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Abstract: In this paper the problem of stabilizing large-scale systems by distributed controllers,
where the controllers exchange information via a shared limited communication medium is
addressed. An event-triggered sampling scheme is proposed, in which each system decides when
to transmit new information across the network based on the crossing of some error threshold.
Stability of the interconnected large-scale system is inferred by applying a generalized small-gain
theorem.
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1. INTRODUCTION

We consider large-scale systems stabilized by distributed
controllers, which communicate over a limited shared
medium. In this context it is of interest to reduce the
communication load. An approach in this direction is
event-triggered sampling, which attempts only to send
”relevant” data. In order to treat the large-scale case,
a combination of ISS small-gain results with ideas from
event-triggering is presented.

The stability (or stabilization) of large-scale intercon-
nected systems is an important problem which has at-
tracted much interest. In this context the small-gain theo-
rem was extended to the interconnection of several Lp-
stable subsystems. Early accounts of this approach are
Vidyasagar (1981) (see also Šiljak (1978)) and references
therein. For instance, in Vidyasagar (1981), Theorem 6.12,
the influence of each subsystem on the others is measured
via an Lp-gain, p ∈ [1,∞] and the Lp-stability of the
interconnected system holds provided that the spectral
radius of the matrix of the gains is strictly less than unity.
In other words, the stability of interconnected Lp-stable
systems holds under a condition of weak coupling.

In the nonlinear case a notion of robustness with respect
to exogenous inputs is input-to-state stability (ISS) (Son-
tag (1989)). If in a large-scale system each subsystem is
ISS, then the influence between the subsystems is typ-
ically modeled via nonlinear gain functions. Small-gain
theorems have been developed for ISS systems as well
(Jiang et al. (1994, 1996); Teel (1996)) and more recently
they have been extended to the interconnection of several
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ISS subsystems (Dashkovskiy et al. (2007, 2010)). For a
recent comprehensive discussion about the literature on
ISS small-gain results see Liu et al. (2010).

In the literature on large-scale systems we have discussed
so far, the communication aspect does not play a role. If
however, a shared communication medium leads to sig-
nificant further restrictions, concepts like event-triggering
become of interest. We speak of event-triggering if the
occurrence of predefined events, as e.g. the violation of
error bounds, triggers a communication attempt. Using
this approach a decentralized way of stabilizing large-scale
networked control systems has been proposed in Wang and
Lemmon (2009a, 2011). In these papers each subsystem
broadcasts information when a locally-computed error sig-
nal exceeds a state-dependent threshold. Similar ideas are
presented in Tabuada (2007); Wang and Lemmon (2009b).
Numerical experiments e.g., Wang and Lemmon (2009b)
show that event-triggered stabilizing controllers can lead
to less information transmission than standard sampled-
data controllers.
One drawback of the proposed event-triggered sampling
scheme is the need for constantly checking the validity of
an inequality. A related approach which tries to overcome
this issue is termed self-triggered sampling (see e.g., Anta
and Tabuada (2010); Mazo Jr et al. (2010)).

From a more general perspective, the way in which the
subsystems access the medium must be carefully designed.
In this paper we do not discuss the problem of collision
avoidance. This problem is addressed for instance in the
literature on medium access protocols, such as the round-
robin and the try-once-discard protocol. E.g., in Nešić and
Teel (2007) a large class of medium access protocols are
treated as dynamical systems and the stability analysis
in the presence of communication constraints is carried



out by including the protocols in the closed-loop system.
This allows to give an estimate on the maximum allowable
transfer interval (MATI), that is the maximum interval
of time between two consecutive transmissions which the
system can tolerate without going into instability. The
advantage of event-triggering lies in the possibility of
reducing overall communication load. However, if events
occur simultaneously at several subsystems the problem of
collision avoidance remains. We will discuss this in future
work.

The purpose of this paper is to explore event-triggered
distributed controllers for systems, which are given as an
interconnection of a large number of ISS subsystems. We
assume that the gains measuring the degree of interconnec-
tion satisfy a generalized small-gain condition. To simplify
presentation, it is assumed furthermore that the graph
modeling the interconnection structure is strongly con-
nected. This assumption can be removed as in Dashkovskiy
et al. (2010). Since our event-triggered implementation of
the control laws introduces disturbances into the system,
the ISS small-gain results available in the literature are
not applicable. An additional condition is required for
general nonlinear systems using event triggering. This
condition is explicitly given in the presented general small-
gain theorem. Moreover, the functions which are needed
to design the state-dependent triggering conditions are
explicitly designed in such a way that the triggering events
which supervise the broadcast by a subsystem only de-
pend on local information. As an introductory example
we explicitly discuss the special case of linear systems,
although for this class of systems the techniques of Wang
and Lemmon (2009a, 2011) are applicable. As distributed
event-triggered controllers can potentially require trans-
mission times which accumulate in finite time, we also dis-
cuss a variation of the proposed small-gain event-triggered
control laws which prevents the occurrence of the Zeno
phenomenon. For consensus problems, Zeno-free event-
triggered controllers are studied in Dimarogonas and Jo-
hansson (2009). A related paper is also Mazo and Tabuada
(2010).

