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1. Introduction. In many applications large scale systems are obtained through
the interconnection of a number of smaller components. The stability analysis of such
interconnected systems may be a difficult task especially in the case of a large number
of subsystems, arbitrary interconnection topologies, and nonlinear subsystems.

One of the earliest tools in the stability analysis of feedback interconnections of
nonlinear systems are small gain theorems. Such results have been obtained by many
authors starting with [30]. These results are classically built on the notion of Lp gains,
see [3] for a recent, very readable account of the developments in this area. While
most small gain results for interconnected systems yield only sufficient conditions,
in [3] it has been shown in a behavioral framework how the notion of gains can be
modified so that the small gain condition is also necessary for robust stability.

Small gain theorems for large scale systems have been developed, e.g., in [21, 28,
18]. In [21] the notions of connective stability and stabilization are introduced for
interconnections of linear systems using the concept of vector Lyapunov functions.
In [18] stability conditions in terms of Lyapunov functions of subsystems have been
derived. Also in the linear case characterizations of quadratic stability of large scale
interconnections have been obtained in [14]. A common feature of these references
is that the gains describing the interconnection are essentially linear. With the in-
troduction of the concept of input-to-state stability in [23], it has become a common
approach to consider gains as a nonlinear functions of the norm of the input. Also
in this case small gain results have been derived first for the interconnection of two
systems in [16], see also [27]. A Lyapunov version of the same result is given in [15].
A general small gain condition for large-scale ISS systems has been presented in [6].
Recently, such arguments have been used in the stability analysis of observers [1], in
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the stability analysis of decentralized model predictive control [17] and in the stability
analysis of groups of autonomous vehicles.

In this paper we present sufficient conditions for the existence of an ISS Lyapunov
function for a system obtained as the interconnection of many subsystems. The re-
sults are of interest in two ways. First, it is shown that a small gain condition is
sufficient for input-to-state stability of the large-scale system in the Lyapunov formu-
lation. Secondly, an explicit formula for an overall Lyapunov function is given. As
the dimensions of the subsystems are essentially lower than the dimension of their
interconnection, finding Lyapunov functions for them may be an easier task than for
the whole system.

Our approach is based on the notion of input-to-state stability (ISS) introduced
in [23] for nonlinear systems with inputs. A system is ISS if, roughly speaking, it is
globally asymptotically stable in the absence of inputs and if any trajectory eventually
enters a ball centered at the equilibrium point and with radius given by a monotone
continuous function, the gain, of the size of the input.

The concept of ISS turned out to be particularly well suited to the investigation
of interconnections. For example, it is known that cascades of ISS systems are again
ISS [23] and small gain results have been obtained. We briefly review the results of
[16, 15] in order to explain the motivation for the approach of this paper. Both papers
study a feedback interconnection of two ISS systems as represented in Figure 1.1.

Σ2 : ẋ2 = f2(x1, x2, u)

Σ1 : ẋ1 = f1(x1, x2, u)

u

u

x2

x1

γ21γ12

Fig. 1.1. Feedback interconnection of two ISS systems with gains γ12 from Σ2 to Σ1 and γ21
from Σ1 to Σ2.

The small gain condition in [16] is that the composition of the gain functions
γ12, γ21 is less than identity in a robust sense, That is, if on (0,∞) we have

(id + α1) ◦ γ12 ◦ (id + α2) ◦ γ21 < id (1.1)

for suitable K∞ functions α1, α2, then the feedback system is ISS with respect to the
external inputs.

In this paper we concentrate on the equivalent definition of ISS in terms of ISS
Lyapunov functions [26]. The small gain theorem for ISS Lyapunov functions from
[15] states that if on (0,∞) the small gain condition

γ12 ◦ γ21 < id (1.2)

is satisfied then an ISS Lyapunov function may be explicitly constructed as follows.
Condition (1.2) is equivalent to γ12 < γ−1

21 on (0,∞). This permits to construct a
strictly monotone function σ2 such that γ21 < σ2 < γ−1

12 , see Figure 1.2. An ISS
Lyapunov function is then defined by scaling and taking the maximum, that is, by
setting V (x) = max{V1(x1), σ−1

2 (V2(x2))}.
At first sight the difference between the small gain conditions in (1.1) from [16]

and (1.2) from [15] appears surprising. This might lead to the impression that the
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Fig. 1.2. Two gain functions satisfying (1.2).

difference comes from studying the problem in a trajectory based or Lyapunov based
framework. This, however, is not the case; the reason for the difference in the con-
ditions is a result of the formulation of the ISS condition. In [16] a summation
formulation was used, while in [15] maximization was used.

In order to generalize the existing results it is useful to reinterpret the approach
of [15]: note that the gains may be used to define a matrix

Γ :=
(

0 γ12

γ21 0

)
,

which defines in a natural way a monotone operator on R2
+. In this way an alternative

characterization of the area between γ21 and γ−1
12 in Figure 1.2 is that it is the area

where Γ(s) < s (with respect to the natural ordering in R2
+). Thus the problem of

finding σ2 may be interpreted as the problem of finding a path σ : r 7→ (r, σ2(r)), r ∈
(0,∞) such that Γ ◦ σ < σ.

We generalize this constructive procedure for a Lyapunov function in several direc-
tions. First the number of subsystems entering the interconnection will be arbitrary.
Secondly, the way in which the gains of subsystem i affect subsystem j will be formu-
lated in a general manner using the concept of monotone aggregation functions. This
class of functions allows for a unified treatment of summation, maximization or other
ways of formulating ISS conditions. Following the matrix interpretation this leads to
a monotone operator Γµ on Rn+. The crucial thing to find is a sufficiently regular path
σ such that Γµ ◦ σ < σ. This allows for a scaling of the Lyapunov functions for the
individual subsystems to obtain one for the large-scale system.

Small gain conditions on Γµ as in [5, 6] yield sufficient conditions that guarantee
that the construction of σ can be performed. It is shown in [19] that the results of [6]
also hold for the more general ISS formulation using monotone aggregation functions.
The condition requires essentially that the operator is not greater or equal to identity
in a robust sense. The construction of σ then relies on a rather delicate topological
argument. What is obvious for the interconnection of two systems is not that clear
in higher dimensions. It can be seen that the small gain condition imposed on the
interconnection is actually a sufficient condition that allows for the application of the
Knaster-Kuratowsk-Mazurkiewicz theorem, see [6, 19] for further details. We show in
Section 9 how the construction works for three subsystems, but it is fairly clear that
this methodology is not something one would like to carry out in higher dimensions.
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The construction of the Lyapunov function is explicit once the scaling function
σ is known. Thus to have a really constructive procedure a way of constructing σ is
required. We do not study this problem here, but note that based on an algorithm by
Eaves [9] it actually possible to turn this mere existence result into a (numerically)
constructive method [19, 7]. Using the algorithm by Eaves and the technique of
Proposition 8.8, it is then possible to construct such a vector function (but of finite-
length) numerically, see [19, Chapter 4]. This will be treated in more detail in future
work.

The paper is organized as follows. The next section introduces the necessary
notation and basic definitions. In particular the notions of monotone aggregation
functions (MAFs) and ISS formulations. Section 3 gives some motivating examples
that also illustrate the definitions of the Section 2 and explains how different MAFs
occur naturally for different problems. In Section 4 we introduce small gain conditions
given in terms of monotone operators that naturally appear in the definition of ISS.
Section 5 contains the main results, namely the existence of the vector scaling function
σ and the construction of an ISS Lyapunov function. In this section we concentrate
on irreducible networks which are easier to deal with from a technical point of view.
Once this case has been resolved it is shown in Section 6 how reducible networks may
be treated by studying the irreducible components.

The actual construction of σ is given in Section 8 to postpone the topological
considerations until after applications to interconnected ISS systems have been con-
sidered in Section 7. Since the topological difficulties can be avoided in the case n = 3
we treat this case briefly in Section 9 to show a simple construction for σ. Section 10
concludes the paper.

2. Preliminaries.

2.1. Notation and conventions. Let R be the field of real numbers and Rn
the vector space of real column vectors of length n. We denote the set of nonnegative
real numbers by R+ and Rn+ := (R+)n denotes the positive orthant in Rn. The cone
Rn+ induces a partial order which for vectors v, w ∈ Rn we denote by

v ≥ w :⇐⇒ v − w ∈ Rn+ ⇐⇒ vi ≥ wi for i = 1, . . . , n,
v > w :⇐⇒ vi > wi for i = 1, . . . , n,
v 	 w :⇐⇒ v ≥ w and v 6= w.

The maximum of two vectors or matrices is taken component-wise. By | · | we denote
the 1-norm on Rn and by Sr the induced sphere of radius r in Rn intersected with
Rn+, which is an (n− 1)-simplex. On Rn+ we denote by πI : Rn+ → R#I

+ the projection
of the coordinates in Rn+ corresponding to the indices in I ⊂ {1, . . . , n} onto R#I .

The standard scalar product in Rn is denoted by 〈·, ·〉. By Uε(x) we denote the
open neighborhood of radius ε around x with respect to the Euclidean norm ‖·‖. The
induced operator norm, i.e. the spectral norm, of matrices is also denoted by ‖ · ‖.

The space of measurable and essentially bounded functions is denoted by L∞

with norm ‖ · ‖∞ . To state the stability definitions that we are interested in we
introduce three sets of comparison functions: K = {γ : R+ → R+, γ is continuous,
strictly increasing, and γ(0) = 0} and K∞ = {γ ∈ K : γ is unbounded}. A function
β : R+ ×R+ → R+ is of class KL, if it is of class K in the first argument and strictly
decreasing to zero in the second argument. We will call a function V : RN → R+

proper and positive definite if there are ψ1, ψ2 ∈ K∞ such that

ψ1(‖x‖) ≤ V (x) ≤ ψ2(‖x‖) , ∀x ∈ RN .



ISS-LYAPUNOV FUNCTIONS FOR INTERCONNECTED SYSTEMS 5

A function α : R+ → R+ is called positive definite if it is continuous and satisfies
α(r) = 0 if and only if r = 0.

