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Abstract

In this paper we consider the stability of networks consisting of non-
linear ISS systems supplied with ISS Lyapunov functions defined in dis-
sipative form. The problem of constructing an ISS Lyapunov function
for the network is addressed. Our aim is to provide a geometrical condi-
tion of a small gain type under which this construction is possible and to
describe a method of an explicit construction of such an ISS Lyapunov
function. In the dissipative form, the geometrical approach allows us to
discuss both Lipschitz continuous construction and continuously differen-
tiable construction of ISS Lyapunov functions.

1 INTRODUCTION

Interconnections of nonlinear systems appear in many applications such as lo-
gistic problems, biologic systems, power networks and others. Stability analysis
of these systems is an important issue for their performance and control. Such
interconnections can be studied in different frameworks such as passivity, dis-
sipativity [24, 8, 17, 20], input-to-state stability (ISS) [21] and others. Since
we consider systems with inputs we will use the notion of ISS for our purposes.
There are several equivalent ways to define this property. Originally in [21] it
was defined in terms of a bound for the trajectories of a system, where the bound
depends on the initial condition and the input function. This property can be
equivalently stated in terms of an ISS-Lyapunov function. The latter formu-
lation can again be defined in two essentially equivalent ways: in the so-called
implication form and with the help of a dissipation inequality and a supply
rate, see [22] for details and discussions of the different ISS formulations. In
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this paper we concentrate on the dissipative ISS formulation. Our aim is to
derive a small gain result for general interconnected systems in this framework.
This complements recent results in [5, 7], where small gain results have been
achieved in the trajectory formulation as well as for the implication form of the
ISS Lyapunov formulation.

The ISS property of the interconnections of two ISS systems was considered
in the pioneering papers [14] and [13]. In [14] the ISS estimates for the trajecto-
ries of subsystems were used to prove the ISS property for the interconnection
provided a small gain condition is satisfied. A Lyapunov version of this result
was given in [13] where the Lyapunov functions were defined in the so called
implication form. These results were recently extended to the case of intercon-
nections of n systems, see [5, 7, 15, 6, 16]. A small gain theorem for two systems
with ISS-Lyapunov functions satisfying the dissipation inequality was obtained
in [9]. It is worth noting that this definition has the advantage that it unifies
the definition of ISS and integral ISS (iISS) systems. The latter set of systems
is larger and contains the ISS systems as a subset. The small gain theorem
for two iISS systems was proved in [10, 12]. Moreover the construction of the
corresponding Lyapunov function is given in a smooth way in contrast to the
constructions given in [13] and [7, 6]. An alternative way to treat iISS systems
using cooperative monotone systems is pursued in [19].

In this paper, we consider a network consisting of n ISS systems with given
ISS-Lyapunov functions defined by dissipation inequalities. It is of interest

A. to obtain a small gain theorem and construct an ISS-Lyapunov function
satisfying a dissipation inequality of the interconnected system.

It is practically appealing if the ISS-Lyapunov function is smooth, i.e., contin-
uously differentiable. This paper will make an essential step in this direction.
Namely,

1. for general ISS systems, we derive a small gain condition and construct a
Lipschitz continuous ISS-Lyapunov function;

2. for a special class of dissipation inequalities, we derive a small gain con-
dition and construct a smooth ISS-Lyapunov function;

3. for general ISS systems, we derive a geometrical condition under which a
smooth ISS-Lyapunov function can be constructed.

The paper is organized as follows. The ensuing section introduces necessary
notations and gives a statement of the problem. Section 3 explains the main
idea of our approach by using the simpler case of linear supply rate functions. In
this linear case, the result follows from an application of the Perron-Frobenius
theorem. The main results are presented in Section 4 for the nonlinear case.
Two types of geometrical conditions are proposed to construct smooth ISS-
Lyapunov functions as well as non-smooth ones. They are related to small gain
conditions and previous results developed for the implication form. We draw
conclusions and outline directions of future work in Section 5.

