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Abstract

We study structural properties of linear time-varying discrete-time systems. At first
an associated system on projective space is introduced as a basic tool to understand the
linear dynamics. We study controllability properties of this system, and characterize
in particular the control sets and their cores. Sufficient conditions for an upper bound
on the number of control sets with nonempty interior are given. Furthermore expo-
nential growth rates of the linear system are studied. Using finite time controllability
properties in the cores of control sets the Floquet spectrum of the linear system may
be described. In particular, the closure of the Floquet spectrum is contained in the
Lyapunov spectrum.

1 Introduction

In recent years spectral theory for time-varying linear systems has attracted renewed interest.
While the foundations of the theory have been laid by Floquet [25], Lyapunov [40] and Bohl
[16] the introduction of the problems and considerations of control posed new questions to
which different approaches have been proposed. Here we present an approach to the spectral
theory of families of discrete-time time-varying linear systems of the form

z(t+1) = A(u(t))z(t) teN,

where the entries of A depend analytically on the time-varying parameter u, which takes
values in a prescribed set. In order to gain an insight in the dynamics of this system the
system that is obtained by projecting on projective space is analyzed. This approach leads
to two generalizations of objects well understood for time-invariant systems. The concept
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of eigenspace is extended to what is called control set on projective space that is a set
that is characterized by certain controllability properties. Eigenvalues find natural and well
understood generalizations in Floquet, Lyapunov, and Bohl exponents. We examine these
different exponential growth rates and how control sets may be employed to characterize
them.

Exponential stability is characterized by the Bohl exponent of a time-varying linear sys-
tem [16], see also [24]. Przytuski and Rolewicz studied Bohl exponents (or generalized spec-
tral radii in their terminology) for discrete time systems in [46] with further work appearing
in [43] - [45]. On the other hand Lyapunov exponents characterize exponential growth along
trajectories. Properties of Lyapunov exponents were studied by Barabanov in [8]-[11], where
sufficient conditions so that Lyapunov exponents characterize exponential stability for fam-
ilies of time-varying systems are shown. Berger and Wang [15], Lagarias and Wang [38] and
Gurvits [27] study the joint and the generalized spectral radius given by a discrete inclu-
sion (not to be confused with the notion of generalized spectral radius due to Przytuski and
Rolewicz). The works cited so far are concerned mainly with the largest exponents charac-
terizing stability. In this article we are interested in the complete spectrum of exponential
growth rates associated with the system. Also we will briefly discuss the relation between
the different notions appearing in the literature.

The basic idea of our approach is to study a system on projective space that can be
constructed from the linear system by Bogolyubov’s projection introduced by Has’minskii
[28]. The study of this projection in connection with control theory has found numerous
applications for continuous time systems in the analysis of Lyapunov spectrum. For deter-
ministic systems the work of Colonius and Kliemann [20], [21] and [22] presents a full picture
of what is known. In particular the relation to exponential dichotomies and the dynamical
spectrum as studied by Sacker and Sell [47] and Johnson, Palmer and Sell [35] is analyzed
in these references.

Interest in the complete spectrum of the linear system stems from diverse lines of research.
One of these is the question of robust stability. Let A(ug) be a Hurwitz stable matrix, i.e.
the spectrum of A(ug) consists of values with negative real part and interpret U as a set
determining the structure of possible perturbations to the time-invariant system given by
& = A(ug)z. The problem of robust stability is to determine whether the perturbed system
is exponentially stable under all possible perturbations u : R — U, that are e.g. piecewise
continuous, see Hinrichsen and Pritchard [29], [30] and Colonius and Kliemann [19]. The
discrete-time problem has been treated by the author and Hinrichsen in [57], [55].

Interpreting u as a control term knowledge about the set of exponential growth rates
or Lyapunov exponents can be employed in the stabilization of such systems, see Colonius,
Kliemann and Krull [23], and Griine [26].