2.2. Problem Statement. We consider a finite set of interconnected systems
with state x =

(
xT1 , . . . , x

T
n

)T , where xi ∈ RNi , i = 1, . . . , n and N :=
∑
Ni. For

i = 1, . . . , n the dynamics of the i-th subsystem is given by

Σi : ẋi = fi(x1, . . . , xn, u), x ∈ RN , u ∈ RM , fi : RN+M → RNi . (2.1)

For each i we assume unique existence of solutions and forward completeness of
Σi in the following sense. If we interpret the variables xj , j 6= i, and u as unrestricted
inputs, then this system is assumed to have a unique solution defined on [0,∞) for
any given initial condition xi(0) ∈ RNi and any L∞-inputs xj : [0,∞) → RNj , j 6= i,
and u : [0,∞)→ RM . This can be guaranteed for instance by suitable Lipschitz and
growth conditions on the fi. It will be no restriction to assume that all systems have
the same (augmented) external input u.

We write the interconnection of subsystems (2.1) as

Σ : ẋ = f(x, u), f : RN+M → RN . (2.2)

Associated to such a network is a directed graph, with vertices representing the

ẋ1 = f1(x1, x2, x6, u)

ẋ3 = f3(x2, x3, x4, u)

ẋ5 = f5(x3, x4, x5, u)

ẋ6 = f6(x1, x6, x7, u)

ẋ7 = f7(x5, x7, u)

ẋ2 = f2(x1, x2, x3, u)

ẋ4 = f4(x2, x3, x4, x5, x6, u)

uu
u

uu u

u

Fig. 2.1. A network of interconnected systems and the associated graph.

subsystems and where the directed edges (i, j) correspond to inputs going from system
j to system i, see Figure 2.1. We will call the network strongly connected if its
interconnection graph has the same property.

For networks of the type that has been just described we wish to construct Lya-
punov functions as they are introduced now.

2.3. Stability. An appropriate stability notion to study nonlinear systems with
inputs is input-to-state stability, introduced in [23]. The standard definition is as
follows.

A forward complete system ẋ = f(x, u) with x ∈ RN , u ∈ RM is called input-to-
state stable if there are β ∈ KL, γ ∈ K such that for all initial conditions x0 ∈ RN
and all u ∈ L∞(R+,RM ) we have

‖x(t;x0, u(·))‖ ≤ β(‖x0‖, t) + γ(‖u‖∞) . (2.3)
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It is known to be an equivalent requirement to ask for the existence of an ISS Lya-
punov function, [25]. These functions can be chosen to be smooth. For our purposes,
however, it will be more convenient to have a broader class of functions available for
the construction of a Lyapunov function. Thus we will call a function a Lyapunov
function candidate, if the following assumption is met.

Assumption 2.1. The function V : RN → R+ is continuous, proper and positive
definite and locally Lipschitz continuous on RN \ {0}. Note that by Rademacher’s
Theorem (e.g., [10, Theorem 5.8.6, p.281]) locally Lipschitz continuous functions on
RN \ {0} are differentiable almost everywhere in RN .

Definition 2.2. We will call a function satisfying Assumption 2.1 an ISS Lya-
punov function for ẋ = f(x, u), if there exist γ ∈ K, and a positive definite function
α such that in all points of differentiability of V we have

V (x) ≥ γ(‖u‖) =⇒ ∇V (x)f(x, u) ≤ −α(‖x‖) . (2.4)

ISS and ISS Lyapunov functions are related in the expected manner:
Theorem 2.3. A system is ISS if and only if it admits an ISS Lyapunov function

in the sense of Definition 2.2.
This has been proved for smooth ISS Lyapunov functions in the literature [25].

So the hard converse statement is clear, as it is even possible to find smooth ISS Lya-
punov functions, which satisfy Definition 2.2. The sufficiency proof for the Lipschitz
continuous case goes along the lines presented in [25, 26] using the necessary tools
from nonsmooth analysis, cf. [4, Theorem. 6.3].

Continuous ISS Lyapunov have also been studied in [12, Ch. 3] and the descent
condition has been formulated in the viscosity sense. Here we work with the Clarke
generalized gradient ∂V (x) of V at x, which for functions V satisfying Assumption 2.1
satisfies for x 6= 0 that

∂V (x) = conv {ζ ∈ Rn : ∃xk → x : ∇V (xk) exists and ∇V (xk)→ ζ} . (2.5)

An equivalent formulation to (2.4) is given by

V (x) ≥ γ(‖u‖) =⇒ ∀ζ ∈ ∂V (x) : 〈ζ, f(x, u)〉 ≤ −α(‖x‖) . (2.6)

Note that (2.6) is also applicable in points where V is not differentiable.
The gain γ in (2.3) is in general different from the ISS Lyapunov gain in (2.4).

Without loss of generality the gain functions can be assumed to be unbounded, since
if a corresponding definition is satisfied for some K-function then there always exists
a K∞-function satisfying the same definition. In the sequel we will always assume
that gains are of class K∞.

2.4. Monotone aggregation. In this paper we concentrate on the construc-
tion of ISS Lyapunov functions for the interconnected system Σ. For a single subsys-
tem (2.1), in a similar manner to (2.4), we wish to quantify the combined effect of the
inputs xj , j 6= i, and u on the evolution of the state xi. As we will see in the examples
given in Section 3 it depends on the system under consideration how this combined
effect can be expressed, through the sum of individual effects, using the maximum of
individual effects or by other means. In order to be able to give a general treatment
of this we introduce the notion of monotone aggregation functions (MAFs).

Definition 2.4. A continuous function µ : Rn+ → R+ is called a monotone
aggregation function if the following two properties hold

(M1) positivity: µ(s) ≥ 0 for all s ∈ Rn+ and µ(s) > 0 if s ≥ 0 and s 6= 0;
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(M2) strictly increasing: if x < y, then µ(x) < µ(y);
(M3) unboundedness: if ‖x‖ → ∞ then µ(x)→∞.

The space of monotone aggregation functions is denoted by MAFn and µ ∈ MAFmn
denotes a vector MAF, i.e., µi ∈ MAFn, for i = 1, . . . ,m.

A direct consequence of (M2) and continuity is the weaker monotonicity property
(M2’) monotonicity: x ≤ y =⇒ µ(x) ≤ µ(y).

In [19, 20] MAFs have additionally been required to satisfy another property, which
we do not need for the constructions provided in this paper, since we take different
approach, see Section 6.

(M4) subadditivity: µ(x+ y) ≤ µ(x) + µ(y).
Standard examples of monotone aggregation functions satisfying (M1)—(M4) are

µ(s) =
n∑
i=1

sli, where l ≥ 1, or µ(s) = max
i=1,...,n

si or

µ(s1, . . . , s4) = max{s1, s2}+ max{s3, s4} .

On the other hand, the following function is not a MAF, since (M1) and (M3) are not
satisfied; ν(s) =

∏n
i=1 si.

Remark 2.5 (general assumption). Later we will make a distinction between
internal and external inputs and consider µ restricted to internal inputs only. For
this reason we generally assume that the function

s 7→ µ(s1, . . . , sn, 0), s ∈ Rn+,

for µ ∈ MAFn+1 satisfies (M2). Note that (M1) and (M3) are automatically satisfied.
Using this definition we can define a notion of ISS Lyapunov function for systems

with multiple inputs. The following definition requires only Lipschitz continuity of
the Lyapunov function.

Definition 2.6. Consider the interconnected system (2.2) and assume that for
each subsystem Σj there is a given function Vj : RNj → R+ satisfying Assumption 2.1.

For i = 1, . . . , n the function Vi : RNi → R+ is called an ISS Lyapunov function
for Σi, if there exist µi ∈ MAFn+1, γij ∈ K∞∪{0}, j 6= i, γiu ∈ K∪{0} and a positive
definite function αi such that

Vi(xi) ≥ µi (γi1(V1(x1)), . . . , γin(Vn(xn)), γiu(‖u‖))
=⇒ ∇Vi(xi)fi(x, u) ≤ −αi(‖xi‖) .

(2.7)

The functions γij and γiu are called ISS Lyapunov gains.
Several examples of ISS Lyapunov functions are given in the next section.
Let us call xj the internal inputs to Σi and u the external input. Note that the

role of functions γij and γiu is essentially to indicate whether there is any influence
of different inputs on the corresponding state. In case fi does not depend on xj there
is no influence of xj on the state of Σi. In this case we define γij ≡ 0. This allows us
to collect the internal gains into a matrix

Γ := (γij)i,j=1,...,n . (2.8)

If we add the external gains as the last column into this matrix then we denote it by
Γ. The function µi describes how the internal and external gains interactively enter
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in a common influence on xi. The above definition motivates the introduction of the
following nonlinear map

Γµ : Rn+1
+ → Rn+,


s1

...
sn
r

 7→
 µ1(γ11(s1), . . . , γ1n(sn), γ1u(r))

...
µn(γn1(s1), . . . , γnn(sn), γnu(r))

 . (2.9)

Similarly we define Γµ(s) := Γµ(s, 0). The matrices Γ and Γ are from now on referred
to as gain matrices, Γµ and Γµ as gain operators.

The examples in the next section show explicitly how the introduced functions,
matrices and operators may look like for some particular cases. Clearly, the gain
operators will have to satisfy certain conditions if we want to be able to deduce
that (2.2) is ISS with respect to external inputs, see Section 5.

3. Examples for monotone aggregation. In this section we show how dif-
ferent MAFs may appear in different applications, for further examples see [8]. We
begin with a purely academic example and discuss linear systems and neural networks
later in this section. Consider the system

ẋ = −x− 2x3 +
1
2

(1 + 2x2)u2 +
1
2
y (3.1)

where x, y, u ∈ R. Take V (x) = 1
2x

2 as a Lyapunov function candidate. It is easy to
see that if |x| ≥ u2 and |x| ≥ |y| then

V̇ ≤ −x2 − 2x4 +
1
2
x2(1 + 2x2) +

1
2
x2 = −x4 < 0

if x 6= 0. The conditions |x| ≥ u2 and |x| ≥ |y| translate into |x| ≥ max{u2, |y|} and
in terms of V this becomes

V (x) ≥ max{u4/2, y2/2} =⇒ V̇ (x) ≤ −x4.