2 Interconnection in dissipative form

We use the following notation. (· )T denotes the transposition of a vector. For
any vectors a, b ∈ Rn the relation a ≥ b is defined by ai ≥ bi for all i = 1, . . . , n.
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Figure 1: An interconnection Σ

The relations >,≤, < for vectors are defined in the same manner. That is, we
are using the partial order on Rn induced by the positive orthant Rn+. The
negation of a ≥ b is denoted by a 6≥ b and this means that there exists an
i ∈ {1, . . . , n} such that ai < bi. By a · b we denote the scalar product of two
vectors and by A ◦ B we denote the composition of operators A and B. To
use standard formulations of input-to-state stability, we recall, that a function
α: [0,∞)→ [0,∞) is said to be of class K, if α is continuous, α(0) = 0 and α
is strictly increasing, if in addition it is unbounded, we say it is of class K∞. A
continuous function α : [0,∞)→ [0,∞) is called positive definite if α(x) = 0 if
and only if x = 0.

Consider a finite set of interconnected systems with state x =
(
xT1 , . . . , x

T
n

)T
,

where xi ∈ RNi , i = 1, . . . , n and N :=
∑
Ni. For i = 1, . . . , n the dynamics of

the i-th subsystem is given by

Σi : ẋi = fi(x1, . . . , xn, u), (1)

where x ∈ RN , u ∈ RM , fi : RN+M → RNi . For each i we assume unique
existence of solutions and forward completeness of Σi in the following sense. If
we interpret the variables xj , j 6= i, and u as unrestricted inputs, then system
(1) is assumed to have a unique solution defined on [0,∞) for any given ini-
tial condition xi(0) ∈ RNi and any L∞-inputs xj : [0,∞) → RNj , j 6= i, and
u : [0,∞) → RM . This can be guaranteed for instance by suitable Lipschitz
conditions on the fi. It will be no restriction to assume that all systems have
the same (augmented) external input u. This interconnection can be depicted
as a network or a graph, see Figure 1. We write the interconnection of the
subsystems (1) as

Σ : ẋ = f(x, u), (2)

where f = (fT1 , . . . , f
T
n )T : RN+M → RN . We assume that each of the sub-

systems in (1) satisfies an ISS condition in the dissipative formulation, i.e.,
there are Lyapunov functions Vi : RNi → R+ and functions αi, γiu ∈ K∞ and
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γij ∈ K∞ ∪ {0}, i, j = 1, . . . , n such that

V̇i(xi) ≤ −αi(Vi(xi)) +
∑
i 6=j

γij(V (xj)) + γiu(‖u‖) (3)

for all xi ∈ RNi , i = 1, . . . , n and all u ∈ RM . The right hand side in (3) consist-
ing of the functions αi, γiu and γij is called the supply rate of the dissipation
inequality. In the sequel we will always assume that γii ≡ 0. We will also as-
sume that the Lyapunov functions Vi as well as the functions αi are continuously
differentiable, which poses no real restriction.

As in one of our constructions we end up with a locally Lipschitz continuous
Lyapunov function for the whole system (2), we note that in case that the Vi
are only locally Lipschitz continuous, then it is sufficient to let (3) hold almost
everywhere to characterize input-to-state stability.

Note that if in (3) we only require that αi is an element of the larger set of
positive definite functions, then the i-th system is integral input-to-state stable
(iISS) [23]. The set of iISS systems is essentially larger than the set of ISS
systems. In particular, in the iISS framework, results of a small gain type and
a corresponding Lyapunov construction were developed for n = 2 in [10, 12].

The aim of this paper is to find conditions on the data of the dissipation
inequalities (3) that guarantee ISS of the interconnected system (2) and to pro-
vide a construction of an ISS-Lyapunov function for the interconnection under
these conditions. We will also discuss how an iISS result can be obtained in this
way for a special class of systems.

3 The linear case

We begin by studying the linear case, because here the conditions are much
easier to analyze and it gives an idea how the general procedure should work,
even though for practical applications the linearity assumption is very often
much too restrictive.

