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Abstract— We consider a finite number of nonlinear sys-
tems interconnected in an arbitrary way. Under the as-
sumption that each subsystem is input-to-state stable (ISS)
regarding the states of the other subsystems as inputs we are
looking for conditions that guarantee input-to-state stability
of the overall system. To this end we aim to construct an
ISS-Lyapunov function for the interconnection using the
knowledge of ISS-Lyapunov functions of the subsystems
in the network. Sufficient conditions of a small gain type
are obtained under which an ISS Lyapunov function can
be constructed. The ISS-Lyapunov function is then given
explicitly, and guarantees that the network is ISS.

Keywords— Nonlinear systems, Input-to-state stability, ISS
Lyapunov function, small gain condition.

I. INTRODUCTION

The property of input-to-state stability (ISS) has been
introduced by Sontag [12] at the end of the last century and
is now a commonly used tool to study stability properties
of control systems. One of the strengths of the theory is
that it naturally provides a framework in which the effect
of interconnection of families of systems can be studied.
This raises the question to which extent the study of large
scale systems as available in the book by Šiljak [11] can be
extended to the nonlinear setting. This paper endeavours
to provide a contribution to this project by treating the
problem of constructing ISS Lyapunov functions for a
large scale system based on the knowledge of Lyapunov
functions for the subsystems. The main condition to make
such a construction possible is of the small gain type.

The notion of nonlinear gains of perturbed nonlinear
systems has been shown to be a useful tool studying
the stability of feedback systems, see e.g. [12], [7], [9].
In particular, several types of small-gain theorems for
the stability of a feedback of two systems have been
obtained by different authors, e.g., [8], [9], [6]. In [3] an
arbitrary interconnection of more than two ISS systems
is considered, and a generalized small-gain theorem is
obtained. In this paper we continue the investigation of
this problem and we wish to obtain statements concerning
the construction of ISS Lyapunov functions from known
ISS Lyapunov functions for the subsystems. This problem
was also treated in [9] where an ISS Lyapunov function
was constructed for a feedback loop of two ISS systems
provided a small gain condition holds. We wish to extend

S. Dashkovskiy and B. Rüffer are with the Zentrum für Technomath-
ematik, Universität Bremen, Germany, dsn@math.uni-bremen.de,
rueffer@math.uni-bremen.de

F. Wirth is with the Hamilton Institute, NUI Maynooth, Ireland,
fabian.wirth@nuim.ie

this result for the case of more than two systems and
present some preliminary results in this direction.

The paper is organized as follows. In the following
Section II we recall the definitions of the basic concepts
of input-to-state stability and of ISS Lyapunov functions.
While it is in general only necessary to use smooth Lya-
punov functions in the framework of the theory, we rely at
one stage on a few results from nonsmooth analysis, so that
ISS Lyapunov functions are also defined in a nonsmooth
fashion. In Section III we introduce the interconnected
systems under consideration in this paper and define the
properties of the ISS Lyapunov functions we consider.
In this construction the Lyapunov gains describing the
effect of the subsystems on each other play a crucial
role. The collection of these gains defines a monotone
operator from the positive orthant of R

n to itself. Roughly
speaking, the small gain condition already used in [3] states
that this monotone operator should be robustly nowhere
increasing. If the Lyapunov gains are linear functions a
general construction of ISS Lyapunov functions is possible
using this property. This case is treated in Section III-A.

The general nonlinear case is treated in Section IV.
The desirable result would be that from the small gain
condition it follows that an ISS Lyapunov function can
be constructed. Unfortunately, we are only able to show
this in the case n = 2, 3. The remaining problem is that
from the small gain condition it follows that there exists
an unbounded subset of the positive orthant on which the
gain operator is strictly decreasing. For the construction
of the ISS Lyapunov function we require the existence
of a continuously differentiable, strictly increasing curve
contained in the set on which the gain operator is strictly
decreasing. We conjecture that the small gain condition
is equivalent to the existence of such a curve, but this
topological problem remains open in this paper.