This is a Lyapunov ISS estimate where the gains are aggregated using a maximum, i.e.,
in this case we can take µ(s1, s2) = max{s1, s2} and γu(r) = r4/2 and γy(r) = r2/2.

3.1. Linear systems. Consider linear interconnected systems

Σi : ẋi = Aixi +
n∑
j=1

∆ijxj +Biui, i = 1, . . . , n, (3.2)

with xi ∈ RNi , ui ∈ RMi , and matrices Ai, Bi,∆ij of appropriate dimensions. Each
system Σi is ISS from (xT1 , . . . , x

T
i−1, x

T
i+1, . . . , x

T
n , u

T
i )T to xi if and only if Ai is

Hurwitz. It is known that Ai is Hurwitz if and only if for any given symmetric positive
definite Qi there is a unique symmetric positive definite solution Pi of ATi Pi+PiAi =
−Qi, see, e.g., [13, Cor. 3.3.47 and Rem. 3.3.48, p.284f]. Thus we choose the
Lyapunov function Vi(xi) = xTi Pixi, where Pi is the solution corresponding to a
symmetric positive definite Qi. In this case, along trajectories of the autonomous
system

ẋi = Aixi
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we have

V̇i = xTi PiAixi + xTi A
T
i Pixi = −xTi Qixi ≤ −ci‖xi‖2

for ci := λmin(Qi) > 0, the smallest eigenvalue of Qi. For system (3.2) we obtain

V̇i = 2xTi Pi
(
Aixi +

∑
j 6=i

∆ijxj +Biui

)
≤ −ci‖xi‖2 + 2‖xi‖‖Pi‖

(∑
j 6=i

‖∆ij‖‖xj‖+ ‖Bi‖‖ui‖
)
≤ −εci‖xi‖2, (3.3)

where the last inequality (3.3) is satisfied for 0 < ε < 1 if

‖xi‖ ≥
2‖Pi‖
ci(1− ε)

(∑
j 6=i

‖∆ij‖‖xj‖+ ‖Bi‖‖u‖
)

(3.4)

with u := (uT1 , . . . , u
T
n )T . To write this implication in the form (2.7) we note that

λmin(Pi)‖xi‖2 ≤ Vi(xi) ≤ λmax(Pi)‖xi‖2. Let us denote a2
i = λmin(Pi), b2i =

λmax(Pi) = ‖Pi‖, then the inequality (3.4) is satisfied if

‖Pi‖ · ‖xi‖2 ≥ Vi(xi) ≥ ‖Pi‖3
(

2
ci(1− ε)

)2
∑
j 6=i

‖∆ij‖
aj

√
Vj(xj) + ‖Bi‖‖u‖

2

.

This way we see that the function Vi is an ISS Lyapunov function for Σi with gains
given by

γij(s) =
(

2b3i
ci(1− ε)

‖∆ij‖
aj

) √
s

for i = 1, . . . , n, i 6= j, and

γiu(s) =
2‖Bi‖b3i
ci(1− ε)

s,

for i = 1, . . . , n, and s ≥ 0. Further we have

µi(s, r) =

 n∑
j=1

sj + r

2

for s ∈ Rn+ and r ∈ R+. This µi satisfies (M1), (M2), and (M3), but not (M4). By
defining γii ≡ 0 for i = 1, . . . , n we can write

Γ =


0 γ12 · · · γ1n γ1u

γ21
. . . · · · γ2n γ2u

...
. . .

...
...

γn1 · · · γn,n−1 0 γnu


and have

Γµ(s, r) =


(

2b31
c1(1−ε)

)2(∑
j 6=1

‖∆1j‖
aj

√
sj + ‖B1‖r

)2

...(
2b3n

cn(1−ε)

)2(∑
j 6=n

‖∆nj‖
aj

√
sj + ‖Bn‖r

)2

 . (3.5)
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Interestingly, the choice of quadratic Lyapunov functions for the subsystems naturally
leads to a nonlinear mapping Γµ.

3.2. Neural networks. Consider a Cohen-Grossberg neural network, see [29],
e.g., given by

ẋi(t) = −ai(xi(t))
(
bi(xi(t))−

n∑
j=1

tijsj(xj(t)) + Ji

)
, (3.6)

i = 1, . . . , n, n ≥ 2, where xi denotes the state of the i-th neuron, ai is a strictly
positive amplification function, bi typically has the same sign as xi and is assumed
to satisfy |bi(xi)| > b̃i(|xi|) for some b̃i ∈ K∞, the activation function si is typically
assumed to be sigmoid. The matrix T = (tij)i,j=1,...,n describes the interconnection
of neurons in the network and Ji is a given constant input from outside. However for
our consideration we allow Ji to be an arbitrary measurable function in L∞.

Note that for any sigmoid function si there exists a γi ∈ K such that |si(xi)| <
γi(|xi|), following [29] we assume 0 < αi < ai(xi) < αi, αi, αi ∈ R.

Recall the triangle inequality for K∞-functions: For any γ, ρ ∈ K∞ and any
a, b ≥ 0 it holds

γ(a+ b) ≤ γ ◦ (id + ρ)(a) + γ ◦ (id + ρ−1)(b).

Define Vi(xi) = |xi| then each subsystem is ISS since the following implication
holds by the triangle inequality

|xi| > b̃−1
i ◦ (id + ρ)

 αi
αi − ε

n∑
j=1

|tij |γj(|xj |)

+ b̃−1
i ◦ (id + ρ−1)

(
αi

αi − ε
|Ji|
)

> b̃−1
i

 αi
αi − ε

( n∑
j=1

|tij |γj(|xj |) + |Ji|
)

=⇒ V̇i = −ai(xi)
(
|bi(xi)| − signxi

n∑
j=1

tijsj(xj) + signxiJi
)
< −ε|bi(x)|

for some ε satisfying αi > ε > 0 and arbitrary function ρ ∈ K∞.
In this case we have

µi(s, r) = b̃−1
i ◦ (id + ρ)(s1 + · · ·+ sn) + b̃−1

i ◦ (id + ρ−1)(r)

additive with respect to the external inputs and

γij =
αi|tij |
αi − ε

γj(|xj |), γiu =
αiid
αi − ε

.

The MAF µi satisfies (M1), (M2), and (M3). It satisfies (M4) if and only if (b̃i)−1 is
subadditive.

4. Monotone Operators and generalized small gain conditions. In Sec-
tion 2.4 we saw that in the ISS context the mutual influence between subsystems (2.1)
and the influence from external inputs to the subsystems can be quantized by the gain
matrices Γ and Γ and gain operators Γµ and Γµ. The interconnection structure of the
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subsystems naturally leads to a weighted, directed graph, where the weights are the
nonlinear gain functions, and the vertices are the the subsystems. There is an edge
from the vertex i to the vertex j if and only if there is an influence of the state xi on
the state xj , i.e., there is a nonzero gain γji.

Connectedness properties of the interconnection graph together with mapping
properties of the gain operators will yield a generalized small-gain condition. In
essence we need a nonlinear version of a Perron vector for the construction of a
Lyapunov function for the interconnected system. This will be made rigorous in the
sequel. But first we introduce some further notation.

The adjacency matrix AΓ = (aij) of a matrix Γ ∈ (K∞ ∪ {0})n×n is defined by
aij = 0 if γij ≡ 0 and aij = 1 otherwise. Then AΓ = (aij) is also the adjacency matrix
of the graph representing an interconnection.

We say that a matrix Γ is primitive, irreducible or reducible if and only if AΓ

is primitive, irreducible or reducible, respectively. A network or a graph is strongly
connected if and only if the associated adjacency matrix is irreducible, see also [2].

For K∞ functions α1, . . . , αn we define a diagonal operator D : Rn+ → Rn+ by

D(x) := (x1 + α1(x1), . . . , xn + αn(xn))T , x ∈ Rn+. (4.1)

For an operator T : Rn+ → Rn+, the condition T � id means that for all x 6= 0,
T (x) � x. In words, at least one component of T (x) has to be strictly less than the
corresponding component of x.

Definition 4.1 (Small gain conditions). Let a gain matrix Γ and a monotone
aggregation µ be given. The operator Γµ is said to satisfy the small gain condi-
tion (SGC), if

Γµ 6≥ id, (SGC)

Furthermore, Γµ satisfies the strong small gain condition (sSGC), if there exists a D
as in (4.1) such that

D ◦ Γµ 6≥ id . (sSGC)

It is not difficult to see that (sSGC) can equivalently be stated as

Γµ ◦D � id. (sSGC’)

Also for (sSGC) or (sSGC’) to hold it is sufficient to assume that the function
α1, . . . , αn are all identical. This can be seen by defining α(s) := mini αi(s). We
abbreviate this in writing D = diag(id + α) for some α ∈ K∞.

For maps T : Rn+ → Rn+ we define the following sets:

Ω(T ) := {x ∈ Rn+ : T (x) < x} =
n⋂
i=1

Ωi(T ), where

Ωi(T ) := {x ∈ Rn+ : T (x)i < xi} .

If no confusion arises we will omit the reference to T . Topological properties of the
introduced sets are related to the small gain conditions (SGC), cf. also [5, 6, 20]. They
will be used in the next section for the construction of an ISS Lyapunov function for
the interconnection.
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5. Lyapunov functions. In this section we present the two main results of the
paper. The first is a topological result on the existence of a jointly unbounded path
in the set Ω, provided that Γµ satisfies the small gain condition. This path will be
crucial in the construction of a Lyapunov function, which is the second main result
of this section.

Definition 5.1. A continuous path σ ∈ Kn∞ will be called an Ω-path with respect
to Γµ if

(i) for each i, the function σ−1
i is locally Lipschitz continuous on (0,∞);

(ii) for every compact set K ⊂ (0,∞) there are constants 0 < c < C such that
for all points of differentiability of σ−1

i and i = 1, . . . , n we have

0 < c ≤ (σ−1
i )′(r) ≤ C , ∀r ∈ K; (5.1)

(iii) σ(r) ∈ Ω(Γµ) for all r > 0, i.e.