We assume that the ISS-Lyapunov formulation is given in a linear form. Here
linear means, that the functions αi, γiu ∈ K∞ and γij ∈ K∞∪{0} i, j = 1, . . . , n
are linear. Thus let ai > 0, cij ∈ [0,∞) be positive resp. nonnegative numbers
which represent the corresponding linear functions. Define the matrices

A := diag (a1, . . . , an) , Γ := (cij)i,j=1,...,n (4)

and the vectors

V̇vec(x) :=
(
V̇1(x1) . . . V̇n(xn)

)T
, (5)

Vvec(x) :=
(
V1(x1) . . . Vn(xn)

)T
.

Then the inequalities (3) can be compactly written as

V̇vec(x) ≤ (−A+ Γ)Vvec(x) + γu(‖u‖)

with the obvious definition of γu. In the previous equation ≤ is to be interpreted
componentwise as defined in the preliminaries. We note that (−A+Γ) is a Met-
zler matrix, thus a matrix for which Perron-Frobenius type results are available.
An overall Lyapunov function can be defined using the following lemma.
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Lemma 3.1 Consider the matrices A and Γ defined in (4). There exists a
vector µ ∈ Rn+, µ > 0 such that

µT (−A+ Γ) < 0 (6)

if and only if the following spectral radius condition holds

r(A−1Γ) < 1. (7)

Proof 3.2 Note that A = AT as it is of diagonal form and A is invertible,
because in (3) the functions αi ∈ K∞, i = 1, . . . , n. Define η := Aµ, so that
µT = ηTA−1. Then µT (−A+ Γ) < 0 is equivalent to

0 > ηTA−1(−A+ Γ) = ηT (−I +A−1Γ) .

If r(A−1Γ) < 1, then by the Perron-Frobenius theorem there exists a vector
η > 0 such that

ηT (A−1Γ) < ηT

or equivalently ηT (−I + A−1Γ) < 0, as desired. Conversely, if r(A−1Γ) ≥ 1
then there exists a vector z ≥ 0, z 6= 0 such that

(A−1Γ− I)z ≥ 0 .

We now fix such a vector z. So for any η > 0 we have

ηT (A−1Γ− I)z ≥ 0

so that it cannot hold that ηT (−I +A−1Γ) < 0.

We now assume that r(A−1Γ) < 1 and choose a vector µ ∈ Rn+, µ > 0 such
that (6) holds. Consider the following candidate for an ISS-Lyapunov function

V (x) := µTVvec(x) =

n∑
i=1

µiVi(xi). (8)

Then we have

V̇ (x) = µT V̇vec(x) ≤ µT (−A+ Γ)Vvec(x) + µT γu(‖u‖)

and defining 0 > L := µT (−A+ Γ) we obtain

V̇ (x) ≤ LVvec(x) + µT γu(‖u‖) ≤ −lV (x) + µT γu(‖u‖) (9)

for a positive number defined by l := −max
i

Li

µi
. Note that if Γ is irreducible,

then µ > 0 may be chosen as a left eigenvector of (−A+Γ) corresponding to the
largest eigenvalue, which is real and negative by the Perron Frobenius theorem.
In this case l is this largest eigenvalue. The last equation (9) is a dissipation
inequality for the whole interconnection (2), and in (8) we have obtained a
smooth ISS-Lyapunov function V (x). We have thus proved the following.

Proposition 3.3 Consider the interconnected system (1), where each of the
subsystems satisfies an ISS condition of the form (3) with linear αi, γij. If for
the matrices A,Γ defined in (4) we have (7), then the interconnected system (2)
is ISS with a ISS Lyapunov function given by (8).
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Since A−1Γ is the gain matrix of the n ISS systems, the spectral radius
condition (7) agrees with the linear case of the small gain condition developed
in [5, 4, 7]. In the next section we will see how this idea can be used in the
general nonlinear case.

The development in this section conforms to the classical result [1] for a
special case concerned with global asymptotic stability.