II. BASIC DEFINITIONS

Let x be a vector in R
n and xT its transpose. Let | · |

denote the usual Euclidean norm in R
n and ‖ · ‖ the L∞-

norm. For x, y ∈ R
n
+ the relation x ≥ y (x > y) means

that xi ≥ yi (xi > yi) holds for i = 1, . . . , n. By (˙) we
denote the time derivative. Let

ẋ = f(x, u), x ∈ R
n, u ∈ R

m, f : R
n × R

m → R
n (1)

be a nonlinear dynamical system with a continuous func-
tion f such that for any r > 0 it is locally Lipschitz
in x uniformly for all inputs u with ‖u‖ < r. The
input functions u in (1) are assumed to be elements of



L∞(0,∞). We say that γ : R+ → R+ is a function of
class K if it is continuous, strictly increasing and γ(0) = 0.
If, in addition, it is unbounded then it is of class K∞. A
function β : R+ × R+ → R+ is said to be of class KL if
β( ·, t) is of class K for each fixed t and for each fixed s
decreases in t with limt→∞ β(s, t) = 0.

Definition 1: If there exist γ ∈ K and β ∈ KL such
that for any initial point x(0) and any L∞-input u the
trajectory x(t) of the system (1) satisfies

|x(t)| ≤ β(|x(0)|, t) + γ(‖u‖), ∀ t ∈ R+, (2)

then the system (1) is called ISS from u to x and γ is
called nonlinear gain function or briefly gain.

Definition 2: A smooth function V : R
n → R+ is called

an ISS-Lyapunov function of (1) if there exist ψ1, ψ2 ∈
K∞, a positive definite function α and χ ∈ K with

ψ1(|x|) ≤ V (x) ≤ ψ2(|x|), x ∈ R
n, (3)

V (x) ≥ χ(|u|) ⇒ ∇V (x)f(x, u) ≤ −α(V (x)). (4)

The function χ is then called Lyapunov-gain.
It is known that the ISS property of (1) is equivalent to the
existence of an ISS-Lyapunov function for (1), see [13].
But note that the gain in (2) and the Lyapunov-gain in (4)
are in general different functions.

For our construction we will need the notions of prox-
imal subgradient and nonsmooth ISS-Lyapunov function,
cf. [2], [1].

Definition 3: A vector ζ ∈ R
n is called a proximal

subgradient of a function φ : R
n → (−∞,∞] at x ∈ R

n

if there exists a neighborhood U(x) of x and a number
σ ≥ 0 such that

φ(y) ≥ φ(x) + 〈ζ, y − x〉 − σ|y − x|2 ∀y ∈ U(x).

The set of all proximal subgradients at x is called proximal
subdifferential of φ at x and is denoted by ∂Pφ(x).

Definition 4: A continuous function V : R
n → R+

is said to be a nonsmooth ISS-Lyapunov function of the
system (1) ẋ = f(x, u), f : R

n+m → R
n if

1) V is proper and positive-definite, that is, there exist
functions ψ1, ψ2 of class K∞ such that

ψ1(|x|) ≤ V (x) ≤ ψ2(|x|), ∀x ∈ R
n; (5)

2) there exists a positive-definite function α : R+ →
R+ and a class K-function χ, such that

sup
u: V (x)≥χ(|u|)

〈f(x, u), ζ〉 ≤ −α(V (x)), (6)

∀ζ ∈ ∂PV (x),∀x 6= 0.
See also [2], p. 188 and Theorem 4.6.3.

III. A NETWORK OF INTERCONNECTED SYSTEMS

Now consider the interconnected systems

ẋi = fi(x1, . . . , xn, ui), xi ∈ R
Ni , ui ∈ R

mi , i = 1, . . . , n
(7)

with fi, i = 1, . . . , n having the same continuity properties
as f in (1). Each of them is assumed to be ISS from

(x1, . . . , xi−1, xi+1, . . . , ui) to xi and hence to have an
ISS-Lyapunov function Vi, i.e., there are ψi1, ψi2 ∈ K∞

and χij , γi, αi ∈ K, i, j = 1, . . . , n, j 6= i; (we set
χii = 0, i = 1, . . . , n) with

ψi1(|xi|) ≤ Vi(xi) ≤ ψi2(|xi|), xi ∈ R
Ni , (8)

Vi(xi) ≥
n

∑

j=1

χij(Vj(xj)) + γi(|ui|)

⇒ ∇Vi(x)fi(x, ui) ≤ −αi(Vi(xi)),

(9)

where we denote x = (xT
1 , . . . , x

T
n )T ∈ R

N with N :=
N1 + · · · +Nn.

We remark that in [9] instead of sum in (9) there is max
used, what leads to a slightly different small-gain condition
than we have below.