Γµ(σ(r)) < σ(r) , ∀r > 0 . (5.2)

Now we can state the first of our two main results, which regards the existence
of Ω-paths.

Theorem 5.2. Let Γ ∈ (K∞∪{0})n×n be a gain matrix and µ ∈ MAFnn. Assume
that one of the following assumptions is satisfied

(i) Γµ is linear and the spectral radius of Γµ is less than one;
(ii) Γ is irreducible and Γµ � id;

(iii) µ = max and Γµ � id;
(iv) alternatively assume that Γµ is bounded, i.e., Γ ∈ ((K \ K∞) ∪ {0})n×n, and

satisfies Γµ ≥ 0.
Then there exists an Ω-path σ with respect to Γµ.

We will postpone the proof of this rather topological result to Section 8 and
reap the fruits of Theorem 5.2 first. Note, however, that for (iii) there exists a
“cycle gain < id”-type equivalent formulation, cf. Theorem 8.14.

In addition to the above result, the existence of Ω-paths can also be asserted
for reducible Γ and Γ with mixed, bounded and unbounded, class K entries, see
Theorem 8.12 and Proposition 8.13, respectively.

Theorem 5.3. Consider the interconnected system Σ given by (2.1), (2.2) where
each of the subsystems Σi has an ISS Lyapunov function Vi, the corresponding gain
matrix is given by (2.8), and µ = (µ1, . . . , µn)T is given by (2.7). Assume there are
an Ω-path σ with respect to Γµ and a function ϕ ∈ K∞ such that

Γµ(σ(r), ϕ(r)) < σ(r) , ∀ r > 0 (5.3)

is satisfied, then an ISS Lyapunov function for the overall system is given by

V (x) = max
i=1,...,n

σ−1
i (Vi(xi)) . (5.4)

In particular, for all points of differentiability of V we have the implication

V (x) ≥ max{ϕ−1(γiu(‖u‖)) | i = 1, . . . n} =⇒ ∇V (x)f(x, u) ≤ −α(‖x‖) , (5.5)

where α is a suitable positive definite function.
Note that by construction the Lyapunov function V is not smooth, even if the

functions Vi for the subsystems are. This is why it is appropriate in this framework
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to consider Lipschitz continuous Lyapunov functions, which are differentiable almost
everywhere.

Proof. We will show the assertion in the Clarke gradient sense. For x = 0 there
is nothing to show. So let 0 6= x = (xT1 , . . . , x

T
n )T . Denote by I the set of indices i for

which

V (x) = σ−1
i (Vi(xi)) ≥ max

j 6=i
σ−1
j (Vj(xj)) . (5.6)

Then xi 6= 0, for i ∈ I. Also as V is obtained through maximization we have because
of [4, p.83] that

∂V (x) ⊂ conv

{⋃
i∈I

∂[σ−1
i ◦ Vi ◦ πi](x)

}
. (5.7)

Fix i ∈ I and assume without loss of generality i = 1. Then if we assume
V (x) ≥ maxi=1,...,n{ϕ−1(γiu(‖u‖))} it follows in particular that γ1u(‖u‖) ≤ ϕ(V (x)).
Using the abbreviation r := V (x), denoting the first component of Γµ by Γµ,1 and
using assumption (5.3) we have

V1(x1) =σ1(r) > Γµ,1(σ(r), ϕ(r))
= µ1 [γ11(σ1(r)), . . . , γ1n(σn(r)), ϕ(r)]
≥ µ1 [γ11(σ1(r)), . . . , γ1n(σn(r)), γ1u(‖u‖)]
= µ1

[
γ11 ◦ σ1 ◦ σ−1

1 (V1(x1)), . . . , γ1n ◦ σn ◦ σ−1
1 (V1(x1)), γ1u(‖u‖)

]
≥ µ1 [γ11 ◦ V1(x1), . . . , γ1n ◦ Vn(xn), γ1u(‖u‖)] ,

where we have used (5.6) and (M2’) in the last inequality. Thus the ISS condition
(2.7) is applicable and we have for all ζ ∈ ∂V1(x1) that

〈ζ, f1(x, u)〉 ≤ −α1(‖x1‖) . (5.8)

By the chain rule for Lipschitz continuous functions [4, Theorem 2.5] we have

∂(σ−1
i ◦ Vi)(xi) ⊂ {cζ : c ∈ ∂σ−1

i (y) , y = Vi(xi) , ζ ∈ ∂Vi(xi)} .

Note that in the previous equation the number c is bounded away from zero because
of (5.1). We set for ρ > 0

α̃i(ρ) := cρ,i αi(ρ) > 0 ,

where cρ,i is the constant corresponding to the set K := {xi ∈ RNi : ρ/2 ≤
‖xi‖ ≤ 2ρ} given by (5.1) in the definition of an Ω-path. With the convention x =
(xT1 , . . . , x

T
n )T we now define for r > 0

α(r) = min{α̃i(‖xi‖) | ‖x‖ = r, V (x) = σ−1
i (Vi(xi)))} > 0 .

Here we have used, that for a given r > 0 and ‖x‖ = r the norm of ‖xi‖ such that
V (x) = σ−1

i (Vi(xi))) is bounded away from 0.
It now follows from (5.8) that if V (x) ≥ maxi=1,...,n{ϕ−1(γiu(‖u‖))}, then we

have for all ζ ∈ ∂
[
σ−1

1 ◦ V1

]
(x1) that

〈ζ, f1(x, u)〉 ≤ −α(‖x‖) . (5.9)
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In particular, the right hand side depends on x not x1. The same argument applies for
all i ∈ I. Now for any ζ ∈ ∂V (x) we have by (5.7) that ζ =

∑
i∈I λiciζi for suitable

λi ≥ 0,
∑
i∈I λi = 1 and with ζi ∈ ∂(Vi ◦ πi)(x) and ci ∈ ∂σ−1

i (Vi(xi)). It follows that

〈ζ, f(x, u)〉 =
∑
i∈I

λi〈ciζi, f(x, u)〉 =
∑
i∈I

λi〈ciπi(ζi), fi(x, u)〉

≤ −
∑
i∈I

λiα(‖x‖) = −α(‖x‖) .

This shows the assertion.
In the absence of external inputs, ISS is the same as 0-GAS (cf. [24, 25, 26]).

Here we have the following consequence which seems stronger than [16, Cor. 2.1],
as no robustness term D is needed. However, our result is formulated for Lyapunov
functions whereas the result in [16] is based on the trajectory formulation of ISS.

Corollary 5.4 (0-GAS for strongly interconnected networks). In the setting of
Theorem 5.3, assume that the external inputs satisfy u ≡ 0 and that the network of
interconnected systems is strongly connected. If Γµ � id then the network is 0-GAS.

Proof. By Theorem 5.2(ii) there exists an Ω-path and a nonsmooth Lyapunov for
the network is given by (5.4), hence the origin of the externally unforced composite
system is GAS.

We now specialize the Theorem 5.3 to particular cases of interest. Namely, when
the gain with respect to the external input u enters the ISS condition (i) additively,
(ii) via maximization and (iii) as a factor.

Corollary 5.5 (Additive gain of external input u). Consider the interconnected
system Σ given by (2.1), (2.2) where each of the subsystems Σi has an ISS Lyapunov
function Vi and the corresponding gain matrix is given by (2.9). Assume that the
ISS-condition is additive in the gain of u, that is,

Γµ(V1(x1), . . . , Vn(xn), ‖u‖) = Γµ(V1(x1), . . . , Vn(xn)) + γu(‖u‖) , (5.10)

where γu(‖u‖) = (γ1u(‖u‖), . . . , γnu(‖u‖))T . If Γµ is irreducible and if there exists an
α ∈ K∞ such that for D = diag(id +α) the gain operator Γµ satisfies the strong small
gain condition

D ◦ Γµ(s) 6≥ s

then the interconnected system is ISS and an ISS Lyapunov function is given by (5.4),
where σ ∈ Kn∞ is an arbitrary Ω-path with respect to D ◦ Γµ.

Proof. By Theorem 5.2 an Ω(D◦Γµ)-path σ exists. Observe that by irreducibility,
(M1), and (M3) it follows that Γµ(σ) is unbounded in all components. Let ϕ ∈ K∞
be such that for all r ≥ 0

min
i=1,...,n

{α(Γµ,i(σ(r)))} ≥ max
i=1,...,n

{γiu(ϕ(r))} .

Note that this is possible, because on the left we take the minimum of a finite number
of K∞ functions. Then we have for all r > 0, i = 1, . . . , n that

σi(r) > D ◦ Γµ,i(σ(r)) = Γµ,i(σ(r)) + α(Γµ,i(σ(r))) ≥ Γµ,i(σ(r)) + γiu(ϕ(r)) .

Thus σ(r) > Γµ(σ(r), ϕ(r)) and the assertion follows from Theorem 5.3.
Corollary 5.6 (Maximization w.r.t. external gain). Consider the intercon-

nected system Σ given by (2.1), (2.2) where each of the subsystems Σi has an ISS



ISS-LYAPUNOV FUNCTIONS FOR INTERCONNECTED SYSTEMS 15

Lyapunov function Vi and the corresponding gain matrix is given by (2.9). Assume
that u enters the ISS-condition via maximization, that is,

Γµ(V1(x1), . . . , Vn(xn), ‖u‖) = max {Γµ(V1(x1), . . . , Vn(xn)), γu(‖u‖)} , (5.11)

where γu(‖u‖) = (γ1u(‖u‖), . . . , γnu(‖u‖))T . Then, if Γµ is irreducible and satisfies
the small gain condition

Γµ(s) 6≥ s

the interconnected system is ISS and an ISS Lyapunov function is given by (5.4),
where σ ∈ Kn∞ is an arbitrary Ω-path with respect to Γµ and ϕ is a K∞ function with
the property

γiu ◦ ϕ(r) ≤ Γµ,i(σ(r)) , (5.12)

where Γµ,i denotes the i-th row of Γµ.
Proof. By Theorem 5.2 an Ω(Γµ)-path σ exists. Note that by irreducibility,

(M1), and (M3) it follows that Γµ(σ) is unbounded in all components. Hence ϕ ∈ K∞
satisfying (5.12) exists and we obtain

σ(r) > max { Γµ(σ(r)), γu(ϕ(r))} .