4 Main results

Unfortunately, there is no immediate extension of the construction in the pre-
vious section to the general nonlinear case. For example the matrices A and
Γ contain nonlinear functions instead of numbers and the notions of eigenvalue
and spectral radius are no longer available. The construction problem of an
ISS-Lyapunov function becomes more difficult. This section first shows a suffi-
cient condition under which the extension to the general nonlinear case is pos-
sible. The resulting ISS-Lyapunov function is, thereby, smooth. Next, since the
computation of the sufficient condition is generally hard, we show an explicit
construction for an ISS-Lyapunov function in a special case. For the general
nonlinear case, we will provide a non-smooth construction.

4.1 Smooth construction

The aim of this subsection is to construct smooth Lyapunov functions, which
can be important in implementation. We consider the interconnected system (2)
and assume that the subsystems (1) are ISS with the ISS-Lyapunov functions
Vi satisfying (3) where the supply rate functions can be nonlinear.

First let us note that the condition (7) can be equivalently formulated as
r(ΓA−1) < 1 or written as

ΓA−1s 6≥ s, ∀s ∈ Rn+ \ {0}. (10)

The last condition makes sense also for nonlinear operators defined below. The
data we are working with is defined in (3). We assume from now on that the
matrix

Γ := (γij)i,j=1,..,n ∈ (K∞ ∪ {0})n×n

is irreducible and similarly to the linear case we define the following map Γ :
Rn+ → Rn+ by

Γ(s) =
( n∑
j=1

γ1j(sj), . . . ,

n∑
j=1

γnj(sj)
)T
, s ∈ Rn+ (11)

and a diagonal operator A : Rn+ → Rn+ by

A(s) :=
(
α1(s1) . . . αn(sn)

)T ∈ Rn+ . (12)

With this notation, the inequalities (3) can be written in a vector form

V̇vec ≤ (−A+ Γ)(Vvec(x)) + γu(||u||) (13)

with γu defined in the obvious way.
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We now reformulate the small gain conditions that were introduced in [5,
7, 18] to make them suitable for the dissipative formulation. The nonrobust
version of the small gain condition is given by

Γ ◦A−1(s) 6≥ s , ∀s ∈ Rn+ \ {0} . (14)

which is seemingly a nonlinear generalization of (10). However, it has been
shown in [5, 12] that this condition is not quite sufficient to obtain desired
robustness with respect to the external input. Thus, the condition we now
want to impose is the robust small gain condition which requires that for some
D = diag (id + β1, . . . , id + βn), βi ∈ K∞ we have

D ◦ Γ ◦A−1(s) 6≥ s , ∀s ∈ Rn+ \ {0} . (15)

To compare this with the linear case, note that in the linear case both (14) and
(15) are equivalent to r(ΓA−1) < 1 which is in turn equivalent to the condition
r(A−1Γ) < 1. In this sense, the property (15) is a natural generalization of the
linear small gain condition (10).

One of the central results of [7, 18], [6] for the implication form of ISS
systems is that, in the case that Γ is irreducible and (15) holds, there exists a
continuously differentiable path σ : R+ → Rn+ such that σ(0) = 0, σ is strictly
increasing and unbounded in every component and so that

D ◦ Γ ◦A−1(σ(τ)) < σ(τ) , ∀ τ > 0. (16)

The next subsection will show that the existence of such a path can also play a
central role in the construction for a non-smooth ISS-Lyapunov function even
in the dissipative formulation.

Since this subsection pursues a smooth ISS-Lyapunov function by extend-
ing the idea presented in the previous section, we consider the assumption
that there are bounded positive definite functions ηi, i = 1, . . . , n, such that∫∞

0
ηi(αi(τ))dτ =∞ and so that for η = (η1, . . . , ηn)T we have

η(s)TΓ ◦A−1(s) < η(s)T s, ∀s ∈ Rn+ \ {0}. (17)

Again a robust version of this condition is that there exists a diagonal D as
before such that

η(s)TD ◦ Γ ◦A−1(s) < η(s)T s, ∀s ∈ Rn+ \ {0} . (18)

The following result shows that both these geometrical conditions lead to the
construction of interesting smooth Lyapunov functions.