If u(t) is given a stochastic interpretation we are in the realm of stochastic systems. This
problem was treated for continuous time systems by Has’minskii [28], Arnold, Kliemann and
Oeljeklaus [6], Arnold and Kliemann [5] and Arnold and San Martin [7]. The discrete-time
case was studied by Homblé in [32], [33] and Baxendale and Has'minskii [14], however, with
the restriction that the discrete-time system is invertible.

In this article we wish to lay the foundation for the theory and treat some of the difficulties
inherent to the discrete-time case. It is explained how the problem of non-invertibility
can be partially overcome while retaining the possibility of obtaining a reasonable system
on projective space. We study asymptotic properties of the projected system, show the
existence of controls with universal properties and examine the controllability structure of



the projected system. This supplies the tools we need for an analysis of the different spectra.

We proceed as follows. Section 2 contains the problem statement along with the assump-
tions we make. In Section 3 we study accessibility, transitivity and regularity of discrete-time
systems. Orbits and regular orbits are introduced and it is explained why forward accessi-
bility can be characterized by the rank of a Jacobian. This has been noted by several other
authors [41], [32]. What is particularly useful in the case of the projected system is that by
Proposition 3.6 it is not necessary to check this in local coordinates on the projective space
Ppt.

In Section 4 we exhibit some asymptotic properties of the system on projective space. The
study of w-limit sets follows the approach of Colonius and Kliemann [20], and is standard
if the projections of linear systems on projective space are studied. Using the regularity
arguments from Section 3 we obtain sufficient conditions for the generalized eigenspace of a
transition matrix to project to a region of exact controllability.

In Section 5 we state a result on universally regular controls and a controllability property
that can be proved using the existence of universally regular controls. In spite of the activity
in the study of accessibility of discrete-time systems, the existence of universal controls has
only recently been investigated [54], [50]. In [49] Sontag shows the existence of universally
regular (universal nonsingular in his terminology) controls for analytic, strongly accessible
continuous-time systems. Related, and at first glance more interesting, is the existence of
universally distinguishing controls which has been studied by Sussmann [51], and Sontag and
Wang [48]. It cannot be overemphasized, however, that without the existence of universally
regular controls, the following results would lose a considerable amount of strength. The
main result of this section is that forward accessibility on projective space implies that a
whole linear subspace may be steered so as to simultaneously avoid a complementary linear
subspace. An analogue of this statement (Proposition 5.3) has to our knowledge not been
studied in continuous time.

A starting point in the study of nonlinear control systems are questions of controllability
of a system. Unlike the linear case where controllability is a global property in the state space,
nonlinear systems may possess several regions of controllability. An important conceptual
tool is to study sets, where it is possible to steer arbitrarily close from any one point to any
other. These are the so-called control sets, which are introduced in Section 6.

Kliemann [37] studied properties of control sets of locally accessible systems on smooth
manifolds in continuous time. For the projected system obtained in the continuous time case
an upper bound on the number of control sets with non-void interior has been obtained in
[20]. An improved version of this result has been given by Bragas and San Martin [12], where
smaller upper bounds than the dimension of the state space have been given depending on
the group that is acting on projective space. In the discrete-time case control sets have been
studied by Albertini and Sontag [3], [4], [2] who also introduced the concept of the core of
a control set which is a strictly discrete-time concept. Introducing a further assumption we
define regular cores which can be shown to enjoy the same properties one would expect for
cores, in fact for the class of systems studied in [3] the definition of core and regular core
coincide. We give an example of a system where the interior of a control set and its regular
core do not coincide.

What is surprising is that neither in the continuous nor in the discrete-time case an effort
has been undertaken to study control sets for complex systems, although it has been known
for some time that even for real systems it is useful to study complex perturbations by the
results of Hinrichsen and Pritchard [31].