This is (5.3) for the case of maximization of gains in u. The claim follows from
Theorem 5.3.

In the next result observe that (M3) is not always necessary for the u-component
of µ.

Corollary 5.7 (Separation in gains). Consider the interconnected system Σ
given by (2.1), (2.2) where each of the subsystems Σi has an ISS Lyapunov function
Vi and the corresponding gain matrix Γ is given by (2.9). Assume that Γ is irreducible
and that the gains in the ISS-condition are separated, that is, there exist µ ∈ MAFnn,
c ∈ R, c > 0, and γu ∈ K∞ such that

Γµ(V1(x1), . . . , Vn(xn), ‖u‖) = (c+ γu(‖u‖)) Γµ(V1(x1), . . . , Vn(xn)) . (5.13)

If there exists an α ∈ K∞ such that for D = diag(c · id + id · α) the gain operator Γµ
satisfies the strong small gain condition

D ◦ Γµ(s) 6≥ s

then the interconnected system is ISS and an ISS Lyapunov function is given by (5.4),
where σ ∈ Kn∞ is an arbitrary Ω-path with respect to D ◦ Γµ(s).

Proof. If Γµ is irreducible, then also D◦Γµ is irreducible and so by Theorem 5.2 (ii)
an Ω(D ◦ Γµ)-path σ exists. Let ϕ ∈ K∞ be such that for all r ≥ 0

ϕ(r) ≤ min
i=1,...,n

{γ−1
u ◦ α ◦ Γµ,i(σ(r))} ,

where as in the previous corollaries we appeal to irreducibility, (M1), and (M3). Then
for each i we have

σi(r) > Γµ,i(σ(r))(c+ α(Γµ,i(σ(r)))) ≥ Γµ,i(σ(r))(c+ γu ◦ ϕ(r))

and hence

σ(r) > (c+ γu(ϕ(r)))Γµ(σ(r)) = Γµ(σ(r), ϕ(r))

and the assertion follows from (5.13) and Theorem 5.3.
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6. Reducible networks and scaling. The results that have been obtained so
far concern mostly irreducible networks, that is, networks with an irreducible gain
operator. Already in [22] it has been shown that cascades of ISS systems are ISS.
Cascades are a special case of networks where the gain matrix is reducible. In this
section we briefly explain how a Lyapunov function for a reducible network may be
constructed based on the construction for the strongly connected components of the
network. Another approach would be to construct the Ω-path for reducible operators
Γµ as has been done in [20]. It is well known, that if the network is not strongly
connected, or equivalently if the gain matrix Γ is reducible, then Γ may be brought
in upper block triangular form via a permutation of the vertices of the network as in
the nonnegative matrix case [2, 6]. After this transformation Γ is of the form

Γ =


Υ11 Υ12 . . . Υ1d Υ1u

0 Υ22 . . . Υ2d Υ2u

...
. . .

0 . . . 0 Υdd Υdu

 , (6.1)

where each of the blocks on the diagonal Υjj ∈ (K∞ ∪ {0})dj×dj , j = 1, . . . , d, is
either irreducible or 0. Let qj =

∑j−1
l=1 dl, with the convention that q1 = 0. We denote

the states corresponding to the strongly connected components by

zj =
[
xTqj+1 xTqj+2 . . . xqj+1

]
.

We will show that in order to obtain an overall ISS Lyapunov function it is sufficient
to construct ISS Lyapunov functions for each of the irreducible blocks (where the
respective states with higher indices are treated as inputs). The desired result is an
iterative application of the following observation.

Lemma 6.1. Let a gain matrix Γ ∈ (K∞ ∪ {0})2×3 be given by

Γ =
[
0 γ12 γ1u

0 0 γ2u

]
, (6.2)

and let Γµ be defined by µ ∈ MAF2
3. Then there exist an Ω-path σ and ϕ ∈ K∞ such

that (5.3) holds.
Proof. By construction the maps η1 : r 7→ µ1(γ12(r), γ1u(r)) and η2 : r 7→

µ2(γ12(u)) are in K∞. Choose a K∞-function η̃1 ≥ η1, such that η̃1 satisfies the
conditions (i) and (ii) in Definition 5.1. Define σ(r) =

[
2η̃1(r) r

]T and ϕ(r) :=
min{r, η−1

2 (r/2)}. Then it is a straightforward calculation to check that the assertion
holds.

The result is now as follows.
Proposition 6.2. Consider a reducible interconnected system Σ given by (2.1),

(2.2) where each of the subsystems Σi has an ISS Lyapunov function Vi, the cor-
responding gain matrix is given by (2.8), and µ = (µ1, . . . , µn)T is given by (2.7).
Assume that that the gain matrix Γ is in the reduced form (6.1). If for each j =
1, . . . , d− 1 there exists an ISS Lyapunov function Wj for the state zj with respect to
the inputs zj+1, . . . , zd, u then there exists an ISS Lyapunov function V for the state
x with respect to the input u.

Proof. By assumption for each j = 1, . . . , d−1 there exist gain functions χjk ∈ K∞
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and χju ∈ K∞ such that

Wj(zj) ≥ µ̃j(χjj+1(Wj+1(zj+1)), . . . , χjd(Wd(zd)), χju(‖u‖))
=⇒ ∇Wj(zj)fj(zj , zj+1, . . . , zd, u) < −α̃j(‖zj‖) .

We now argue by induction. If d = 1, there is nothing to show. If the result is shown
for d−1 blocks, consider a gain matrix as in (6.1). By assumption there exists an ISS
Lyapunov function Vd−1 such that

Vd−1(zd−1) ≥ µ1(γ12(Vd(zd)), γ1u(‖u‖))
=⇒ ∇Vd−1(zd−1)fd−1(zd−1, zd, u) ≤ −αd−1(‖zd−1‖) .

As the remaining part has only external inputs, we see that Γ is of the form (6.2) and
so Lemma 6.1 is applicable. This shows that the assumptions of Theorem 5.3 are met
and so a Lyapunov function for the overall system is given by (5.4).

It is easy to see that the assumption Γµ 6≥ id (or Γµ ◦ D 6≥ id) is equivalent to
the requirement that the blocks Υjj on the diagonal satisfy the (strong) small gain
condition (SGC)/(sSGC). Thus we immediately obtain the following statements.

Corollary 6.3 (Summation of gains). Consider the interconnected system Σ
given by (2.1), (2.2) where each of the subsystems Σi has an ISS Lyapunov function
Vi and the corresponding gain matrix is given by (2.9). Assume that the ISS-condition
is additive in the gains, that is,

Γµ,i(V1(x1), . . . , Vn(xn), ‖u‖) =
n∑
j=1

γij(Vj(xj)) + γiu(‖u‖) . (6.3)

If there exists an α ∈ K∞ such that for D = diag(id+α) the gain operator Γµ satisfies
the strong small gain condition

D ◦ Γµ(s) 6≥ s

then the interconnected system is ISS.
Proof. After permutation Γ is of the form (6.1). For each of the diagonal blocks

Corollary 5.5 is applicable and the result follows from Proposition 6.2.
Corollary 6.4 (Maximization of gains). Consider the interconnected system Σ

given by (2.1), (2.2) where each of the subsystems Σi has an ISS Lyapunov function
Vi and the corresponding gain matrix is given by (2.9). Assume that the gains enter
the ISS-condition via maximization, that is,

Γµ,i(V1(x1), . . . , Vn(xn), ‖u‖) = max {γi1(V1(x1)), . . . , γin(Vn(xn)), γiu(‖u‖)} . (6.4)

If the gain operator Γµ satisfies the small gain condition

Γµ(s) 6≥ s

then the interconnected system is ISS.
Proof. After permutation Γ is of the form (6.1). For each of the diagonal blocks

Corollary 5.6 is applicable and the result follows from Proposition 6.2.
Now we consider examples of application of the obtained results.
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7. Applications of the general small gain theorem. In Section 3 we have
presented several examples of functions µi, γi and gain operators Γµ, Γµ. Here we will
show how our main results apply to these examples. Before we proceed, let us consider
the special case of homogeneous Γµ (of degree 1) [11]. Here Γµ is homogeneous of
degree one if for any s ∈ Rn+ and any r > 0 we have Γµ(rs) = rΓµ(s).

Proposition 7.1 (Explicit paths and Lyapunov functions for homogeneous gain
operators). Let Σ in (1.2) be a strongly connected network of subsystems (1.1) and Γµ,
Γµ be the corresponding gain operators. Let Γµ be homogeneous and let Γµ satisfy one
of the conditions (6.3), (6.4), or (5.13). If Γµ satisfies the strong small gain condition
(sSGC) ( (SGC) in case of (6.4)) then the interconnection Σ is ISS, moreover there
exists a (nonlinear) eigenvector 0 < s ∈ Rn of Γµ such that Γµ(s) = λs with λ < 1
and an ISS-Lyapunov function for the network is given by

V (x) = max
i
{Vi(xi)/si}. (7.1)

Proof. First note that one of the Corollaries 6.3, 6.4, or 5.7 can be applied and
the ISS property follows immediately. By the assumptions of the proposition we
have an irreducible monotone homogeneous operator Γµ on the positive orthant Rn+.
By the generalized Perron-Frobenius Theorem [11] there exists a positive eigenvector
s ∈ Rn+. Its eigenvalue λ is less than one, otherwise we have a contradiction to the
small gain condition. The ray defined by this vector s is a corresponding Ω-path and
by Theorem 5.3 we obtain (7.1).

One type of homogeneous operators arises from linear operators through multi-
plicative coordinate transforms. In this case we can further specialize the assumptions
of the previous result.