Theorem 4.1 Consider the interconnected systems (1) and assume that each
subsystem has a dissipative ISS-Lyapunov function as in (3). Then
(i) If the weak small gain condition (17) is satisfied and if for each i ∈ {1, . . . , n}
and λi(τ) := ηi(αi(τ)), τ ∈ R+ we have∫ ∞

0

λi(τ) dτ =∞ , (19)

then the interconnection (2) is iISS with an iISS-Lyapunov function defined by

V (x) :=

n∑
i=1

∫ Vi(xi)

0

λi(τ)dτ . (20)
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(ii) If the robust small gain condition (18) is satisfied and

lim inf
τ→∞

λi(τ) > 0 (21)

holds, then the interconnection (2) is ISS with a Lyapunov function V (x) again
defined by (20).

Proof 4.2 First note that (19) guarantees that the function V defined in (20)
is a proper function.
(i) Consider the derivative of V along the trajectories of the system (2). Defining
λ(Vvec) := (λ1(V1), . . . , λn(Vn))T and using (13) we obtain

dV

dt
= λ(Vvec)

T V̇vec

< λ(Vvec)
T (−A(Vvec) + Γ(Vvec) + γu(||u||))

(22)

From assumption (17) we have for all x 6= 0

η(A(Vvec))
TΓ ◦A−1 ◦A(Vvec) < η(A(Vvec))

TA(Vvec)

and thus
−λ(Vvec)

TA(Vvec) + λ(Vvec)
TΓ(Vvec) < 0. (23)

Using the properness of V defined in (20), this term can be bounded from
above by −α(V ) for some positive definite function α. Further recall that the
functions ηi are assumed to be bounded. Hence λi, i = 1, . . . , n is also bounded
and there exists some function γ ∈ K∞ such that λT (Vvec) · γu(||u||) ≤ γ(||u||)
. From (22) it follows that

dV (x)

dt
≤ −α(V (x)) + γ(||u||) (24)

and the iISS property of the interconnection follows.
(ii) Note that (21) implies (19). In case the stronger assumption (18) holds,
instead of (23) we obtain

−λ(Vvec)
TA(Vvec) + λ(Vvec)

TΓ(Vvec)

< −λ(Vvec)
T (D − id ) ◦ Γ(Vvec)

for all x 6= 0. Let Γ∗k 6= 0 denote the k-th column of Γ. When Γ∗k 6= 0 holds for
all k = 1, 2, ..., n, using the definition of D in the above inequality verifies that
an upper bound of the form −α(V ) can be obtained for some α ∈ K∞ to be used
in (24). To address the case where Γ∗k = 0 holds for an integer k ∈ {1, 2, ..., n},
define sk̄ : Rn−1

+ and ηk̄ : Rn−1
+ → Rn−1

+ by removing the k-th components from
s and η, respectively. Define Vvec,k̄ and λk̄ in the same manner. The operators
which remove the k-th columns and the k-th rows from D, Γ and A are denoted
by Dk̄k̄, Γk̄k̄ and Ak̄k̄, respectively. Evaluating both sides of (18) for sk = 0
carefully, we can verify that, if Γ∗k = 0 holds, the assumption (18) implies

η(s)TD ◦ Γ ◦A−1(s)

= ηk̄(sk̄)TDk̄k̄ ◦ Γk̄k̄ ◦A−1
k̄k̄

(sk̄) < ηk̄(sk̄)T sk̄,

∀s ∈ Rn+ \ {s : sk̄ 6= 0} .
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Hence, we obtain

− λ(Vvec)
TA(Vvec) + λ(Vvec)

TΓ(Vvec)

< −λk(Vk)αk(Vk)− λk̄(Vvec,k̄)T (Dk̄ − id ) ◦ Γk̄k̄(Vvec,k̄)

in the case of Γ∗k = 0. Thus, when Γ∗j 6= 0 holds for all j 6= k, the inequality
(24) with some α ∈ K∞ follows from (22), (21) and the boundedness of ηi. The
above technique also applies to the cases where Γ∗k = 0 holds for multiple k’s.