A first observation for our system on projective space is that the generalized eigenspaces
corresponding to universally regular controls project to the cores of appropriate control sets.
Using this property we show in Section 7 that under weak assumptions there exist a unique
invariant control set and a unique open control set on projective space. These are maximal,
respectively minimal in the control order on the control sets. Here is the first time where
the importance of the universally regular controls becomes clear, as their existence yields an
easy proof for the existence of the maximal and the minimal control set. This is also the
point where we have to depart from lines of proof available in the literature that are based
on properties of Lie groups, if we do not want to restrict ourselves to the invertible case.

In the subsequent Section 8 further results on control sets with nonempty interior are
presented. For these it is of importance, what the minimal possible rank drop on a path
connecting two admissible invertible matrices is. Depending on this singularity index, we
show that the eigenspaces of universally regular controls corresponding to an eigenvalue
whose modulus has index greater than the singularity index, project to a control set uniquely
determined by the index of the modulus. Control sets with this property are called main
control sets. This leads to a sufficient condition in terms of the singularity index guaranteeing
that there exist a most n control sets with nonempty interior, which are all main control
sets. It is briefly explained in what sense control sets may be viewed as a generalization of
generalized eigenspaces.

In Section 9 we begin our discussion of spectral theory by introducing the different ex-
ponents we want to study. Our definition of Floquet and Lyapunov spectra follows Colonius
and Kliemann [20], [22] with the exception, that in these references the collection of the i-th
Floquet exponents are not introduced.

In Section 10 the Floquet spectrum of the discrete time system is analyzed. We study
Floquet spectra corresponding to control sets with non-empty core. To each such control
set an associated set of Floquet exponents is defined. The idea of the proof that the closure
of such a set is an interval follows the continuous-time case. The key is here a finite time
controllability property in the cores of control sets. In Section 11 we study Lyapunov and
Bohl spectra and their relation to the Floquet spectrum. Using an idea already developed in
[18] we show under which conditions it is possible to approximate Lyapunov exponents by
periodic controls. Furthermore, it is shown that without any further assumptions the closure
of a Floquet spectrum of a control set actually consists of Lyapunov exponents corresponding
to trajectories that remain in that control set. This is the statement of Theorem 11.1 (ii). It
follows that the closure of the Floquet spectrum is contained in the Lyapunov spectrum. It
has been shown by Berger and Wang [15] that the joint and the generalized spectral radius
of a discrete inclusion given by a bounded set of matrices are equal. For our systems this
implies the equality of the suprema of Bohl, Floquet and Lyapunov spectra. We show that
the infima of Floquet and Lyapunov spectra coincide as well.

To indicate a further line of research let us point out that an extension to the theory
of control sets is given by the so-called chain control sets, which have been introduced by
Colonius and Kliemann [20], [22]. The idea is not to consider trajectories of the system
but (&, 7T)-chains to define chain-orbits and using these to define chain control sets. For
discrete-time systems this has been studied by Albertini and Sontag in [4]. The extension
of these concepts to the kind of systems we have studied will be an interesting direction for
further research, as with chain control sets it is possible to describe the Morse spectrum of
the discrete time system, which is an outer approximation of the set of Lyapunov exponents.



2 Problem statement
Let K =R, C and let U € K™ be open and connected. For an analytic map

AU - K> (1)
we consider a family of time-varying linear system of the form

z(t+1) = A(u(t)z(t), teN (2)
z(0) = =z €K, (3)

where v : N = U c U. The set-up we have chosen contains in particular systems affine in u
and positive systems as subclasses. Also it naturally extends to periodic systems.

Fort € N U' denotes the set of admissible finite control sequences u = (u(0), ..., u(t—1)),
while UY is the set of infinite control sequences u = (u(0),u(1),...). It will always be clear
from the context whether u denotes an element of U, U? or U".