Lemma 7.2. Let α ∈ K∞ satisfy α(ab) = α(a)α(b)1 for all a, b ≥ 0. Let D =
diag(α), G ∈ Rn×n+ , and Γµ be given by

Γµ(s) = D−1(GD(s)) .

Then Γµ is homogeneous. Moreover, Γµ � id if and only if the spectral radius of G is
less than one.

Proof. If the spectral radius of G is less than one, then there exists a positive
vector s̃ satisfying Gs̃ < s̃: Just add a small δ > 0 to every entry of G, so that the
spectral radius ρ(G̃) of G̃ is still less than one, due to continuity of the spectrum. Then
there exists a Perron vector s̃ such that Gs̃ < G̃s̃ = ρ(G̃)s̃ < s̃. Define ŝ = D−1(s̃) > 0
and observe that α−1(ab) = α−1(a)α−1(b). Then we have

Γµ(rŝ) = D−1(GD(rŝ)) = D−1(α(r)GD(ŝ)) = α(r)D−1(Gs̃)

< rD−1(s̃) = rŝ ,

(7.2)

for all r ≥ 0. So an Ω-path for Γµ is given by σ(r) = rŝ for r ≥ 0. Existence of an
Ω-path implies the small gain condition: The origin in Rn+ is globally attractive with
respect to the system sk+1 = Γµ(sk), as can be seen by a monotonicity argument. By
[6, Theorem 23] or [20, Prop. 4.1] we have Γµ � id.

Assuming that the spectral radius of G is greater or equal to one there exists s̃ ∈
Rn+, s̃ 6= 0, such that Gs̃ ≥ s̃. Defining ŝ = D−1(s̃) we have Γµ(ŝ) = D−1(GD(ŝ)) =
D−1(Gs̃) ≥ D−1(s̃) = ŝ. Hence Γµ � id if and only if the spectral radius of G is less
than one.

Homogeneity of Γµ is obtained as in (7.2).

1In other words, α(r) = rc for some c > 0.
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7.1. Application to linear interconnected systems. Consider the intercon-
nection (3.2) of linear systems from Section 3.1.

Proposition 7.3. Let each Σi in (3.2) be ISS with a quadratic ISS Lyapunov
function Vi, so that the corresponding operator Γµ can taken to be as in (3.5). If the
spectral radius of the associated matrix

G =
(

2b3i ‖∆ij‖
ci(1−ε)aj

)
ij

(7.3)

is less than 1, then the interconnection

Σ : ẋ = (A+ ∆)x+Bu

is ISS and its (nonsmooth) ISS Lyapunov function can be taken as

V (x) = max
i

1
ŝi
xTi Pixi

for some positive vector ŝ ∈ Rn+.
Proof. The operator Γµ is of the form D−1(GD(·)), where D = diag(α) for

α(r) =
√
r. Observe that α satisfies the assumptions of Lemma 7.2, which yields the

spectral radius condition for ISS and the positive vector ŝ. By Proposition 7.1 an ISS
Lyapunov function can be taken as V (x) = maxi 1

ŝi
xTi Pixi.

7.2. Application to neural networks. Consider the neural network (3.6) dis-
cussed in Section 3.2. This is a coupled system of nonlinear equations, and we have
seen that each subsystem is ISS. Note that so far we have not imposed any restrictions
on the coefficients tij . Moreover the assumptions imposed on ai, bi, si are essentially
milder then in [29]. However to obtain the ISS property of the network we need to
require more. The small gain condition can be used for this purpose. It will impose
some restrictions on the coupling terms tijs(xj). From Corollary 5.5 it follows:

Theorem 7.4. Consider the Cohen-Grossberg neural network (3.6). Let Γµ be
given by γij and µi, i, j = 1, . . . , n, calculated for the interconnection in Section 3.
Assume that Γµ satisfies the strong small gain condition D ◦ Γµ 6≥ id for s ∈ Rn+ \ 0.
Then this network is ISS from (J1, . . . , Jn)T to x.

Remark 7.5. In [29] the authors have proved that there exists a unique equilib-
rium point for the network and given constant external inputs. They have also proved
the exponential stability of this equilibrium. We have considered arbitrary external
inputs to the network and proved the ISS property for the interconnection.

8. Path construction. This section explains the relation between the small gain
condition for Γµ and its mapping properties. Then we construct a strictly increasing
Ω-path and prove Theorem 5.2 and some extensions. Let us first consider some simple
particular cases to explain the main ideas, as depicted in Figure 8.1. In the following
subsections we then proceed to the main path construction results.

A map T : Rn+ → Rn+ is monotone if x ≤ y implies T (x) ≤ T (y). Clearly
any matrix Γ ∈ (K∞ ∪ {0})n×n together with an aggregation µ ∈ MAFnn induces a
monotone map.

Lemma 8.1. Let Γ ∈ (K∪{0})n×n and µ ∈ MAFnn, such that Γµ satisfies (SGC).
If s ∈ Ω(Γµ), then limk→∞ Γkµ(s) = 0.

Proof. If s ∈ Ω, then Γµ(s) < s and by monotonicity Γ2
µ(s) ≤ Γµ(s). By

induction Γkµ(s) is a monotonically decreasing sequence bounded from below by 0.
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s1

s2 γ−1
12 (s1)

γ21(s1)

Ω

s1

s2 γ−1
12 (s1)

γ21(s1)

Ω

Fig. 8.1. A sequence of points {Γkµ(s)}k≥0 for some s ∈ Ω(Γµ), where Γµ : R2
+ → R2

+ is

given by Γµ(s) = (γ12(s2), γ21(s1))T and satisfies Γµ � id, or, equivalently, γ21 ◦ γ12 < id, and the
corresponding linear interpolation, cf. Lemmas 8.1, 8.2, and 8.3.

Thus limk→∞ Γkµ(s) =: s∗ exists and by continuity we have Γµ(s∗) = s∗. By the small
gain condition it follows s∗ = 0.

Lemma 8.2. Assume that Γ ∈ (K∪{0})n×n has no zero rows and let µ ∈ MAFnn.
If 0 < s ∈ Ω(Γµ), then

(i) 0 < Γµ(s) ∈ Ω
(ii) for all λ ∈ [0, 1] the convex combination sλ := λs+ (1− λ)Γµ(s) ∈ Ω.
Proof. (i) By assumption Γµ(s) < s and so by the monotonicity assumption (M2)

we have Γµ(Γµ(s)) < Γµ(s). Furthermore as s > 0 the matrix Γ(s) has no zeros rows.
This implies that Γµ(s) > 0 by assumption (M1). This concludes the proof.

(ii) As Γµ(s) < s it follows for all λ ∈ (0, 1) that Γµ(s) < sλ < s. Hence by
monotonicity and using (i)

0 < Γµ(Γµ(s)) < Γµ(sλ) < Γµ(s) < sλ .

This implies sλ ∈ Ω as desired.
Lemma 8.3. Assume that Γ ∈ (K∪ {0})n×n has no zero rows and let µ ∈ MAFnn

be such that Γµ satisfies the small gain condition (SGC). Let s ∈ Ω(Γµ). Then there
exists a path in Ω ∪ {0} connecting the origin and s.

Proof. By Lemma 8.2, the line segment {λΓµ(s) + (1 − λ)s} ⊂ Ω. By induction
all the line segments {λΓk+1

µ (s) + (1− λ)Γkµ(s)} ⊂ Ω for k ≥ 1. Using Lemma 8.1 we
see that Γkµ(s) → 0 as k → ∞. This constructs a Ω-path with respect to Γµ from 0
to s.

The following result applies to Γ whose entries are bounded, i.e., in (K\K∞)∪{0}.
Proposition 8.4. Assume that Γ ∈ (K ∪ {0})n×n has no zero rows and let µ ∈

MAFnn be such that Γµ satisfies the small gain condition (SGC). Assume furthermore
that Γµ is bounded, then there exists an Ω-path with respect to Γµ.

Proof. By assumption the set Γµ(Rn+) is bounded, so pick s > sup Γµ(Rn+). Then
clearly, Γµ(s) < s and so s ∈ Ω. By the same argument ηs ∈ Ω for all η ∈ [1,∞).
Thus a path in Ω through the point s exists, if we find a path from s to 0 contained
in Ω. The remainder of the result is given by Lemma 8.3.

The difficulty now arises if Γµ happens to be unbounded, i.e., Γ contains entries
of class K∞. In the unbounded case the simple construction above is not possible. In
the following we will first consider the case that all nonzero entries of Γ are of class
K∞. Beforehand we introduce a few technical lemmas.
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8.1. Technical lemmas. Throughout this subsection T : Rn+ → Rn+ denotes a
continuous, monotone map, i.e., T satisfies T (v) ≤ T (w) whenever v ≤ w. We start
with a few observations.

Lemma 8.5. Let ρ ∈ K∞. Then there exists a ρ̃ ∈ K∞ such that (id + ρ)−1 =
id− ρ̃.

Proof. Just define ρ̃ = ρ◦(id+ρ)−1. Then (id−ρ̃)◦(id+ρ) = (id+ρ)−ρ̃◦(id+ρ) =
id + ρ− ρ ◦ (id + ρ)−1 ◦ (id+ ρ) = id + ρ− ρ = id, which proves the lemma.

Lemma 8.6.
(i) Let D = diag(ρ) for some ρ ∈ K∞ such that ρ > id. Then for any k ≥ 0 there

exist ρ(k)
1 , ρ

(k)
2 ∈ K∞ satisfying ρ

(k)
i > id, such that for D(k)

i = diag(ρ(k)
i ),

i = 1, 2,

D = D
(k)
1 ◦D(k)

2 .

Moreover, D(k)
2 , k ≥ 0, can be chosen such that for all 0 < s ∈ Rn+ we have

D
(k)
2 (s) < D

(k+1)
2 (s).

(ii) Let D = diag(id + α) for some α ∈ K∞. Then there exist α1, α2 ∈ K∞, such
that for Di = diag(id + αi), i = 1, 2,

D = D1 ◦D2.

