1/16.
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0.0
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4.0

Ψ

s1 > 1
λs2

Fig. 1. Attracting and repelling sets in Example 6.2

In the next result the assumptions on LL and UR
(acronyms of lower-left and upper-right) roughly state that
the set Ψ has eventually to stay away from the coordinate
axes.



Proposition 6.3: Let Γ : R2
+ → R2

+ be monotone and
continuous, Γ(0) = 0. Suppose there exists an operator
D : R2

+ → R2
+, D = diag2(id + ρ), ρ ∈ K∞, such that

D◦Γ � id. Suppose that the set ΨΓ satisfies the conditions
(i) LL2(r) := inf{s2 : (s1, s2)

T ∈ ΨΓ ∩
Sr for some s1 > 0} is nondecreasing in r > 0
and there exists an R1 > 0, such that LL2(R1) > 0.

(ii) UR1(r) := inf{s1 : (s1, s2)
T ∈ ΨΓ ∩

Sr for some s2 > 0} is nondecreasing in r > 0 and
there exists an R2 > 0, such that UR1(R2) > 0.

Then system (4) is 0-GAS.
Proof: By our assumptions, there exists R =

max{R1, R2} such that ε := min{LL2(R), UR1(R)} >
0.

For each initial value x0 of (4) by Lemma 6.1 we find
an index k such that one component of x(k) is less that
ε while the other is greater than R. So without loss of
generality assume x1(k) > R and x2(k) < ε.

Hence we find a point y ≥ x(k), such that y ∈ ΨΓ. By
Corollary 5.11 the proof is complete.

VII. EXPLOITING THE GRAPH STRUCTURE OF
MATRICES WITH ENTRIES IN (K ∪ {0})

This section is devoted to the special case that Γ is a
matrix with entries in (K∪{0}). Of course, if every entry
of Γ is bounded, then by Lemma 5.13 it follows that (4)
is 0-GAS.

So here we consider Γ ∈ (K∞ ∪ {0})n×n, which will
lead to the satisfying result that if Γ is irreducible, then Γ
is nowhere increasing if and only if system (1) is 0-GAS
(Theorem 7.7).

If Γ is reducible we reformulate the problem in terms of
a diagonal robustness operator D. There exists a diagonal
robustness operator D such that D◦Γ is nowhere increasing
if and only if there exists a diagonal robustness operator D̃
such that D̃ ◦ Γ defines a 0-GAS system (Theorem 7.10).

In later proofs in this section we will rely on the
following two facts:

Lemma 7.1: Let Γ ∈ (K∞ ∪ {0})n×n. Let AΓk be the
adjacency matrix of Γk for k ∈ N. Then

(Ak
Γ)ij 6= 0 ⇐⇒ (AΓk)ij 6= 0.

Lemma 7.2: Let Γ ∈ (K∞ ∪ {0})n×n. Let αi ∈ K∞

for i = 1, . . . , n, and define D = diagn(α1, . . . , αn). Let
P ∈ {0, 1}n×n be a permutation matrix and let T = P ·
D ∈ (K∞ ∪ {0})n×n. Then the graphs of Γ, D ◦ Γ, and
Γ ◦D coincide and the graph of T−1 ◦ Γ ◦ T is the graph
of the former maps with renumbered vertices.

The proofs are not difficult (just write down the respec-
tive maps explicitly) and left to the reader.

A. The irreducible case
Lemma 7.3: Let Γ ∈ (K∞ ∪ {0})n×n be primitive and

Γ � id. Then for any x ∈ Rn
+ the sequence {Γk(x)}k∈N

is bounded.

Proof: Suppose there exists an x ∈ Rn
+ such that

lim supk→∞ ‖Γk(x)‖ = ∞ and Γ � id. Let {ei}i=1,...,n

denote the standard basis of Rn. Since Γ is primitive
there is a k0 ∈ N such that the graph G(Γk0) is fully
connected (i.e., any (i, j) ∈ E(Γk0) for i, j = 1, . . . , n),
see Lemma 7.1. Hence there exists a T ∈ R, T > 0, such
that for all t ∈ R, t > T , and some fixed i ∈ N we have
Γk0(t · ei) > x (recall, this means Pj(Γ

k0(t · ei)) > xj).
Since lim sup

k→∞

‖Γk(x)‖ = ∞ there exists a k1 ∈ N and
index i0 such that

Pi0(Γ
k1(x)) > T.

By monotonicity of Γ we have

Γk0 ◦ Γk1(x) ≥ max
i∈N

Γk0(Pi(Γ
k1(x)) · ei)

≥ Γk0(Pi0(Γ
k1(x)) · ei0) ≥ Γk0(T · ei0) ≥ x.