The question is, under which conditions the intercon-
nection (7) is ISS and how to construct an ISS-Lyapunov
function for it. To study this point we introduce the
following nonlinear operator: The gain operator Γ of the
interconnection (7) is defined on the positive orthant R

n
+

by

Γ(s) :=

( n
∑

j=1

χ1j(sj), . . . ,

n
∑

j=1

χnj(sj)

)T

,

s =(s1, . . . , sn)T ∈ R
n
+,

(10)

where functions χij , i, j = 1, . . . , n are the Lyapunov-
gains of (7) defined in (9). This operator was introduced
in [5], where the authors also study its properties.

A. Linear Lyapunov-gains

To demonstrate the idea of the construction of the ISS-
Lyapunov function for the interconnection (7), consider
first the case, where χij are linear functions. In this
case the sum

∑n
j=1 χij(Vj(xj)) in (9) is nothing but a

matrix-vector product ΓV (x) of Γ defined as the matrix
of constants χij and V (x) = (V1(x1), . . . , Vn(xn))T .

Under the condition

ρ(Γ) < 1, (11)

where ρ(Γ) denotes the spectral radius of Γ, there exists a
vector s ∈ R

n
+ with positive components satisfying

si >

n
∑

j=1

χijsj , i = 1, . . . , n. (12)

In case of an irreducible Γ the vector s may be taken to
be a Perron-Frobenius eigenvector s ∈ R

n
+ of Γ. For a

reducible Γ the existence of such s with (12) follows from
[10], Theorem 15.3.1 and the continuity of the spectral
radius of a matrix on its elements. One can namely increase
each element of Γ to become positive in such way that the
spectral radius remains less than one.

Lemma 5: Let Vi be an ISS-Lyapunov function for the
i-th system from (7) satisfying (8) and (9) with linear gains
χij , i, j = 1, . . . , n. Let Γ = (χij)i,j=1,...,n of (7) satisfy
(11), then the interconnection (7) is ISS. Furthermore there
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exists s ∈ R
n
+ with positive components satisfying (12) and

an ISS-Lyapunov function of (7) is given by

V (x) := max
i

Vi(xi)

si

. (13)

Proof In the following we show that there exists a
positive definite function α and γ ∈ K such that:

sup
u: V (x)≥γ(‖u‖)

〈f(x, u), ζ〉 ≤ −α(x) (14)

∀ζ ∈ ∂PV (x),∀x 6= 0.
Let Mi be open domains in R

n
+ defined by

Mi :=
{

(v1, . . . , vn)T ∈ R
n
+ :

vi

si

> max
j 6=i

{vj

sj

}}

. (15)

From this definition follows that

Mi

⋂

Mj = ∅, i 6= j, and
n
⋃

i=1

M i = R
n
+,

where M i is the closure of Mi. Note that V defined by
(13) is continuous in R

N
+ and can fail to be differentiable

only at those points where Vi(xi)
si

=
Vj(xj)

sj
for some i 6= j.

Now take any x̂ = (x̂1, . . . , x̂n) ∈ R
N with

(V1(x̂1), . . . , Vn(x̂n)) ∈ Mi then it follows that in some
neighborhood U of x̂ we have V (x) = Vi(xi)

si
for all

x ∈ U, so that V is differentiable in x ∈ U . Our aim is to
show that there exists a positive definite function α̃i and
φ ∈ K such that V (x) > φ(‖u‖) implies ∇V (x)f(x, u) <
−α̃i(V (x)).

Consider the inequality

V (x) >
γi(‖u‖)

si −
∑

χijsj

, (16)

i.e.,
Vi(xi)

si

(

si −
n

∑

j=1

χijsj

)

> γi(‖u‖)

or

Vi(xi) >
Vi(xi)

si

n
∑

j=1

χijsj + γi(‖u‖).

By the definition of Mi this implies

Vi(xi) >
n

∑

j=1

Vj(xj)

sj

χijsj + γi(‖u‖)

=

n
∑

j=1

χijVj(xj) + γi(‖u‖).

Then from (9) it follows that

∇V (x)f(x, u) =
1

si

∇Vi(xi)fi(x, u)

≤ −
1

si

αi(Vi(xi)) < −α̃i(V (x)),
(17)

where α̃i is positive-definite function, since si is a positive
constant. Then (14) follows with γ(r) = maxi

γi(r)
si−

P

χijsj

and α(r) := mini{α̃i(r)}.

It remains to consider x ∈ R
n such that

(V1(x1), . . . , Vn(xn)) ∈ Mi ∩ Mj , where V (x) may be
not differentiable.