For maps T : Rn+ → Rn+ define the decay set

Ψ(T ) := {x ∈ Rn+ : T (x) ≤ x} ,

where we again omit the reference to T if this is clear from the context.
Lemma 8.7. Let T : Rn+ → Rn+ be monotone and D = diag(ρ) for some ρ ∈

K∞, ρ > id. Then
(i) T k+1(Ψ) ⊂ T k(Ψ) for all k ≥ 0;

(ii) Ψ(D ◦ T ) ∩ {s ∈ Rn+ : s > 0} ⊂ Ω(T ), if T satisfies T (v) < T (w) whenever
v < w; the same is true for D ◦ T replaced by T ◦D;

The proofs of the lemmas are simple and thus omitted for reasons of space. Nev-
ertheless they can be found in [19, p.10, p.29].

We will need the following connectedness property in the sequel.
Proposition 8.8. Let Γ ∈ (K ∪ {0})n×n and µ ∈ MAFnn be such that Γµ

satisfies the small gain condition (SGC). Then Ψ is nonempty and pathwise connected.
Moreover, if Γµ satisfies Γµ(v) < Γµ(w) whenever v < w, then for any s ∈ Ω(Γµ)
there exists a strictly increasing Ω-path connecting 0 and s.

Proof. Note that always 0 ∈ Ψ, hence Ψ cannot be empty. Along the lines the
proof of Lemma 8.3 it follows that each point in Ψ is pathwise connected to the origin.

Another crucial step, which is of topological nature, regards preimages of points
in the decay set Ψ. In general it is not guaranteed, that for s ∈ Rn+ with T (s) ∈ Ψ,
we also have s ∈ Ψ. The set of points in Ψ for which preimages of arbitrary order are
also in Ψ is the set

Ψ∞(T ) :=
∞⋂
k=0

T k(Ψ).
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Of course, this set might be empty or bounded. We will use it to construct Ω-paths
for operators Γµ satisfying the small gain condition.

Proposition 8.9 ([20, Prop. 5.3]). Let T : Rn+ → Rn+ be monotone and contin-
uous and satisfy T (s) � s for all s 6= 0. Assume that T satisfies the property

‖sk‖ → ∞ =⇒ ‖T (sk)‖ −→ ∞ (8.1)

as k →∞ for any sequence {sk}k∈N ⊂ Rn+.
Then Ψ∞(T ) ⊂ Ψ(T ), Ψ∞(T ) ∩ Sr 6= ∅ for all r ≥ 0, and Ψ∞(T ) is unbounded.

Fig. 8.2. A sketch of the set Ψ∞ ⊂ Ψ ⊂ Rn+ in Proposition 8.9.

A result based on the topological fixed point theorem due to Knaster, Kuratowski,
and Mazurkiewicz allows to relate Ω and the small gain condition. It is essential for
the proof of Proposition 8.9.

Proposition 8.10 (DRW’2007). Let T : Rn+ → Rn+ be monotone and continuous.
If T (s) � s for all s ∈ Rn+ then the set Ω ∩ Sr is nonempty for all r > 0.

In particular, s ∈ Ω∩ Sr for r > 0 implies s > 0. The proof for this result can be
found in [19, Prop. 1.5.3, p.26] or in a slightly different form in [6].

8.2. Paths for K∞∪{0} gain matrices. In this subsection we consider matrices
Γ ∈ (K∞ ∪ {0})n×n, i.e., all nonzero entries of Γ are assumed to be unbounded
functions.

In this setting we assume and utilize that the graph associated to Γ is strongly
connected, i.e., Γ is irreducible. So that if we consider powers Γkµ(x), for each compo-
nents i and j there exists a k = k(i, j) such that t 7→ Γkµ(t · ej)i is a function of class
K∞.

Theorem 8.11. Let Γ ∈ (K∞ ∪ {0})n×n be irreducible, µ ∈ MAFnn, and assume
Γµ � id. Then there exists a strictly increasing path σ ∈ Kn∞ satisfying

Γµ(σ(r)) < σ(r), ∀r > 0.

The main technical difficulty in the proof is to construct the path in the un-
bounded direction, the other case has already been dealt with in Proposition 8.8.

The proof comprises the following steps: First due to [20, Prop. 5.6] we may
choose a K∞ function ϕ > id so that for D = diag(ϕ) we have Γµ ◦ D � id. Then
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we construct a monotone (but not necessarily strictly monotone) sequence {sk}k≥0

in Ψ(Γµ ◦D), satisfying sk = Γµ(D(sk+1)) � sk+1, so that each component sequence
is unbounded. At this point a linear interpolation of the sequence points may not
yield a strictly increasing path. So finally we use the “extra space” provided by D in
the set Ω(Γµ) ⊃ Ω(Γµ ◦D) to obtain a strictly increasing sequence {s̃k}k≥0 in Ω(Γµ)
which we can linearly interpolate to obtain the desired Ω-path.

Proof. Since Γ is irreducible, it has no zero rows and hence Γµ satisfies Γµ(v) <
Γµ(w) whenever v < w. By [20, Prop. 5.6] there exists a ϕ > id so that for D =
diag(ϕ) we have Γµ ◦ D � id. Now we construct a nondecreasing sequence {sk} in
Ψ(Γµ ◦D):
Let T := Γµ ◦D. Then T and by induction also all powers T l, l ≥ 1, satisfy (8.1).
By Proposition 8.9 the set Ψ∞(T ) is unbounded, so we may pick an 0 6= s0 ∈ Ψ∞(T ).
We claim that s0 > 0. Indeed, due to irreducibility of Γ (and Assumption 2.5) the
following property holds: For any pair 1 ≤ i, j ≤ n there exists an l ≥ 1 such that

r 7→ (Γlµ(rej))i (8.2)

is a K∞ function, where ej is the j-th unit vector. By monotonicity the same property
holds for T . Now let j ∈ {1, . . . , n} be an index such that s0

j 6= 0 and choose r ∈ (0,∞)
such that rej ≤ s0. Then for each i choose l such that (8.2) holds for i, j, l. Then we
have

0 < (T l(rej))i ≤ (T l(s0))i ≤ s0
i ,

because of monotonicity and as T l(s0) ≤ s0, due to Lemma 8.7(i).
Now define a sequence {sk}k≥0 by choosing

sk+1 ∈ T−1(sk) ∩Ψ∞(T )

for k ≥ 0. This is possible, since by definition Ψ∞(T ) is backward invariant under T .
This sequence {sk} satisfies sk � sk+1 by definition. We claim that it is un-

bounded, and also unbounded in every component: To this end assume first that it is
bounded. Then by monotonicity there exists a limit s∗ = limk→∞ sk. By continuity
of T and since sk = T (sk+1) we have

s∗ = lim
k→∞

sk = lim
k→∞

T (sk+1) = T

(
lim
k→∞

sk+1

)
= T (s∗)

contradicting T (s) � s for all s 6= 0. Hence the sequence {sk} must be unbounded.
Let j be an index such that {skj }k∈N is unbounded, let i ∈ {1, . . . , n} be arbitrary

and choose l such that (8.2) holds for i, j, l. Choose real numbers rk →∞ such that
rkej ≤ sk for all k ∈ N. Then we have

(T l(rkej))i ≤ (T l(sk))i = sk−li .

As the term on the left goes to ∞ for k → ∞, so does ski . Hence {sk} is unbounded
in every component.
Now by Lemma 8.7(ii) the sequence {sk} is contained in Ω(Γµ), but it may not be
strictly increasing, as we only know sk � sk+1 for all k ≥ 0. We define a strictly
increasing sequence {s̃k} as follows: By Lemma 8.6 for any k ≥ 0 we may factorize
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D = D
(k)
1 ◦D(k)

2 in such a way that D(k)
2 (s) < D

(k+1)
2 (s) for all k ≥ 0 and all s > 0.

Using this factorization we define

s̃k := D
(k)
2 (sk)

for all k ≥ 0. By the definition of D(k)
2 , this sequence is clearly strictly increasing and

inherits from {sk} the unboundedness in all components.
We claim that {s̃k} ⊂ Ω(Γµ): This follows from

s̃k > sk ≥ Γµ ◦D(sk) = Γµ ◦D(k)
1 ◦D(k)

2 (sk) = Γµ ◦D(k)
1 (s̃k) > Γµ(s̃k).

Now we prove that for λ ∈ (0, 1) we have (1− λ)s̃k + λs̃k+1 ∈ Ω(Γµ). Clearly

s̃k < (1− λ)s̃k + λs̃k+1 < s̃k+1

and application of the strictly increasing operator Γµ yields

Γµ((1− λ)s̃k + λs̃k+1) < Γµ(s̃k+1)

= Γµ ◦D(k+1)
2 (sk+1) < Γµ ◦D(k+1)

1 ◦D(k+1)
2 (sk+1)

= sk < s̃k < (1− λ)s̃k + λs̃k+1.

Hence (1− λ)s̃k + λs̃k+1 ∈ Ω(Γµ).
Now we may define σ as a parametrization of the linear interpolation of the points
{s̃k}k≥0 in the unbounded direction and utilize the construction from Lemma 8.3 for
the other direction. Clearly this function σ has component functions of class K∞ and
is piecewise linear on every compact interval contained in (0,∞).

It is possible to consider the reducible case in a similar fashion. The argument is
essentially an induction over the number of irreducible and zero blocks on the diagonal
of the reducible operator. We cite the following result from [20, Thm 5.8]. However,
for the construction of an ISS Lyapunov function in the case of reducible Γ, we take
a different route as described in Section 6, thus avoiding the use of assumption (M4).

Theorem 8.12. Let Γ ∈ (K∞ ∪ {0})n×n be reducible, µ ∈ MAFnn satisfying
(M4), D = diag(id +α) for some ρ ∈ K∞, and assume Γµ ◦D � id. Then there exists
a monotone and continuous operator D̃ : Rn+ → Rn+ and a strictly increasing path
σ : R+ → Rn+ whose component functions are all unbounded, such that Γµ◦D̃(σ) < σ.

8.3. General Γµ. In the preceding subsections we have seen that it is possible
to construct Ω-paths for matrices Γ whose nonzero entries are either all bounded, or
all unbounded. It remains to consider the case that the nonzero entries of Γ are partly
of class K∞ and partly of class K \ K∞. We can state the following result.