Therefore in case of (18) and (21) the overall system is ISS. (If one wants
to try a simpler argument, it would be worth replacing Γ∗k = 0 by sufficiently
small Γ∗k 6= 0 maintaining (18).)

The function V in (20) is smooth, i.e., continuously differentiable, which is
a desirable property, in general. Note that the irreducibility of Γ was not used
in the proof, i.e., Theorem 4.1 holds for arbitrary type of interconnection.

Remark 4.3 Theorem 4.1 reduces the problem of a construction of a Lyapunov
function to a geometrical problem of the construction of a continuous curve in
Rn+ parameterized by ηi and satisfying (17) or respectively (18). However, the
existence and construction of such auxiliary functions ηi may be a nontrivial
problem. We hope that the small gain condition (15) implies the existence. An
explicit construction of η is a matter of our future research. For ISS systems
supplied with the implication type characterization, the results in [4] and [7]
show that the small gain condition (15) implies the existence of the path σ
described in (16) by using the Knaster-Kuratowski-Mazurkiewicz theorem. We
suspect that using complementary arguments (18) can be shown. It is worth
noting that, in the linear case, r(A−1Γ) < 1 is equivalent to (16) as well as
to (18). The latter equivalence has been shown in Lemma 3.1. The former
equivalence is obtained by studying right eigenvectors, while the latter uses left
eigenvectors. Although the generalization of those eigenvectors is nontrivial, it
may be natural to conjecture that (15) does not only imply (16) but also (18)
even for the nonlinear case. Subsection 4.3 will show that this conjecture holds
true in a special case.

Remark 4.4 In the case of n = 2, the problems (17) and (18) are solved and
the construction of the auxiliary functions ηi(s) = λi(α

−1
i (s)) is shown explicitly

in [12, 10], where the small gain condition (15) implies the existence when n = 2.

4.2 Non-smooth construction

In the following, we provide a non-smooth construction of an ISS-Lyapunov
function for the interconnection (2) where a corresponding auxiliary function σ
can be explicitly constructed.

Theorem 4.5 Let the systems given in (1) be ISS in the sense of (3) and
assume that their supply rate functions are such that the operators A and Γ
defined above satisfy the robust small gain condition (15). Assume further that
for σ1, . . . , σn given in (16) there are constants 0 < c < C such that

0 < c <
d

dτ
σ−1
i ◦ αi(τ) < C , for all τ > 0 .
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Then the interconnection (2) is ISS. An ISS-Lyapunov function is given by

V (x) := max
i=1,...,n

σ−1
i ◦ αi(Vi(xi)) . (25)

Proof 4.6 Let us assume for the moment that for a given x 6= 0 we have that
the maximum in (25) is uniquely attained in the first component i = 1, i.e.,
V (x) = σ−1

1 ◦ α1(V1(x1)). Denote by Γ1 the first row of Γ. We obtain

V̇ (x) =
d

dt
σ−1

1 ◦ α1(V1(x1)) =
(
σ−1

1 ◦ α1

)′
(V1(x1))V̇1(x1)

and
V̇1(x1) ≤ [−α1(V1(x1)) +Γ1(Vvec(x)) + γ1u(‖u‖)]

We now denote zi = αi(Vi(xi)), z := (z1, . . . , zn)T and obtain the following
representation

−α1(V1(x1)) + Γ1(Vvec(x)) = −z1 + Γ1 ◦A−1(z)

= −σ1 ◦ σ−1
1 (z1) + Γ1 ◦A−1(σ1 ◦ σ−1

1 (z1), . . . , σn ◦ σ−1
n (zn)) .