Section 2 presents the class of system we focus our at-
tention on, along with a number of preliminary notions
and standing assumptions. In Section 4 the notion of
ISS-Lyapunov functions is presented. Based on this no-
tion small-gain event-triggered distributed controllers are
discussed in Section 5. The results are particularized to
the case of linear systems in Section 3 along with a few
simulation results in Section 6. The Zeno-free distributed
event-triggered controllers are proposed in Section 7. The
last section contains the conclusions of the paper.

Notation N0 = N∪{0}. R+ denotes the set of nonnegative
real numbers, and Rn

+ the nonnegative orthant, i.e. the set
of all vectors of Rn which have all the entries nonnegative.
By || · || we denote the Euclidean norm of a vector or a
matrix.
A function α : R+ → R+ is a class-K function if it is
continuous, strictly increasing and zero at zero. If it is
additionally unbounded, i.e. limr→+∞ α(r) = ∞, then α is
said to be a class-K∞ function. We use the notation α ∈ K
(α ∈ K∞) to say that α is a class-K (class-K∞) function.
The symbol K∪{0} (K∞∪{0}) refers to the set of functions
which include all the class-K (class-K∞) functions and the

function which is identically zero. A function α : R+ → R+

is positive definite if α(r) = 0 if and only if r = 0.

2. PRELIMINARIES

Consider the interconnection of N systems described by
equations of the form:

ẋi = fi(x, ui)
ui = gi(x + e) ,

(1)

where i ∈ N 4
= {1, 2, . . . , N}, x = (xT

1 . . . xT
N )T , with

xi ∈ Rni , is the state vector and ui ∈ Rmi is the ith control
input. The vector e, with e = (eT

1 . . . eT
N )T and ei ∈ Rni ,

is an error affecting the state. We shall assume that the
maps fi satisfy appropriate conditions which guarantee
existence and uniqueness of solutions for L∞ inputs e.

The interconnection of each system i with another system
j is possible in two ways. One way is that the system j
influences the dynamics of the system i directly, meaning
that the state variable xj appears non trivially in the
function fi. The other way is that the controller i uses
information from the agent j. In this case, the state
variable xj appears non trivially in the function gi (and
affects indirectly the dynamics of the system i).

In this paper we adopt the notion of ISS-Lyapunov func-
tions (Sontag and Wang (1995)) to model the interconnec-
tion among the systems.
Definition 1. A smooth function V : Rn → R+ is called
an ISS-Lyapunov function for system ẋ = f(x, u) if there
exist α1, α2 ∈ K∞ and α3, χ ∈ K, such that for any
x ∈ Rn

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖)
and the following implication holds for all x ∈ Rn and all
admissible u

V (x) ≥ χ(‖u‖) ⇒ ∇V (x) ≤ −α3(‖x‖) .

It is well known that a system as in Definition 1 is ISS if
and only if it admits an ISS-Lyapunov function. If there are
more than one input present in the system, the question
how to compare the influence of the different inputs arises.
To answer this question we preliminary recall the notion
of monotone aggregate function from Dashkovskiy et al.
(2010): 1

Definition 2. A continuous function µ : Rn
+ → R+ is a

monotone aggregation function if:

(i) µ(v) ≥ 0 for all v ∈ Rn
+ and µ(v) > 0 if s 	 0;

(ii) µ(v) > µ(z) if v > z;
(iii) If ||v|| → ∞ then µ(v) →∞.

The space of monotone aggregate functions (MAFs in
short) with domain Rn

+ is denoted by MAFn. Moreover,
it is said that µ ∈ MAFm

n if for each i = 1, 2, . . . ,m,
µi ∈ MAFn.

Monotone aggregate function are used in the following
assumption to specify the way in which systems are
interconnected and how controllers use information about
the other systems:
1 In the definition below, for any pair of vectors v, z ∈ Rn, the
notations v ≥ z, v > z are used to express the property that vi ≥ zi,
vi > zi for all i = 1, 2, . . . , n. Moreover, the notation v 	 z indicates
that v ≥ w and v 6= w.



Assumption 1. For i = 1, 2, . . . , N , there exists a differ-
entiable function Vi : Rni → R+, and class-K∞ functions
αi1, αi2 such that

αi1(||xi||) ≤ Vi(xi) ≤ αi2(||xi||) .

Moreover there exist functions µi ∈ MAF2N , γij , ηij ∈
K∞ ∪ {0}, j 6= i, γi ∈ K ∪ {0}, αi positive definite such
that

Vi(xi) ≥ µi(γi1(V1(x1)), . . . , γiN (VN (xN )),
ηi1(||e1||), . . . , ηiN (||eN ||)) ⇒

∇Vi(xi)fi(x, gi(x + e)) ≤ −αi(||xi||) .

(2)

Loosely speaking, the function γij describes the overall
influence of system j on the dynamics of system i, while
the function ηij describes the influence of the system j
on system i via the controller gi. In particular, ηij 6= 0
if and only if the controller ui is using information from
the system j. In this regard ηij describes the influence of
imperfect knowledge of the state of system j on system i
caused by e.g., measurement noise. On the other hand, if
i 6= j and γij 6= 0, then the system j influences system i
(either explicitly or implicitly). We assume that γii = 0
for any i. Observe that if system i is not influenced by
any other system j 6= i, and there is no error ei on
the state information xi used in the control ui, then the
assumption amounts to saying that system i is input-to-
state stabilizable via state feedback.