For this purpose we use some results from [2]. For
smooth functions gi, i = 1, . . . , n it follows that g(x, u) =
max

i
{gi(x, u)} is Lipschitz continuous and Clarke’s gen-

eralized gradient of g is given by , cf. [2],

∂Clg(x) = co
{

⋃

i∈M(x)

∇xgi(x, u)
}

,

M(x) = {i : gi(x, u) = g(x)},

(18)

where co denotes the convex hull. In our case

∂ClV (x) = co
{ 1

si

∇Vi(x) :
1

si

Vi(x) = V (x)
}

. (19)

Note, that directly from the definitions of ∂PV (x) and
∂ClV (x), see [2], e.g., it follows that ∂ClV (x) ⊃ ∂PV (x).
Now for every extremal point of ∂ClV (x) the decrease
condition (17) is satisfied. By convexity, the same is true
for every element of ∂ClV (x). Now Theorems 4.3.8 and
4.5.5 of [2] show the strong invariance and attractivity of
the set {x : V (x) ≤ γ(‖u‖)}. It follows that V is an
ISS-Lyapunov function for the interconnection (7). �

Note that for linear Γ the condition (11) is equivalent to

χ(s) 6≥ s, ∀s ∈ R
n
+ \ {0}, (20)

or in other words, for any s ∈ R
n
+ there is at least one

i ∈ {1, . . . , n} such that the i-th component of Γ(s) is
strictly less then si. The property (20) is meaningful also
for nonlinear Γ.



IV. MAIN RESULT

In this section we generalize the ideas of construction
of an ISS-Lyapunov function to the nonlinear case. The
condition (11) makes no sense if Γ is nonlinear, however
(20) still can be applied, which can also be written as
Γ 6≥ id on R

n
+ \{0}. Recall that an ISS-criterion of the

interconnection (7) was obtained in [3], [5], where it was
shown, that the last condition is not sufficient for the ISS
of (7). The small gain condition used there is a bit stronger,
namely, if there exists an auxiliary diagonal operator D :
R

n
+ → R

n
+ defined by D = diag(id + α), i.e.,

D(s) = (s1 + α(s1), . . . , sn + α(sn))T ,

where s = (s1, . . . , sn) and α ∈ K∞, such that the gain
operator Γ satisfies

D ◦ Γ 6≥ id on R
n
+ \ {0}, (21)

then (7) is ISS. Here and in the following ◦ denotes a
composition of two operators.

See in [5] also the explanations about the changes in the
small gain condition (21) in case of use of max instead of
the sum in (9).

Theorem 6: Let Vi be an ISS-Lyapunov function for the
i-th system in (7), i = 1, . . . , n, i.e., (8) and (9) hold.
Assume there exist continuously differentiable σi ∈ K∞

with σ′
i(s) > 0 for all s > 0 such that

σi(t) > (id + α)
(

n
∑

j=1

χij(σj(t))
)

,

∀t > 0, i = 1, . . . , n,

(22)

for some α ∈ K∞. Then the interconnection (7) is ISS
with ISS-Lyapunov function

V (x1, . . . , xn) := max
i

{σ−1
i (Vi(xi))}. (23)

The condition (22) states, that there is a curve in R
n
+

parameterized by σi ∈ K∞, i = 1, . . . , n such that
for any point s 6= 0 on the curve the condition si >
(id+α)(

∑n
j=1 χij(sj)) holds for all i = 1, . . . , n, which is

a nonlinear version of (12). Before we prove the theorem
let us consider this curve closer.

Lemma 7: The existence of σi, i = 1, . . . , n, as in (22)
implies that Γ satisfies (21).
Proof Assume there is an 0 6= x ∈ R

n
+ such that D◦Γx ≥

x. Then the sequence x(k), k ∈ N defined by

x(k + 1) := D ◦ Γ(x(k)), x(0) := x, k ∈ N

is unbounded in R
n
+. Since σi ∈ K∞ there is a positive

number t =: t(0) big enough, such that there is a point
on the curve with s(0) := σ(t(0)) > x(0) and hence
Γ(s(0)) ≥ Γ(x(0)). By (22) we have s(0) > s(1) :=
D ◦ Γ(s(0)) > D ◦ Γ(x(0)) =: x(1). Note that s(1) may
not belong to σ, however from the continuity of Γ follows
that there exists t(1) < t(0) such that s∗(1) := σ(t(1)) >
s(1) > x(1). Then s(2) := D◦Γ(s∗(1)) ≥ D◦Γ(x(1)) =:
x(2) and again from the continuity of Γ there is s∗(2) on
the curve σ such that s∗(2) > s(2) ≥ x(2). By iteration we

obtain a bounded sequence s∗(k), k ∈ N which dominates
the sequence x(k), k ∈ N. This is a contradiction. The
lemma is proved. �

We believe that converse is also true:
Conjecture 8: If Γ satisfies (21) then there exist σi ∈

K∞, i = 1, . . . , n with (22).
Let us present some arguments that count in favor of

the claim: In the linear case this curve is, for example, the
ray defined by the vector s from (12). In the nonlinear
case for n = 2 the existence of such a curve follows
from [9]. Below we construct such a curve for n = 3.
Moreover it is shown in [4], Proposition 5.6 that there is
an unbounded domain Ω ∈ R

n
+, such that for any point

x ∈ Ω the inequality D ◦ Γ(x) < x holds, and for any
r > 0 the simplex Sr := {s ∈ R

n
+ : s1 + · · · + sn = r}

has a nonempty intersection Ω∩Sr 6= ∅ with this domain.
The desired curve has to be in Ω and since Ω intersects
every Sr there seems to be sufficient room to construct it.
This problem however remains open.

Proof of Theorem 6 Having σ1(t), . . . , σn(t) satisfying
(22) the idea of the proof is essentially the same as for
Lemma 5. We define

Mi :=
{

(v1, . . . , vn)T ∈ R
n
+ :

σ−1
i (vi) > max

j 6=i
{σ−1

j (vj)}
}

.
(24)

From (22) it follows that

σi(t) −
n

∑

j=1

χij(σj(t)) > α
(

n
∑

j=1

χij(σj(t))
)

=: ρ(t).

(25)
Note that ρ ∈ K∞. Now for any x̂ = (x̂1, . . . , x̂n) ∈ R

N

with (V1(x̂1), . . . , Vn(x̂n)) ∈ Mi it follows that there is
a neighborhood U of x̂ such that V (x) = σ−1

i (Vi(xi))
holds for all x ∈ U, so that V is differentiable in x ∈ U .
Again we are looking for a positive definite function α̃i and
φ ∈ K such that V (x) > φ(‖u‖) implies ∇V (x)f(x, u) <
−α̃i(V (x)).

To derive the defining inequality of ISS Lyapunov
functions consider the inequality

V (x) > ρ−1(γi(|u|)). (26)

From this inequality it follows that ρ(V (x)) > γi(|u|) or
using the definition of ρ

σi(V (x)) −
n

∑

j=1

χij(σj(V (x))) > γi(|u|),

or equivalently

Vi(xi) = σi(V (x)) >

n
∑

j=1

χij(σj(V (x))) + γi(|u|)

=

n
∑

j=1

χij(σj(σ
−1
i (Vi(xi)))) + γi(|u|)

>

n
∑

j=1

χij(Vj(xj)) + γi(|u|) ,

(27)



where we have used (V1(x̂1), . . . , Vn(x̂n)) ∈ Mi in the
last inequality. Summarizing this shows that (26) implies

Vi(xi) >
n

∑

j=1

χij(Vj(xj)) + γi(|u|),

and hence from (9) we obtain

∇V (x)f(x, u) = (σ−1
i )′(Vi(xi))∇Vi(xi)fi(x, u)

≤ −(σ−1
i )′(Vi(xi))αi(Vi(xi)) =: −α̃i(V (x)),

(28)

where α̃i is a positive definite function by definition.
It remains to treat the points where V may fail to be
differentiable. The argument for this case is the same as
in the proof of Lemma 5. �

A. Construction of σ

Here we show how to construct σi ∈ K∞ satisfying
(22) given (21) for n = 3. For n = 2 such a curve can be
constructed as in [9]

Lemma 9: Let n = 3 and nonlinear gains χij ∈ K∞

or χij = 0, i, j = 1, 2, 3, satisfy (21). Then there exist
functions σ1, σ2, σ3 ∈ K∞ satisfying (22) and σ′

i > 0, i =
1, 2, 3.
Proof First assume χ12, χ13 are nonzero functions, i.e.,
χ12, χ13 ∈ K∞. Let s1(t), s2(t) be continuous functions
to be defined later. For brevity we denote ρ = id − α.
Consider the set

M(t) = {s3 ∈ R+ |χ13(s3) < ρ−1(s1(t)) − χ12(s2(t)),

χ23(s3) < ρ−1(s2(t)) − χ21(s1(t)),

s3 > ρ(χ31(s1(t)) + χ32(s2(t)))}
(29)

or equivalently M(t) is the set of numbers s3 satisfying

ρ(χ31(s1(t)) + χ32(s2(t))) < s3 <

min{χ−1
13 (ρ−1(s1(t)) − χ12(s2(t))),

χ−1
23 (ρ−1(s2(t)) − χ21(s1(t)))}.