By the assumption of this first part of the proof we have σ−1
1 (z1) > σ−1

j (zj) for
j = 2, . . . , n, and so we obtain

−z1 + Γ1 ◦A−1(z) ≤ −σ1 ◦ σ−1
1 (z1) + Γ1 ◦A−1 ◦ σ(σ−1

1 (z1)) (26)

Now for τ := σ−1
1 (z1) we have by (16)

D ◦ Γ ◦A−1 ◦ σ(τ) ≤ σ(τ)

hence
Γ ◦A−1 ◦ σ(τ) ≤ D−1 ◦ σ(τ)

and so (recall that βi is defined before (15)) we have from (26) for the first
component that

−σ1(τ) + Γ1 ◦A−1 ◦ σ(τ)

< ((id + β1)−1 − id ) ◦ σ1(τ)

= −β1 ◦ (id + β1)−1 ◦ α1(V1(x1)) < 0 .

(27)

Hence under the assumption that V (x) = σ−1
1 ◦α1(V1(x1)) is uniquely given we

obtain
V̇ (x) ≤ −cβ1 ◦ (id + β1)−1 ◦ σ1(V (x)) + Cγ1u(‖u‖) .

The argument can be repeated for the indices i = 2, . . . , n in the same manner
and so setting

α̃(s) := min
i=1,...,n

cβi ◦ (id + βi)
−1 ◦ σi(s)

and
γ(s) := max

i=1,...,n
Cγiu(s)

we obtain that
V̇ (x) ≤ −α̃(V (x)) + γ(‖u‖)
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for all points x ∈ RN where the maximizing argument in (25) is uniquely defined.
As the set of such points is an open and dense subset of RN and as the function V
is locally Lipschitz continuous, we can prove that V is a Lipschitz ISS Lyapunov
function for the interconnection [3],[2], [7]. This assertion can be confirmed
easily as follows: Since V is obtained by the maximization of C1 functions Vi,
i = 1, 2, ..., n, the Clarke subgradient of V in x ∈ Rn can be computed by the set

∂ClV (x) = conv { 5
(
σ−1
i ◦ αi ◦ Vi

)
(xi) |

σ−1
i ◦ αi(Vi(xi)) = V (x)

}
,

where convM denotes the convex hull of the set M . As we have the dissipation
inequality presented above as V̇ ≤ −α̃(V (x)) + γ(‖u‖) for each of the extremal
points of ∂ClV (x), the dissipation inequality holds in terms of the Clarke gen-
eralized derivative for each ζ in the Clarke subgradient.

Interestingly, Theorem 4.5 demonstrates that the dissipative formulation
results in the same small gain condition (15) as the implication formulation if
we use the non-smooth Lyapunov function of the form (25).

For ISS systems given in terms of dissipation inequalities, we have obtained
two different ways of constructing ISS Lyapunov functions in this paper. One
is smooth, while the other is non-smooth. To compare the two constructions,
we briefly return to the linear case as detailed in Section 3. Recall that for
the matrices in (4), the required condition is r(A−1Γ) < 1. The construction
explained in Section 3 uses a left vector µ ∈ Rn+ such that µT (−A + Γ) < 0
and sets V (x) := µTVvec(x). In the construction of Theorem 4.5 we choose a
right vector s ∈ Rn+ such that ΓA−1s < s. For µ := A−1s this is equivalent to

(−A+Γ)µ < 0. We then let V (x) := maxi=1,...,n µ
−1
i Vi(xi) and by Theorem 4.5

this is an ISS Lyapunov function. In the context of convex analysis maximization
and summation are dual operations. In this sense the two constructions are dual
to one another.

4.3 Linearly Scaled Gains

In this subsection we specialize the smooth result obtained in Subsection 4.1
to the case where the supply rates are given by linearly scaling gain functions
associated with each of the subsystems.

To be precise, we assume that there exist positive definite functions gi and
constants ai, cij ∈ R+, ai > 0, i, j = 1, . . . , n such that the gain functions in (3)
are given by

γij(s) = cijgj(s), ∀j, αi(s) = aigi(s), ∀i . (28)

We now let Ã = diag (a1, . . . , an) and C̃ =
(
cij
)
i,j=1,...,n

and we denote for

s ∈ Rn+
g(s) :=

(
g1(s1), . . . , gn(sn)

)T
.