This contradicts Γk � id for all k ≥ 1 which is asserted
by Lemma 5.3. The proof is complete.

Remark 7.4 (coordinate change): By a change of coor-
dinates, using a permutation matrix P ∈ {0, 1}n×n, it is
possible to rearrange the adjacency matrix A of Γ. There
are two main cases:

Either A is irreducible, or it is not. In the latter case, A
is similar to an upper triangular block matrix of the form

PAPT = Ã =











A11 . . . . . . A1l

0 A22 . . . A2l

...
. . . . . .

...
0 . . . 0 All











,

where all diagonal blocks Ajj , j = 1, . . . , l are irreducible
or zero.

Now let A be irreducible. By well known results (see,
e.g., [3, Chapter 2: Theorems 2.20, 2.30, 2.33],[4]) from
graph theory, either A is primitive, or there exists an integer
k ≥ 1, such that Ak is similar to a block diagonal matrix
with primitive blocks Bj , j = 1, . . . , l, i.e., there exists a
permutation matrix P , such that

PAkPT = diagl(B1, . . . , Bl). (10)
Lemma 7.5: A trajectory defined by (4) is unbounded

if and only if for any k0 ∈ N the sequence defined by

y(k + 1) := Γk0(y(k)), k ∈ N, y(0) = x(0), (11)

is unbounded.
The easy proof is omitted.

Lemma 7.5 allows us to consider Γk0 instead of Γ, when
we investigate boundedness of orbits of (4). Now we are
able to establish a consequence of Lemma 7.3:

Lemma 7.6: Let Γ ∈ (K∞∪{0})n×n be irreducible and
nowhere increasing. Then for any x ∈ Rn

+ the sequence
{Γk(x)}k∈N is bounded.

Proof: Let A be the adjacency matrix of Γ and
assume Ak is similar to the right hand side form of (10)
for some k ∈ N. Let Ij , j = 1, . . . , l, denote the indices



corresponding to Bj . Since we have PIj
(Γk(x|Ij

)) ≤
PIj

(Γk(x)) and each PIj
(Γk(·|Ij

)) satisfies the premises
of Lemma 7.3, by Lemma 7.5 the problem reduces to l
parallel applications of Lemma 7.3.

Theorem 7.7: Let Γ ∈ (K∞ ∪ {0})n×n be irreducible.
Then Γ � id if and only if system (4) is globally
asymptotically stable in 0.

Proof: ⇐: If Σ is 0-GAS, then in particular each
trajectory is attracted to zero, hence Proposition 5.2 estab-
lishes Γ � id.

⇒: Zero is an equilibrium point and each trajectory of
the system is globally attracted to zero by Lemma 7.6 and
Lemma 5.4. Stability follows from Lemma 5.10.

B. The reducible case
Let Γ ∈ (K∞ ∪ {0})n×n be reducible. Without loss

of generality, by Remark 7.4, we may assume that the
adjacency matrix of G = G(Γ) is

A =

[

A11 A12

0 A22

]

, (12)

where A11 is irreducible, or equivalently stated

Γ =

[

Γ11 Γ12

0 Γ22

]

(13)

with Γ11 an irreducible n1 × n1 matrix with entries of
class (K∞ ∪ {0}) and Γ12 and Γ22 some n1 × n2 and,
respectively, n2 ×n2 matrices with entries in (K∞ ∪{0}).
Note that Γ11(s1) � s1 and Γ22(s2) � s2 for all si ∈
Rni

+ , si 6= 0. For a fixed s(0) ∈ Rn
+ we recursively define

a sequence {s(k)}k∈N0
by

s(k + 1) := Γ(s(k)), k ∈ N0. (14)

We also consider the projected sequences

si(k) := Pni
(s(k)), for i = 1, 2. (15)

This motivates the following statement.
Lemma 7.8: Let Γ ∈ (K∞ ∪ {0})n×n be reducible

and of the form (13). Suppose that there exists a D =
diagn(id + ρ), ρ ∈ K∞, such that D ◦ Γ � id. Suppose
there are l > 1 blocks on the diagonal, all irreducible and
the ith block of dimension ni, i = 1, . . . , l, such that we
have n = n1 + . . . + nl. For i = 1, . . . , l − 1, we define
the sets M i

Γ(s2) for s2 ∈ Rni+1+...+nl

+ by

M i
Γ(s2) := M i

Γ(s2, D) :=

{

s1 ∈ Rni

+ :

Pni
◦ D ◦ Γ ◦ Sni

(s1) ≥

Pni
◦ Γ ◦ Sni+...+nl

(

[

s1

s2

]

)}

.