(30)

Note that for any s1 > 0 there is exactly one s2 > 0 such
that

χ−1
13 (ρ−1(s1)−χ12(s2)) = χ−1

23 (ρ−1(s2)−χ21(s1)) (31)

holds. This follows using monotonicity arguments. For a
fixed s1 the left hand side of (31) is strictly decreasing
function of s2 while the right hand side of (31) is strictly
increasing one. Further from (21) the condition

(id + α) ◦

[

0 χ12

χ21 0

] (

s1
s2

)

6≥

(

s1
s2

)

, (32)

holds, i.e., ρ ◦ χ21 ◦ ρ(χ12(s)) < s or χ−1
12 ◦ ρ−1 ◦ χ−1

21 ◦
ρ−1(s) < s.

For a fixed s1 let s∗2 be the zero point of ρ−1(s1) −
χ12(s2) and s∗∗2 be the zero point of ρ−1(s2) − χ21(s1)
then

s∗2 = χ−1
12 ◦ρ−1(s1) = χ−1

12 ◦ρ−1 ◦χ−1
21 ◦ρ−1(s∗∗2 )) < s∗∗2 .

Hence the zero point of the left hand side of (31) is greater
than the one of the right side of (31). This proves that for
any s1 there is always exactly one s2 satisfying (31).

By the continuity and monotonicity of χ12, χ21, χ13, χ22

it follows that s2 depends continuously on s1 and is
strictly increasing with s1. We can define σ1(t) = s1(t) =
t, σ2(t) = s2(t), where t > 0 and s2(t) is the solution of
(31) with s1 = t.

Denote h(t) = ρ(χ31(s1(t)) + χ32(s2(t))) and g(t) =
χ−1

13 (ρ−1(s1(t)) − χ12(s2(t))) = χ−1
23 (ρ−1(s2(t)) −

χ21(s1(t))), then we have

M(t) = {s3|h(t) < s3 < g(t)}.

Let us show that M(t) 6= ∅ for any t > 0. If this is not
true then there exists a t∗, such that

s∗3 := h(t∗) ≥ g(t∗)

holds. Consider the point s∗ := (s∗1, s
∗
2, s

∗
3) :=

(t∗, s2(t
∗), s∗3). Then

D◦Γ(s∗) = ρ◦





χ12(s
∗
2) + χ13(s

∗
3)

χ21(s
∗
1) + χ23(s

∗
3)

χ31(s
∗
1) + χ32(s

∗
2)



 ≥





s1(t
∗)

s2(t
∗)

s∗3



 ,

but this contradicts (21). Hence M(t) is not empty for all
t > 0.

Consider the functions h(t) and g(t). The question is
how to choose σ3(t) ∈ M(t) to be a K∞ function. Note
that h(t) ∈ K∞. Let g∗(t) := minT≥t g(T ) ≤ g(t). Let for
t > 0 be At := {s ∈ R+ : g∗(s) = g∗(t)}. Since g(t) is
unbounded this set is compact. Denote s∗ := maxAt, then
we have g∗(t) = g∗(s∗) = g(s∗) > h(s∗) ≥ h(t). Hence
h(t) < g∗(t) ≤ g(t) for any t > 0 where g∗ is a (not
strictly) increasing function. Let σ3 := (h+ g∗)/2 ∈ K∞.
Now we have strictly increasing σ1, σ2, σ3 satisfying (22).
By standard analysis tools this curve can be regularized to
satisfy σ′

i > 0.
The case where one of χ12, χ13 is not a K∞ function

but zero can be treated similarly. �

V. CONCLUSIONS

We have considered a network of ISS systems with
given ISS Lyapunov functions. We have shown how an
ISS Lyapunov function can be constructed for the network.
In special cases we have shown that the existence of an
ISS Lyapunov function is guaranteed by the condition (21).
We conjecture that this condition assures the existence of
an ISS Lyapunov function for the general case, i.e., for n
systems with nonlinear gains. This assumption is currently
under investigation.
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