3. THE CASE OF LINEAR SYSTEMS

To get acquainted with the assumption above, we examine
in the following example the case in which the systems are
linear.
Example 1. Consider the interconnection of N linear sub-
systems

ẋi =
N∑

j=1

Aijxj + Biui

ui =
N∑

j=1

Kij(xj + ej) .

For each index i, we assume that the pairs (Aii, Bi)
are stabilizable and we let the matrix Kii be such that
Āii := Aii +BiKii is Hurwitz. Then for each Qi = QT

i > 0
there exists a matrix Pi = PT

i > 0 such that ĀT
iiPi +

PiĀii = −Qi. We consider now the expression ∇Vi(xi)ẋi

where

ẋi =
N∑

j=1

(Aij + BiKij)xj +
N∑

j=1

BiKijej

=:
N∑

j=1

Āijxj +
N∑

j=1

B̄ijej ,

with B̄ij := BiKij .
Standard calculations lead to the following:

∇Vi(xi)ẋi ≤ −ci||xi||2+

2||xi|| ||Pi||
( N∑

j=1,j 6=i

||Āij || ||xj ||+
N∑

j=1

||B̄ij || ||ej ||
)

,

where ci = λmin(Qi). Moreover, for any 0 < c̃i < ci the
inequality

||xi|| ≥
2||Pi||

c̃i

( N∑
j=1,j 6=i

||Āij || ||xj ||+
N∑

j=1

||B̄ij || ||ej ||
)

implies that
∇Vi(xi)ẋi ≤ −(ci − c̃i)||xi||2 .

The former inequality is implied by:

Vi(xi) ≥ ||Pi|| ·[2||Pi||
c̃i

( N∑
j=1,j 6=i

||Āij ||
[λmin(Pj)]1/2

Vj(xj)1/2+

N∑
j=1

||B̄ij || ||ej ||
)]2

.

We conclude that (2) holds with
γii = 0

γij(r) =
2||Pi||3/2

c̃i

||Āij ||
[λmin(Pj)]1/2

r1/2

ηij(r) =
2||Pi||3/2

c̃i
||B̄ij || r

µi(s) =
( 2n∑

j=1

sj

)2

αi(r) = (ci − c̃i)r2 .


(3)

It is important to remember that not all the functions γij

and ηij are non-zero. Namely, γij is non-zero if and only
if Aij or BiKij are non-zero matrices. In what follows, we
shall refer to the set of indices j for which either one of
the two matrices above are non-zero as the set Ni, and
to the systems corresponding to these indices j ∈ Ni as
the neighbors of system i. The subset of indices j for
which BiKij is non-zero is denoted as N (e)

i , and clearly
N (e)

i ⊆ Ni. /

4. ISS LYAPUNOV FUNCTIONS FOR LARGE-SCALE
SYSTEMS

In this section we review a general procedure for the
construction of ISS Lyapunov functions. In particular, we
extend recent results to a more general case that covers
the case of event-triggered control.
Condition (2) can be used to naturally build a graph
which describes how the systems are interconnected. Let
us introduce the matrix of functions Γ ∈ (K∞ ∪ {0})N×N

defined as

Γ =


0 γ12 γ13 . . . γ1N

γ21 0 γ23 . . . γ2N

...
...

...
. . .

...
γN1 γN2 γN3 . . . 0

 .

Following Dashkovskiy et al. (2010), we associate to Γ the
adjacency matrix AΓ = [aij ] ∈ {0, 1}N×N whose entry
aij is zero if and only if γij = 0, otherwise it is equal to
1. AΓ can be interpreted as the adjacency matrix of the
graph which has a set N of N nodes, each one of which is
associated to a system of (1), and a set of edges E ⊆ N×N
with the property that (j, i) ∈ E if and only if aij = 1.
Recall that a graph is strongly connected if and only if the
associated adjacency matrix is irreducible. In the present
case, if the adjacency matrix AΓ is irreducible, then we



say that Γ is irreducible. In other words, the matrix of
functions Γ is said to be irreducible if and only if the graph
associated to it is strongly connected.
For later use, given µi ∈ MAF2N , γij , ηij ∈ K∞ ∪ {0}, it
is useful to introduce the map Γ̄µ : R2N

+ → RN
+ defined as

Γ̄µ(r, s) = µ1(γ11(r1), . . . , γ1N (rN ), η11(s1), . . . , η1N (sN ))
...

µn(γN1(r1), . . . , γNN (rN ), ηN1(s1), . . . , ηNN (sN ))

 .

Moreover, we set Γµ(r) := Γ̄µ(r, 0). Since the functions

which describe the interconnection of the system are
in general nonlinear, the topological property of graph
connectivity may not be sufficient to ensure stability
properties of the interconnected system. There must also
be a way to quantify the degree of coupling of the systems.
In this paper, this is done using the following notion:
Definition 3. A map σ ∈ KN

∞ is an Ω-path with respect to
Γµ if:

(i) for each i, the function σ−1
i is locally Lipschitz

continuous on (0,∞);
(ii) for every compact set K ⊂ (0,∞) there are constants
0 < c < C such that for all i = 1, 2, . . . , n and all the
points of differentiability of σ−1

i we have:

0 < c ≤ (σ−1
i )′(r) ≤ C , ∀r ∈ K;

(iii) Γµ(σ(r)) < σ(r) for all r > 0.