Then we have
1) for any s2 ∈ Rni+1+...+nl

+ , s1, t1 ∈ Rni

+ it holds that
s1 ∈ M i

Γ(s2) =⇒ s1 + t1 ∈ M i
Γ(s2),

2) for any s2, t2 ∈ Rni+1+...+nl

+ we have s2 ≥ t2 =⇒
M i

Γ(s2) ⊂ M i
Γ(t2), and

3) Rn1

+ =
⋃

s2≥0 M i
Γ(s2) ⊃

⋃

s2>0 M i
Γ(s2) ⊃ Rn1

+ \
{0}.

Proof: The proof is straightforward and thus omitted.

Define a subsystem Σ2 of system (4) as the projected
dynamical system on Rn2

+ :

Σ2 : x2(k + 1) = Pn2
(x(k + 1)) = Γ22(x2(k)), k ∈ N.

(16)
Lemma 7.9: Let Γ ∈ (K∞ ∪ {0})n×n be reducible. Let

D = diagn(id+ρ) for some ρ ∈ K∞. Assume that D◦Γ �
id. Let Γ satisfy equation (13), such that Γ11 is irreducible.
If system (4) is such that system (16) is globally attracted
to zero, then for system (4) the origin of Rn

+ is GAS.
Proof: First note, that by our assumptions the system

sk+1 = (D1 ◦ Γ11)(sk), k ≥ 0, with initial value s0 is
0-GAS, since D1 ◦ Γ11 � id satisfies the premises of
Theorem 7.7.

Fix an initial value x(0) = (x1(0)
T , x2(0)

T )T . Fix some
a ∈ Rn1

+ , a > 0. By 3 of Lemma 7.8 there exists a t2 ∈
Rn2

+ , t2 > 0, such that

{x1(k) : x1(k) 6≤ a} ⊂ M1
Γ(t2).

Further, there exists a k1 ∈ N, such that x2(k) ≤ t2 for all
k ≥ k1.

Hence, for k ≥ k1 and x1(k) 6≤ a we have x1(k +1) ≤
D1 ◦ Γ11(x1(k)). Inductively, as long as x1(k + p) 6≤ a,
p = 0, . . . , l−1, we get x1(k+l) ≤ (D1◦Γ11)

l(x1(k)), so
at some point we arrive at an l ∈ N such that x1(k+l) ≤ a
(since D1 ◦ Γ11 is assumed to by 0-GAS).

Let Ua = {x ∈ Rn1

+ : x ≤ a}, W = {z ∈ Rn1

+ : z ≤
Pn1

◦ Γ((aT , tT2 )T )}.
Since D1 ◦ Γ11 is 0-GAS, there exists a bounded set

W2 ⊃ W : D1 ◦Γ11(W2) ⊂ W2. Without loss of generality
W2 is such that x ∈ W2 implies y ∈ W2 for all 0 ≤ y ≤ x,
since y ≤ x ∈ Γ(W2) implies Γ(y) ≤ Γ(x) ∈ Γ(W2) ⊂
W2.

Now if x1(k) ∈ Ua, then x1(k + 1) ∈ W ⊂ W2. There
remain two cases:

1) x1(k + 1) ∈ Ua. Then x1(k + 2) ∈ W ⊂ W2.
2) x1(k + 1) 6∈ Ua. Hence x1(k + 1) ∈ W ⊂ W2

and therefore we find x1(k + 1) ∈ M1
Γ(t2). Hence

x1(k + 2) ≤ D1 ◦ Γ11(x1(k + 1)) ∈ W2.
It follows, that {x1(k)}k∈N is bounded. Now we apply
Lemma 5.4 which gives us x1(k)

k→∞
−−−−→ 0. Since we

already know that x2(k)
k→∞
−−−−→ 0, we can deduce stability

from Lemma 5.10. This completes the proof.
The main result of this section is the following:
Theorem 7.10: Let Γ ∈ (K∞ ∪ {0})n×n. Then the

following are equivalent:
1) There exists a ρ ∈ K∞ such that for D = diagn(id+

ρ) we have D ◦ Γ � id.
2) There exists a ρ ∈ K∞ such that for D = diagn(id+

ρ) the discrete dynamical system defined by

x(0) ∈ Rn
+, x(k+1) := D◦Γ(x(k)), k ∈ N0, (17)



is globally asymptotically stable in 0.
Proof: 1⇒2: First note, that by Lemma 4.2 we

can decompose D = D̃ ◦ D̂. We then apply Lemma 7.9
inductively.

2⇒1: This follows by an application of Proposition 5.2
with Γ replaced by D ◦ Γ.

In [4] an example was presented, that Γ � id alone does
not imply that system (1) is 0-GAS.