For two finite control sequences u; € U™, uy € U™ we define the concatenation (uy, us)
to be the sequence in U given by (uq,u2) = (u1(0),...,ui(t1 — 1), u2(0), ..., uz(t2 — 1)).
The k-times repeated concatenation of u € U? is denoted by (u)* € U. For infinite control
sequences u € UN we consider for t € N, ujg 17 := (u(0),...,u(t — 1)) € U’ the “first part”
of the control sequence u. The evolution operator generated by a control sequence u € U
is defined by

O,(s,8) =1, D, (t+1,s)=A(u(t))P,(t,s), t>seN. (4)

With this notation ®,(t,0)z, is the solution of (2) corresponding to the initial value z
and the control u at time t.

We denote by Uy, the set {u € U; det A(u) # 0}, which is clearly the complement of a
set defined by analytic equations in U. Thus Uy, is either w-generic in U or empty, where
we call a set w-generic if its complement is contained in a proper analytic subset of U. The
term generic will be used for sets whose complements are contained in closed subanalytic
sets of dimension strictly less than the manifold considered. For details on the theory of
analytic and subanalytic sets we refer the reader to [42], [36] and [52]. In the sequel we will
have to make use of the existence of invertible matrices A(u), so that we have to assume
that Uim} 7é @

The following general assumption will be made throughout the remainder of this article.
Note, however, that the first one is just for convenience and without loss of generality.

Assumption 2.1 Let K = R,C and consider system (2). We assume that the map A in
(1) and the sets U C U C K™ are such that:

(i) 0 € U.

(1) The set Uy is w-generic in U.
(#i) int U is connected.

(iv) U C clintU c U.

(v) U is bounded.



One tool for the study of Lyapunov exponents has been the projection onto the projec-
tive space, known as Bogolyubov’s projection. It is based on the fact that in continuous
time the angular component of the system may be decoupled from the radial and studied
independently.

In our discrete-time system we do not exclude the possibility that the origin may be
reached from non—zero states. If this is regarded from the point of view of stability or
robust stability this poses no problem for once system (2) is at zero it remains there, as it
is totally uncontrollable at zero. However, this means that system (2) as such may not be
projected onto projective space. First the maximal subsystem that can be projected has to
be identified.

To consider the discrete time analogue of Bogolyubov’s projection, we define for z € K"

U(z) :={u € U; A(u)z # 0},

and with a slight abuse of notation the analogous sets for finite and infinite control sequences
are denoted by U'(z) and UN(z).

As Uiy C U(z) and U}, := (Ugpe)t C U'(z) for all z € K*\{0} it follows that for = # 0
the sets U(x) and Ut(z) are w-generic in U resp. U’. In the sequel P ' denotes the n — 1
dimensional projective space, and for W C K", PW denotes the natural projection of W\{0}
onto the projective space Pi .

For ¢ € P ' we define the admissible control values for & by
U):=U(z) iff £ =Pz,

and in an analogous fashion U*(§), UN(£). This is well defined as Ker A(u) is a linear sub-
space. With this notation the projected system corresponding to our linear system (2) is
given by

Et+1) = PAu(t)é(t), teN (5)
£0) = &ePy! (6)
u € UN&). (7)

We denote the solution of (5) corresponding to an initial value & and a control sequence
u € UN(&) by &(+;&,u). For a subset V C P!, ¢t € N, u € U? the notation &(¢; V, u) :=
{&(t;m,u);m € V such that u € Ut(n)} will be used.

3 Accessibility, Transitivity and Regularity

Let us now study the projected system (5) from a control point of view. The variable “u”
will be treated as if it were available for control of the system. A basic question in control
theory is that of accessibility. We begin with the following basic definitions.

Definition 3.1 (Orbits) Let K = R, C. Consider system (5). The forward orbit of & at
time t 1s defined as

OF (&) == {ne Py ;3ue U'(E) withn=¢&(t:& u)}.