Condition (iii) in the definition above amounts to a small-
gain condition for large-scale non-linear systems (in other
words, condition (iii) requires the degree of coupling
among the different subsystems to be weak. For a more
thorough discussion on condition (iii) see Dashkovskiy
et al. (2010)). To familiarize with the condition, take the
case N = 2 and µ1 = µ2 = max (it is not difficult to see
that the function max1≤i≤N ri belongs to MAFN ). Then

Γµ(r) =
(

γ12(r2)
γ21(r1)

)
.

We want to show that there exists σ ∈ K2
∞ such that

Γµ(σ(s)) < σ(s) for all s > 0 if and only if γ12 ◦γ21(r) < r
for all r > 0 (the latter can be viewed as a small-gain
condition for the interconnection of ISS-subsystems). To
this purpose, choose

σ(r) =
(

r
σ2(r)

)
,

where γ21 < σ2 < γ−1
12 . As a consequence of this choice,

Γµ(σ(s)) becomes:

Γµ(σ(s)) =
(

γ12(σ2(s))
γ21(s)

)
.

By construction, γ12(σ2(s)) < s = σ1(s) and γ21(s) <
σ2(s), i.e. Γµ(σ(s)) < σ(s) for all s > 0. Strong con-
nectivity of Γ and an additional condition implies a weak
coupling among all the systems, in the following sense (see
Dashkovskiy et al. (2010) for a proof and a more complete
statement):

Theorem 1. Let Γ ∈ (K∞ ∪ {0})N×N and µ ∈ MAFN
2N . If

Γ is irreducible and Γµ 6≥ id 2 then there exists an Ω-path
σ with respect to Γµ.
Remark 1. In fact, the irreducibility condition on Γ is a
purely technical assumption. A way how to relax it can be
found in Dashkovskiy et al. (2010).

The small gain condition stated above is not sufficient to
infer stability of the overall system in the case in which
error inputs are present in the system. Then an additional
condition is required:
Assumption 2. There exist an Ω-path σ with respect to
Γµ and a map ϕ ∈ (K∞ ∪ {0})N×N such that:

Γµ(σ(r), ϕ(r)) < σ(r) , ∀r > 0 , (4)
where

Γµ(σ(r), ϕ(r)) := µ1(γ11(σ1(r)), .., γ1n(σN (r)), ϕ11(r), .., ϕ1N (r))
...

µN (γN1(σ1(r)), .., γNN (σN (r)), ϕN1(r), .., ϕNN (r))

 .

5. MAIN RESULTS

In our first result it is shown that a Lyapunov function V
and a set of decentralized conditions exist which guarantee
that V decreases along the trajectories of the system:
Theorem 2. Let Assumptions 1 and 2 hold. Let V (x) =
maxi∈N σ−1

i (Vi(xi)) and, for each i ∈ N , define:

χi = σi ◦ η̂i , with η̂i = max
j∈N

ϕ−1
ji ◦ ηji .

Then the condition
Vi(xi) ≥ χi(||ei||), ∀ i ∈ N (5)

implies
〈p, f(x, g(x + e))〉 ≤ −α(||x||), ∀p ∈ ∂V (x) ,

where ∂V denotes the Clarke generalized gradient 3 and

f(x, e) =

(
f1(x, g1(x + e))

. . .
fn(x, gn(x + e))

)
.

Remark 2. If ϕji = 0, then we set conventionally ϕ−1
ji = 0.

We also remark that when computing maxj∈N ϕ−1
ji ◦ ηji

the indices j to consider are those corresponding to the
agents which use information from agent i to compute
their control law: only for these agents j it is true that
ηji 6= 0.

Proof: For each x, let N (x) ⊆ N be the set of indices
i for which V (x) = σ−1

i (Vi(xi)). Let i ∈ N (x) and set
r = V (x). Then

Vi(xi) = σi(r) > Γµ,i(σ(r), ϕ(r))
= µi(γi1(σ1(r)), . . . , γiN (σN (r)),

ϕi1(r), . . . , ϕiN (r)) .
(6)

2 Γµ 6≥ id means that for all s > 0 Γµ(s) 6≥ s, i.e. for all s ∈ RN
+ such

that s > 0 there exists i ∈ N for which µi(s1, . . . , sN , 0, . . . , 0) < si.
3 We recall that by Rademacher’s theorem the gradient ∇V of a
locally Lipschitz function V exists almost everywhere. Let N be
the set of measure zero where ∇V does not exist and let S be
any measure zero subset of the state space where V lives. Then
∂V (x) = co{limi→+∞∇V (xi) : x → xi, xi 6∈ N xi 6∈ S}.



Observe first that by definition of V (x), for any i ∈ N (x)
and any j ∈ N ,

γij(σj(r)) = γij(σj(V (x))) ≥
γij(σj(σ−1

j (Vj(xj))) = γij(Vj(xj)) .