VIII. APPLICATIONS TO LARGE-SCALE
INTERCONNECTIONS OF INPUT-TO-STATE STABLE

SYSTEMS

In [4] the authors showed that existence of a ρ ∈ K∞,
such that for D = diagn(id + ρ), the condition

D ◦ Γ � id (18)

implies input-to-state stability (ISS) of a large scale N -
dimensional dynamical system. This large-scale system is
given by

Σ : ẋ = f(x, u), x ∈ RN , u ∈ RM , (19)

and can be decomposed into n smaller Ni-dimensional
systems Σi, i = 1, . . . , n, with N = N1 + . . . + Nn,
M = M1 + . . . + Mn, given by

Σi :
ẋi = f(x1, . . . , xn, ui),

xj ∈ RNj , j = 1, . . . , n, ui ∈ RMi ,
(20)

where i = 1, . . . , n. Suppose each system Σi satisfies
the standard assumptions for existence and uniqueness of
solutions and is forward-complete.

Assume that each Σi fulfills the ISS condition: There
exists a function βi ∈ KL, and functions γij , αi ∈ (K∞ ∪
{0}), with γii ≡ 0, such that for all xi(0) ∈ RNi and
t ∈ R+ the estimate

|xi(t)| ≤ βi(|xi(0)|, t) +

n
∑

i=1

γij(‖xj‖L∞[0,t])

+ αi(‖ui‖L∞[0,t])

(21)

holds. Here Γ is the nonlinear gain matrix, simply defined
by Γ = (γij). The functions γij and αi are called gains in
this context, hence the name.

Now by putting the results of the previous sections
together, we can state the main result of this section:

Theorem 8.1: Let Γ ∈ (K∞ ∪ {0})n×n. Then the
following are equivalent:

1) There exists a ρ ∈ K∞ such that for D = diagn(id+
ρ) we have D ◦ Γ � id.

2) There exists a ρ ∈ K∞ such that for D = diagn(id+
ρ) the discrete dynamical system defined by

x(0) ∈ Rn
+, x(k+1) := D◦Γ(x(k)), k ∈ N0, (22)

is globally asymptotically stable in 0.
Both imply ISS of the corresponding large-scale dynamical
system Σ defined by (19).

Proof: The equivalence has already been proved in
Theorem 7.10. In [4] the authors proved that 1) implies
that Σ is ISS.

This clarifies and establishes the role of the discrete
dynamical system associated with Γ as a sufficient stability
criterion for the large-scale system Σ.

A. The equivalence of 0-GAS and D ◦ Γ � id for more
general monotone maps

In this section the graph structure associated to matrices
with entries in (K∞ ∪ {0}) played an important role. It
is possible to define such a graph also for more general
maps. For example, Angeli and Sontag define the signed
incidence graph of a monotone map in [2]. For matrices
with entries in (K∞ ∪ {0}) this definition agrees with our
definition of Section III.

A natural question to ask is, if the equivalence stated in
Theorem 7.10 does hold for more general monotone maps
Γ, which also possess an embedded graph structure, like
the incidence graph of Angeli and Sontag.

The following example shows, that there are monotone
maps possessing an incidence graph, such that at least
assertion 1 of Lemma 7.8 does not hold:

Example 8.2: Let Γ : R2
+ → R2

+ be given by

Γ(

[

s1

s2

]

) =

[

(λ + s2)s1 + µs2

λs2

]

, λ ∈]0, 1[, µ > 0.

The set of edges of the incidence graph is E =
{(1, 1), (2, 1), (2, 2)}. For 0 < α < 1/λ − 1 and D =
(1 + α)idR2

+
we clearly have D ◦ Γ � id. Now look at

the set M(s2) as defined in Lemma 7.8 for s2 = 1 − λ.
We find that Γ1(s) = s1 + µ(1 − λ) is less or equal to
(D ◦ Γ)1 ◦ (s1, 0)

T = (1 + α)λs1 if and only if

s1 ≤
µ(1 − λ)

1 − (1 + α)λ
. (23)

Thus s1 ∈ M(1−λ) if and only if (23) holds. This clearly
violates property 1 of Lemma 7.8, which is an important
ingredient in the proof in Lemma 7.9.

IX. CONCLUSIONS

For monotone maps Γ on the positive orthant of Rn

it has been shown that if the induced discrete dynamical
system is 0-GAS, the inequality Γ � id must hold.
For the converse implication we have to make stronger
assumptions on Γ. For matrices with entries in (K∞∪{0})
an equivalence relation was obtained.

Some questions remain open. It is unclear if for n > 2
there are n-dimensional extensions of Lemma 6.1. Also, is
it possible to restate the condition on Γ in Proposition 6.3
in a way that is easier to check?
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