Proposition 8.13. Let Γ ∈ (K ∪ {0})n×n and let µ ∈ MAFnn satisfy (M4).
Assume Γµ satisfies (sSGC). Then there exists an Ω-path for Γµ.
Proof. Write

Γ = ΓU + ΓB

with ΓU ∈ (K∞ ∪ {0})n×n, ΓB ∈ (K \ K∞ ∪ {0})n×n. Clearly we have (ΓU )µ ≤ Γµ
and (ΓB)µ ≤ Γµ and hence both maps satisfy

(Γ•)µ � id,

where • serves as a placeholder for the subscripts U and B.
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The map (ΓB)µ is bounded. Hence s∗ := sup(ΓB)µ(Rn+) is a finite vector.
By Theorem 8.12. for (ΓU )µ there exists a K∞ function ρ̃ and a K∞-path σU so that
for the diagonal operator D̃ = diag(id + ρ̃) we have

((ΓU )µ ◦ D̃)(σU (r)) < σU (r), for all r > 0 .

Similarly, by Proposition 8.4, there exists a K∞-path σB such that (ΓB)µ(σB(r)) <
σB(r) for all r > 0. In fact, and this is the key to this proof, it is possible to choose
σB in the region where σB(r) > s∗ to grow arbitrarily slowly: For any α, β ∈ K∞ we
can find a κ ∈ K∞, such that

(α ◦ κ)(r) < β(r), r > 0,

e.g., by choosing κ ∈ K∞ satisfying κ(r) < (α−1 ◦ β)(r). This is always possible.
Denote D̄ = diag(ρ̃), (so that D̃ = id + D̄) and choose r∗, such that D̄(σU (r∗)) > s∗.
Then after reparametrization we may assume that

σB(r) < D̄(σU (r)) and σB(r) > s∗

for all r ≥ r∗. Using Lemma 8.3, we let σL : [0, r∗] → Rn+ be a finite-length path
satisfying

Γµ(σL(r)) < σL(r), ∀r ∈ (0, r∗],
σL is strictly increasing

σL(0) = 0 and σL(r∗) = σB(r∗) + σU (r∗).

Now define σ by

σ(r) =

{
σB(r) + σU (r) if r > r∗

σL(r) if r < r∗.

It remains to check that σ satisfies Γµ(σ(r)) < σ(r) for r ≥ r∗. Indeed, for r ≥ r∗ we
have

σ(r) = σU (r) + σB(r) > ((ΓU )µ ◦ D̃)(σU (r)) + s∗

> (ΓU )µ(σU (r) + σB(r)) + (ΓB)µ(σU (r) + σB(r))
≥ Γµ(σU (r) + σB(r)),

where the last inequality is due to (M4). This completes the proof.

8.4. Special case: Maximization. The case when the aggregation is the max-
imum, i.e., µ = max, is indeed a special case, since not only the small gain condition
can be formulated in simpler manner, but also the path construction can be achieved
without the need of the diagonal operator D as before.

A cycle in a matrix Γ is finite sequence of nonzero entries of Γ of the form

(γi1,i2 , γi2,i3 , . . . , γiK ,i1).

A cycle is called subordinated if i1 > max{i2, . . . , iK}, and it is called a contraction, if

γi1,i2 ◦ γi2,i3 ◦ . . . ◦ γiK ,i1 < id.
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It is an easy exercise to show that when all subordinated cycles are contractions then
already all cycles are contractions.

Theorem 8.14. Let µ = max and Γ ∈ (K ∪ {0})n×n. If all subordinated cycles
of Γ are contractions, then there exists a Ω-path with respect to Γµ.

The proof is composed of the following steps. The first step is to show that the
cycle condition (all cycles being contractions) is equivalent to Γµ � id. Note that
µ = max automatically satisfies (M4), but (M4) is actually not needed for the proof.
Then the path-construction can then essentially be done as before, replacing sums by
maximization, and one can even renounce the use of D = diag(id + ρ). Cf. also[20].

8.5. Proof of Theorem 5.2. We now come to the easiest part of this section,
which is to combine all the preceding results to one general theorem for matrices with
entries of class K, namely Theorem 5.2.
Proof of Theorem 5.2.

(i) In the linear case we can identify Γµ with a real matrix with nonnegative
entries. Then there exists a positive vector v > 0 so that Γµv < v if the
spectral radius ρ(Γµ) < 1, cf. [2] or [19, Lemma 2.0.1, p.33]. For r > 0 this
gives Γµrv < rv, i.e., a K∞-path is given by σ(r) = rv.

(ii) This is Theorem 8.11.
(iii) This is Theorem 8.14.
(iv) This is Proposition 8.4.

9. Remarks for the case of three subsystems. Recall that a construction
of an Ω-path σ for the case of two subsystem was given in [15]. We have seen that
in a general case of n ∈ N subsystems the construction involves more theory and
topological properties of Γµ that follow from the small gain condition. However in case
of three subsystems σ can be found by rather simple considerations. Here we provide
this illustrative construction. Let us consider the special case Γ ∈ (K∞ ∪ {0})3×3,
µi(s) = s1 + s2 + s3, i = 1, 2, 3, and for simplicity assume that γij ∈ K∞ for all i 6= j,
so that

Γ =

 0 γ12 γ13

γ21 0 γ23

γ31 γ32 0

 , Γµ(s) =

 γ12(s2) + γ13(s3)
γ21(s1) + γ23(s3)
γ31(s1) + γ32(s2)

 6≥
 s1

s2

s3

 (9.1)

Fix s1 ≥ 0, then it follows that there is exactly one s2 satisfying

γ−1
13 (s1 − γ12(s2)) = γ−1

23 (s2 − γ21(s1)) , (9.2)

indeed, for a fixed s1 the left side of (9.2) is strictly decreasing function of s2 while
the right side of (9.2) is strictly increasing one. The small gain condition (9.1) in
particular assures that γ−1

12 (γ−1
21 (r)) < r for any r > 0. Let s∗2 be the solution of

s1 − γ12(s2) = 0 and s∗∗2 be the solution of s2 − γ21(s1) = 0 then

s∗2 = γ−1
12 (s1) = γ−1

12 (γ−1
21 (s∗∗2 )) < s∗∗2 .

Hence the zero point of the left side of (9.2) is greater as one of the right side of (9.2).
This proves that for any s1 there is always exactly one s2 satisfying (9.2).

By the continuity and monotonicity of γ12, γ21, γ13, γ23 follows that s2 depends
continuously on s1 and is strictly increasing with s1. We can define σ1(r) = r for
r ≥ 0 and σ2(r) to be the unique s2 solving (9.2) for s1 = r.

Denote h(r) = γ31(σ1(r)) + γ32(σ2(r)) and g(r) = γ−1
13 (σ1(r) − γ12(σ2(r))) =

γ−1
23 (σ2(r) − γ21(σ1(r))), and define M(r) := {s3 : h(r) < s3 < g(r)}. Let us show
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that M(r) 6= ∅ for all r > 0. If this is not true then there exists r∗ > 0 such that
s∗3 := h(r∗) ≥ g(r∗) holds. Consider the point s∗ := (s∗1, s

∗
2, s
∗
3) := (r∗, σ2(r∗), s∗3).

Then s∗1 ≥ g(r∗) = γ−1
13 (s∗1 − γ12(s∗2)), s∗3 ≥ g(r∗) = γ−1

23 (s∗2 − γ21(s∗1)), and s∗3 =
h(r∗) = γ31(s∗1) + γ32(s∗2). In other words,

Γ(s∗) =

γ12(s∗2) + γ13(s∗3)
γ21(s∗1) + γ23(s∗3)
γ31(s∗1) + γ32(s∗2)

 ≥
s∗1s∗2
s∗3

 ,

contradicting (2.1). Hence M(r) is not empty for all r > 0.
Consider the functions h(r) and g(r). The question is how to choose σ3(r) ∈

M(r) such that σ3 ∈ K∞. Note that h(r) ∈ K∞. Let g∗(r) := minu≥r g(u), so
that g∗(r) ≤ g(r) for all r ≥ 0. Since h(r) is unbounded, for all r > 0 the set
C(r) := arg minu≥r g(u) is compact and for all points p ∈ C(r) the relation g∗(r) ≥
g(p) > h(p) ≥ h(r) holds. We have h(r) < g∗(r) ≤ g(r) for all r > 0 where g∗ is
a (not necessarily strictly) increasing function. Now take σ3(r) := 1

2 (g∗(r) + h(r))
and observce that σ3 ∈ K∞ and h(r) < σ3(r) < g∗(r) for all r > 0. Hence σ :=
(σ1, σ2, σ3)T satisfies Γµ(σ(r)) < σ(r) for all r > 0.

The case where one of γij is not a K∞ function but zero can be treated similarly.

10. Conclusions. In this paper we have provided a method for construction of
ISS-Lyapunov functions for interconnections of nonlinear ISS systems. The method
applies for an interconnection of an arbitrary finite number of subsystems intercon-
nected in an arbitrary way and satisfying a small gain condition. The small gain
condition is imposed on the nonlinear gain operator Γµ that we have introduced here.
This operator contains the information of the topological structure of the network
and the interactions between its subsystems. An ISS-Lyapunov function for such a
network is given in terms of ISS-Lyapunov functions of subsystems and some auxiliary
functions. We have shown how this construction is related to the small gain condition
and mapping properties of the gain operator Γµ and its invariant sets. Namely the
small gain condition guarantees the existence of an unbounded vector function with
path in an invariant set Ω of the operator Γµ. This auxiliary function can be used to
rescale the ISS-Lyapunov functions of the individual subsystems and aggregate them
into an ISS Lyapunov function for the entire network. The construction technique
for this vector function has been detailed as well as the construction of the over all
Lyapunov function. The constructed Lyapunov function is only locally Lipschitz con-
tinuous, so that methods from nonsmooth analysis had to be used. The proposed
method has been exemplified for linear systems and neural networks.
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