Moreover, since for any j ∈ N ,
Vj(xj) ≥ χj(||ej ||) , χj = σj ◦ η̂j

we have,

ϕij(r) = ϕij(V (x)) ≥ ϕij(σ−1
j (Vj(xj)))

≥ ϕij(σ−1
j ◦ σj(η̂j(||ej ||)))

≥ ϕij(σ−1
j ◦ σj(ϕ−1

ij ◦ ηij(||ej ||)))
= ηij(||ej ||) . (7)

Observe that µi(v) ≥ µi(z) for all v ≥ z ∈ R2n
+ since

µi ∈ MAF2N and as a consequence of Definition 2, (ii).
Since r = V (x) ≥ σ−1

i (Vi(xi)) for all i ∈ N , by (7),
µi(γi1(σ1(r)), . . . , γiN (σN (r)), ϕi1(r), . . . , ϕiN (r))

≥ µi(γi1(V1(x1)), . . . , γiN (VN (xN )),
ηi1(||e1||), . . . , ηiN (||eN ||)) .

The inequality above and (6) yield that for each i ∈ N (x)
Vi(xi) > µi(γi1(σ1(r)), .., γiN (σN (r)), ϕi1(r), .., ϕiN (r))

≥ µi(γi1(V1(x1)), . . . , γiN (VN (xN )),
ηi1(||e1||), . . . , ηiN (||eN ||)) .

Hence, by (2),
∇Vi(xi)fi(x, gi(x + e)) ≤ −αi(||xi||)

for all i ∈ N (x).
We now provide a bound to the product 〈p, fi(x, gi(x +
e))〉 for each p ∈ ∂σ−1

i (Vi(xi)) and i ∈ N (x). Observe
that σ−1 is only locally Lipschitz and Clarke generalized
gradient must be used for σ−1

i (Vi(xi)). Fix xi and let
ρ > 0 be such that ||xi|| = ρ. Define the compact set
Kρ = {Vi(xi) ∈ R+ : ρ/2 ≤ ||xi|| ≤ 2ρ}, and let

cρ = min
r∈Kρ

(σ−1
i )′(r) , Cρ = max

r∈Kρ

(σ−1
i )′(r) ,

where cρ > 0 by definition of Ω-path σ. Bearing in mind
that ||xi|| = ρ, for each p ∈ ∂σ−1

i (Vi(xi)) there exists
γρ ∈ [cρ, Cρ] such that p = γρ∇Vi(xi), and 〈p, fi(x, gi(x +
e))〉 = γρ∇Vi(xi) ·fi(x, gi(x+ e)) ≤ −γραi(ρ) ≤ −cραi(ρ).
Set α̃i(ρ) := cραi(ρ), which is a positive function for all
positive ρ. Also set

α(r) := min{α̃i(||xi||) : r = ||x|| , i ∈ N (x)} .

Then, for each p ∈ ∂σ−1
i (Vi(xi)), 〈p, fi(x, gi(x + e))〉 ≤

−α̃i(||xi||) ≤ −α(||x||). This in turn implies (Dashkovskiy
et al. (2010)) that for each p ∈ ∂V (x) 〈p, f(x, g(x +
e))〉 ≤ −α(||x||).

In the rest of the section we discuss an event-triggered
control scheme (Tabuada (2007)) for the system

ẋi = fi(x, ui) , i ∈ N .

Before we can state a stability result for the proposed
event-triggered sampling scheme we need some more no-
tations. Let gi, i ∈ N , be the map defined in Assumption
1, and let ui(t) = gi(x̂(t)) be the control laws, where the
vector x̂(t) = (x̂1(t)T , . . . , x̂N (t)T )T is defined next.
For each i ∈ N , let {tik}k∈N0 be a sequence of times with
ti0 = 0, ti0 < ti1 < ti2 < . . ., and let x̂i(t) = xi(tik), for
all t ∈ [tik, tik+1), for all k ∈ N0. Hence, the controllers
use the samples xi(tik) instead of the states xi(t). The

sampling times tik are decided according to the following
rule. Set ei(t) = x̂i(t) − xi(t). Observe that ei(tik) = 0,
since x̂i(tik) = xi(tik). The next time tik+1 in the sequence
is computed as the minimal time greater than tik such that
Vi(xi(t)) ≥ χi(||ei(t)||), where χi are the functions defined
in Theorem 2.
Theorem 3. Let Assumptions 1 and 2 hold. Consider the
interconnected system

ẋi(t) = fi(x(t), gi(x̂(t))) , i ∈ N , (8)
where for each i ∈ N , x̂i(t) = xi(tik) for t ∈ [tik, tik+1),
and {tik}k∈N0 is the sequence of sampling times such that
ti0 = 0, and, for each k ∈ N0, tik+1 > tik is the smallest time
t such that χi(||x̂i(t)−xi(tik)||) ≥ Vi(xi(t)). Then the origin
is a globally uniformly asymptotically stable equilibrium
for (8).

Proof: To analyze the event-based control scheme in-
troduced above, we define the time-varying map f̃(t, x) =
f(x, g(x+e(t))). The map f̃(t, x) satisfies the Carathéodory
conditions for the existence of solutions (see e.g. Bacciotti
and Rosier (2005), Section 1.1). Because of the conditions
on f (see Section 2), the solution exists and is unique.
Along the solutions of ẋ = f̃(t, x), the locally Lipschitz
positive definite and radially unbounded Lyapunov func-
tion V (x) introduced in Theorem 2 satisfies

V (x(t′′))− V (x(t′)) =
∫ t′′

t′

d

dt
V (x(t))dt

for each pair of times t′′ ≥ t′ belonging to the interval
of existence of the solution. Moreover, by a property of
the Clarke generalized gradient (Ceragioli (1999), Section
2.3, Proposition 4), for almost all t ∈ R+, there exists
p ∈ ∂V (x(t)) such that:

d

dt
V (x(t)) = 〈p, f̃(t, x(t))〉 .