Note that with respect to our previous notation we have

A(s) = Ãg(s) , Γ(s) = C̃g(s) . (29)

Note also that from (3) we obtain ISS of the subsystems if we have gi ∈ K∞,
i = 1, . . . , n. On the other hand if the gi’s are only positive definite, then we
merely have iISS for the subsystems
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Theorem 4.7 Consider the interconnected systems (1) and assume that each
subsystem has a function Vi(xi) as in (3) where the gain functions satisfy (28).
Assume r(Ã−1C̃) < 1 and let µ > 0 be a vector such that µT (−Ã+ C̃) < 0.
(i) If the functions gi, i = 1, . . . , n are positive definite, then the interconnected
system is iISS with an iISS Lyapunov function given by

V (x) := µTVvec(x) . (30)

(ii) If the functions gi ∈ K∞, i = 1, . . . , n, then the interconnected system is ISS
with an ISS Lyapunov function given by (30).

Proof 4.8 First note, that the choice of µ in the formulation of the theorem is
possible by Lemma 3.1. We have for V (x) := µTVvec(x) that

V̇ (x) = µT V̇vec(x) ≤ µT (−Ã+ C̃)g(Vvec(x)) + µT γu(‖u‖)

and defining 0 > L := µT (−Ã+ C̃) we obtain

V̇ (x) ≤ Lg(Vvec(x)) + µT γu(‖u‖) ≤ −l(V (x)) + µT γu(‖u‖) ,

where we define

l(s) := min{−Lg(Vvec(x)) | µTVvec(x) = s} .

It is clear that l is positive definite if the gi’s are and that l ∈ K∞ if the gi are.
This proves the assertion.

From (29), we can verify that r(Ã−1C̃) < 1 is equivalent to (15) when
gi ∈ K∞, i.e., all subsystems are ISS. Therefore, the conjecture stated in Remark
4.3 is verified in this special class of nonlinear interconnected systems.

It is worth mentioning that the spectral radius condition r(Ã−1C̃) < 1 im-
plicitly requires some subsystems in the overall system to be ISS in the case
(i) of the above theorem. For instance, in the two subsystems case, a1 < c12

implies a2 > c21 which indicates that at least one subsystem needs to be ISS
although the subsystem is defined by a dissipation inequality only with positive
definite functions of the iISS type. This fact is consistent with the result in [11].

5 Concluding remarks

In this paper we have pursued the construction of Lyapunov functions for non-
linear ISS systems interconnected in a general way, and introduced a geometrical
approach based on the existence of some auxiliary functions. We assume that
each system is given by a dissipation inequality of the ISS type, which con-
trasts with previous results on general interconnected systems supplied with
the implication-type ISS characterization. With the help of the dissipative
characterization, this paper has proposed two formulations whose solutions,
i.e., auxiliary functions, explicitly provide us with smooth and non-smooth Lya-
punov functions, respectively, of the interconnected system. For the non-smooth
construction, the auxiliary function can be found explicitly. The existence con-
dition has been related to a generalized small gain condition. For the smooth
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construction, we have shown how the auxiliary function can be found explicitly
in a special case of supply rate functions. Although computing the auxiliary
function for general supply rates is a matter of future investigations, the spe-
cial case indicates that the smooth formulation has potential for dealing with
iISS systems. We have also discussed an existence condition for the auxiliary
function in the smooth construction. As in Remark 4.3, its small gain type
interpretation is only a conjecture which needs to be investigated further al-
though the conjecture holds true in a special case of supply rates. We also hope
to relax the technical assumption 0 < c < (σi ◦ αi)′(τ) < C in Theorem 4.5 for
the non-smooth construction. Dealing with general networks of iISS systems
along the lines of this paper is also an interesting topic of further study.
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