By definition of f̃(t, x), and recalling Theorem 2, it is true
that (see Sanfelice et al. (2007), Section IV.B, for similar
arguments)

V (x(t′′))− V (x(t′)) = −
∫ t′′

t′
α(||x(t)||)dt .

We can now apply Bacciotti and Rosier (2005), Theorem
3.2, to conclude that the origin of ẋ = f̃(t, x), and therefore
of ẋ = f(x, g(x̂)), is uniformly globally asymptotically
stable.

The accumulation in finite time of the sampling times may
affect event-triggered controllers. In Section 7 we discuss
a variation of the previous distributed event-triggered
control for which this phenomenon does not occur.

6. AN EXAMPLE

Consider the interconnection of linear systems as in Sec-
tion 3

ẋi =
N∑

j=1

Āijxj +
N∑

j=1

B̄ijej i = 1, . . . , N , (9)

with Āii Hurwitz for i ∈ {1, . . . , N}. In order to apply our
event-triggered sampling scheme, we first have to check
the conditions of Theorem 2. As verified in Section 3,



Assumption 1 holds for system (9) with each Lyapunov
function given by Vi(xi) = xT

i Pixi.
To check Assumption 2 we recall Lemma 7.2 from
Dashkovskiy et al. (2010):
Lemma 1. Let α ∈ K∞ satisfy α(ab) = α(a)α(b) for all
a, b ≥ 0. Let D = diag(α), G ∈ Rn×n, and Γµ be given by

Γµ(s) = D−1(GD(s)) .

Then Γµ � id if and only if the spectral radius of G is less
than one.

It is easy to see that the for the linear case Γµ from
Section 4 with entries from (3) is of the form of Lemma 1
with α(r) :=

√
r and

Gij =
2||Pi||3/2

c̃i

||Āij ||
[λmin(Pj)]1/2

, i 6= j, i, j = 1, . . . , N

and zeros as diagonal entries. In other words, γij(r) =
Gijα(r). Let us assume that the spectral radius of G is
less than one. For the case of linear systems an Ω-path is
given by a half line in the direction of an eigenvector s∗ of
a matrix G∗ which is a perturbed version of G (for details,
see the proof of (Dashkovskiy et al., 2010, Lemma 7.12)).
Denote this half line by σ(r) := s∗r.
To show a way to construct a ϕ for which

Γµ(σ(r), ϕ(r)) < σ(r) , ∀r > 0 (10)
holds, consider the ith row of (10) and exploit the fact
that the Ω-path is linear: N∑

j=1,j 6=i

2||Pi||3/2

c̃i

||Āij ||
[λmin(Pj)]1/2

√
rs∗j +

N∑
j=1

ϕij(r)

2

< rs∗i .

Bearing in mind that ||Āij || 6= 0 if and only if j ∈ Ni \ i
(see last paragraph of Example 3), the inequality rewrites
as: ∑

j∈Ni\i

2||Pi||3/2

c̃i

||Āij ||
[λmin(Pj)]1/2

√
rs∗j +

N∑
j=1

ϕij(r)

2

< rs∗i .

(11)
If we make the choice ϕij(r) = aij

√
r for all j ∈ Ni \ i and

ϕij(r) = 0 otherwise, we obtain:∑
j∈Ni\i

aij <
√

s∗i−
∑

j∈Ni\i

2||Pi||3/2

c̃i

||Āij ||
[λmin(Pj)]1/2

√
s∗j =: ρi.

It is worth noting that ρi > 0 by the spectral condition on
G.
Assume without loss of generality that Ni \ i 6= ∅ (if
not, (11) trivially holds). Without further knowledge of
the system, we choose ϕij(r) := ρi

|Ni\i|
√

r, where |Ni \ i|
denotes the cardinality of the set Ni \ i, to ensure that
(10) holds. Simulations suggest that it might be better to
not choose the aij uniformly, but to relate them to the
system matrices (in particular, to the spectral radii of the
coupling matrices B̄ij = BiKij).
Now we can calculate the trigger functions χi as in The-
orem 2 by using the Ω-path and the ϕij from above. The
map η̂i is calculated using the ηij from (3).
Stability of the interconnected system is then inferred by
Theorem 3.
To illustrate the feasibility of our approach we simulated

the interconnection of three linear systems of dimension
three. The entries of the system matrices are drawn ran-
domly from a uniform distribution on the open interval
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Fig. 1. Trajectories of the interconnected sys-
tem with periodic sampling
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Fig. 2. Trajectories of the interconnected sys-
tem with event-triggered sampling
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Fig. 3. 33 periodic (red dots) and 22 (blue stars) events at
the beginning of the simulation

1500 1510 1520 1530 1540 1550 1560 1570 1580 1590 1600
1
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3

Fig. 4. 34 (red dots) periodic and 19 (blues stars) events
in the middle of the simulation

2800 2810 2820 2830 2840 2850 2860 2870 2880 2890 2900
1

2

3

Fig. 5. 34 periodic (red dots) and 21 (blue stars) events at
the end of the simulation

(−5, 5). We repeat this procedure until the spectral radius
of the corresponding matrix G is less than one.
In Figure 1 new information is sampled every three units of
time. Which system has to transmit information is decided
by a round robin protocol (i.e., first system one, than
system two, system three and again system one and so
on).
In Figure 2 our event-triggered sampling scheme is used.
Over the range of 3000 units of time the system with peri-
odic sampling transmitted 1000 new information, whereas
in our scheme the events were triggered only 595 times.



By looking at Figure 1 and Figure 2 it seems like the
periodic sampled system converges a bit faster. Indeed, the
systems state norm of the event-triggered system at time
3000 is already reached by the periodic sampled system
after 2486 (i.e., 828 periodic samplings) units of time. But
still the number of triggered events (595) is smaller than
the number of periodic events (828).
An idea when the different systems sample their state
is depicted in Figures 3-5. The first picture shows the
sampling behavior at the beginning of the simulation.
The other two are from the middle and the end of the
simulation, respectively.

7. ON ZENO-FREE DISTRIBUTED
EVENT-TRIGGERED CONTROL

The aim of this section is to show that it is possible
to design distributed event-triggered control schemes for
which the accumulation of the sampling times in finite
time does not occur. To this purpose we focus on a simpler
system than (1), namely a system with N = 2, and where
ui = gi(xi + ei) for i = 1, 2, and w = 0. We rewrite the
closed-loop system as:

ẋ1 = f̂1(x1, x2, e1)
ẋ1 = f̂2(x1, x2, e2) .

(12)

For this system we adopt a slight variation of the input-to-
state stability property which is at the basis of our Zeno-
free event-triggered control (Jiang et al. (1996), Definition
2.2 and Lemma 4.1):
Assumption 3. For i = 1, 2, there exist a differentiable
function Vi : Rni → R+, and class-K∞ functions αi1, αi2

such that
αi1(||xi||) ≤ Vi(xi) ≤ αi2(||xi||) .

Moreover there exist functions µ1, µ2 ∈ MAF2,
γ12, γ21, η11, η22 ∈ K∞, α1, α2 positive definite and positive
constants c1, c2 such that

V1(x1) ≥ µ1(γ12(V2(x2)), η11(||e1||) + c1) ⇒
∇V1(x1)f̂1(x1, x2, e1) ≤ −α1(||x1||)

V2(x2) ≥ µ2(γ21(V1(x1)), η22(||e2||) + c2) ⇒
∇V2(x2)f̂2(x1, x2, e1) ≤ −α2(||x2||) .

(13)

In what follows we set µ1 = µ2 = max. In the words
of Jiang et al. (1996) both systems are input-to-state
practically stable. We assume that the two systems satisfy
a small-gain condition of the following form:
Assumption 4. For each r > 0, γ12 ◦ γ21(r) < r.

By Lemma A.1 in Jiang et al. (1996), the small-gain
property implies the existence of a function σ2 ∈ K∞,
continuously differentiable on (0,∞) such that for all r > 0

γ21(r) < σ2(r) < γ−1
12 (r) .

Set σ1(r) = r. Moreover, let ϕ ∈ K2
∞ be such that

ϕ1(r) < r and ϕ2(r) < σ2(r). The small-gain condition
above plays the role of condition (4). In fact, we have for
all r > 0:

Γ̂µ(σ(r), ϕ(r)) :=
(

µ1(γ12(σ2(r)), ϕ1(r))
µ2(γ21(σ1(r)), ϕ2(r))

)
< σ(r). (14)

Compared with Γ̄µ(σ(r), ϕ(r)) in Assumption 2, each entry
of Γ̂µ(σ(r), ϕ(r)) depends on a single function of ϕ. This
reflects the fact that each sub-system i is affected by the

error signal ei only. We now state a new version of Theorem
2 for the system (12):
Theorem 4. Let Assumptions 3 and 4 hold. Let V (x) =
maxi=1,2 σ−1

i (Vi(xi)) and N (x) ⊆ {1, 2} be the indices
i such that V (x) = σ−1

i (Vi(xi)). Assume that, for each
i = 1, 2,

max{η−1
ii (ϕi ◦ σ−1

i (Vi(xi))− ci), η−1
ii (ci)} ≥ ||ei|| . (15)

If c1, c2 are such that
1
2
ϕ2 ◦ σ−1

2 ◦ ϕ1(2c1) = c2 , (16)

then
〈p, f̂(x, g(x + e))〉 ≤ −α(||x||), ∀p ∈ ∂V (x) ,

for all x = (xT
1 xT

2 )T ∈ {x : V (x) ≥ maxi∈N (x) ϕ−1
i (2ci)},

where

f̂(x, e) =
(

f̂1(x1, x2, e1)
f̂2(x1, x2, e2)

)
.

Proof: Let i ∈ N (x). Then, as a consequence of
Assumption 4, (14) holds, and we have:

Vi(xi) = σi(V (x)) >

µi(γi,i+1(σi+1(V (x))), ϕi(V (x))) , (17)
where the index i + 1 is intended modulo 2. Suppose
that V (x) ≥ ϕ−1

i (2ci) or, equivalently, that Vi(xi) ≥ σi ◦
ϕ−1

i (2ci). Then, by (15),

ϕi ◦ σ−1
i (Vi(xi)) ≥ ηii(||ei||) + ci

and in turn
ϕi(V (x)) = ϕi ◦ σ−1

i (Vi(xi)) ≥ ηii(||ei||) + ci . (18)

Further observe that, since V (x) ≥ σ−1
j (Vj(xj)) for j =

1, 2, then
γi,i+1(σi+1(V (x))) ≥ γi,i+1(Vi+1(xi+1)) .

By (17), (18) and the latter, we conclude that:
Vi(xi) > µi(γi,i+1(Vi+1(xi+1)), ηii(||ei||) + ci) ,

and we can use (13) in Assumption 3. In other words,
under the conditions of the theorem, for each i ∈ N (x), if
V (x) ≥ ϕ−1

i (2ci), then ∇Vi(xi)f̂i(x1, x2, ei) ≤ −αi(||xi||).
Now we can repeat the same arguments of the last part of
the proof of Theorem 2, and conclude that for all x such
that V (x) ≥ maxi∈N (x) ϕ−1

i (2ci) and for all p ∈ ∂V (x),
〈p, f̂(x, g(x + e))〉 ≤ −α(||x||).
Remark 3. It is not difficult to choose the functions ϕ1, ϕ2

in such a way that (16) is fulfilled, provided that c1 > c2

(if c2 > c1, one can interchange the two indices and obtain
the same result). Indeed, recall that ϕ1 < Id and ϕ2 < σ2,
and set ϕ1 = ε1 Id, ϕ2 = ε2σ2, with 0 < ε1, ε2 < 1. Then
the left-hand side of (16) becomes

1
2
ϕ2 ◦ σ−1

2 ◦ ϕ1(2c1) = ε1ε2c1 ,

and it is enough to choose ε1ε2 = c2
c1

.

Consider the interconnected system
ẋi(t) = fi(x1(t), x2(t), gi(x̂i(t))) , i = 1, 2 , (19)

We can now define the event-triggered control laws fol-
lowing the same arguments of Section 5, the difference
being that the sequence of sampling times tik is gener-
ated according to the rule (15) rather than (5). In view
of the result above, one can argue that, as far as the



state x(t) belongs to that region of the state space where
max{ϕ−1

1 (2c1), ϕ−1
2 (2c2)} ≤ V (x(t)) ≤ V (x(0)), the Lya-

punov function computed along the trajectory decreases
with a velocity which is bounded away from zero. More-
over, the rates at which the errors e1, e2 increase are always
bounded from above. Since each error ei must grow at least
of a quantity ϕ−1

i (2ci) before a new sampling can take
place, the fact that the errors evolve with a limited velocity
show that the length of the inter-sampling intervals is
always above a finite positive quantity, i.e. the set of
sampling times is locally finite. We summarize with the
following statement:
Theorem 5. Let Assumptions 3 and 4 hold, and let c1, c2

satisfy (16). Consider the interconnected system
ẋi(t) = fi(x1(t), x2(t), gi(x̂i(t))) , i = 1, 2 , (20)

where for each i ∈ N , x̂i(t) = xi(tik) for t ∈ [tik, tik+1),
and {tik}k∈N0 is the sequence of sampling times such that
ti0 = 0, and, for each k ∈ N0, tik+1 > tik is the smallest time
t such that for i = 1, 2

max{η−1
ii (ϕi◦σ−1

i (Vi(xi(t)))−ci), η−1
ii (ci)} ≥ ||ei(t)|| .

Then, for every initial condition, the solution converges in
finite time to the level set {x : V (x) ≤ maxi∈{1,2} ϕ−1

i (2ci)},
where V (x) = maxi=1,2 σ−1

i (Vi(xi)). Moreover, for i = 1, 2
there exist positive values Ti such that tik+1 − tik ≥ Ti for
all k ≥ N0.
Remark 4. The size of region where the state converges
in finite time depends on the constants c1, c2. In the case
the two subsystems are input-to-state stable, that is (13)
holds with c1 = c2 = 0, then in Theorem 5 it is possible to
replace ci with any positive value ĉi and the claim remains
valid. The advantage is that the sampling times of the
resulting event-triggered controllers do not accumulate in
finite time as before, but additionally the set to which the
state converges can be made arbitrarily small. In other
words, under the stronger assumption of input-to-state
stability for the two subsystems, the result above proves
practical stability of the closed-loop system.

8. CONCLUSION

We presented an event-triggered sampling scheme for con-
trolling interconnected systems. Each system in the inter-
connection decides when to send new information across
the network independently of the other systems. This de-
cision is based only on its own state and a given Lyapunov
function. Stability of the interconnected system is inferred
by the application of a nonlinear small-gain condition. The
feasibility of our approach is presented with the help of
a numerical simulation. To prevent the accumulation of
the sampling times in finite time, we proposed a variation
of the event-triggered sampling-scheme which guarantee
practical stability of the interconnected system.
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Nešić, D. and Teel, A. (2007). Input-output stability prop-
erties of networked control systems. IEEE Transactions
on Automatic Control, 52(12), 2282–2297.

Sanfelice, R., Goebel, R., and Teel, A. (2007). Invariance
principles for hybrid systems with connections to de-
tectability and asymptotic stability. IEEE Transactions
on Automatic Control, 52(12), 2282–2297.
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