The forward orbit of & is then defined by O1(€) == U Of (€). The backward orbit of & at

tEN
time t 1s given by

O; (&) = {n € Py 3u € U'(n) with & = &(t;n, u)}-
which leads to a definition of O~ (&) analogous to that of the positive forward orbit. Let

Oo(§) :={&} O = U O0"(uo~(m), teN.

neDy(€)
The orbit of £ is then defined by
0 =U 0:(¢)- (8)
teN

Definition 3.2 (Accessibility) The system (5) is called forward accessible from & if
int OF(€) # 0, backward accessible from & if int O~ (§) # 0, forward (respectively back-

ward ) accessible if it is forward (backward) accessible from all € € PE".
System (5) is called transitive, if int O(€) # 0 for all € € P .

We note the following properties of the forward orbit.

Lemma 3.3 Let K =R, C. Consider system (5).
(i) Let £1,& € PE ' If & € L OT (&) then clOT (&) C 1 OT(£)).
(i) For allt € N, &£ € P! it holds that cl O} (€) is connected.

Proof: (i) follows from a simple continuity argument. In order to prove (ii) we proceed by
induction over t € N. Let ¢t = 1 and 0 # = € K”. For an analytic path « : [0,1] — int U with
A(y(1))z # 0, we will show that clP{A(y(7))z;7 € [0,1]} is pathwise connected. Assume
that A(y(7))x = 0 (there are at most finitely many such 7). Let £ € N be the smallest
integer such that i—kkA(y(T))x|T:To # 0 and without loss of generality assume that the first
component, of this vector is nonzero. In standard local coordinates around (1,0,...,0) we
obtain a neighborhood of 79 where for 7 # 74 it holds that

(AGE)):  (AGE)2),
A0m))” wmwmwﬂ‘ ®)

Using the rule of de I'Hospital we obtain that lim,_,,, PA(y(7))z exists which shows our
claim. As for every uy,us € int U there exists a piecewise polynomial path connecting them
and using Assumption 2.1 (iv), we see that cl O () is connected.

Assume now that cl O; (€) is connected. Then for uy € Uy, it holds that PA(ug) cl Of (€) is
connected as the continuous image of a connected set. Thus

cl (’):Zrl(f) =cl U cl Of (n)
nea O (¢)

meﬂm=(L

is connected as each of the sets in the union is connected and each of the sets intersects the
connected set PA(ug) cl O} (€). O



It has been shown that forward accessibility is intimately related to the rank of a certain
mapping in the case of smooth invertible systems [4]. To carry this result over to our case
let for every t € N

W= {(&u) ePE! xint U ueUE)}, (10)

and consider the map
Ft : Wt _)Pgéil; Ft(f,U) = §(t,£,u) (11)

For fixed ¢ € P! and ug € int U*(€) we consider the rank of the linearization of Fy(,) :
UtE) — P! at ug € Ut ¢ K™ with respect to u = (u(0)1, ..., u(0)pm, u(1),...,u(t —
1)1,...,u(t —1),,). We define the following shorthand notation

O e o) = (8?4?8)] (5’“‘)))- e

i=1,...,n—1;5=0,...,t—1;5=1,...m

where the F;; are the i-th components of the map Fi(€,-) with respect to some coordinate
chart around Fy(&,up). The important detail for us is the rank of this Jacobian which is
denoted by

OF;

r(t; €, up) == rk %(f,uo). (12)

Definition 3.4 (Regularity) A pair (&,u) € Pi ' xint U? is called regular, if u € int U*(€)
and r(t;€,u) =n —1. A control u € int U* is called universally regular, if (§,u) is a reqular
pair for all € € P

The following lemma summarizes some easy properties in connection with regularity.

Lemma 3.5 Let K =R C, uy € intU?, vy € intU*. For & € Pt let Fyyo(&o, (uo,v0)) be
defined, then

(i) 7(t + s5&o, (w0, v0)) > 7(85€(t; 0, o), vo)-
(i) If vy € int U3, then r(t + s; &, (o, v0)) = 7(¢; &0, vo)-
Proof: Both assertions follow from an application of the chain rule. o

Proposition 3.6 Let K =R, C, consider system (5). For all x € K*"\{0},t € Nyu € int U*
the following statements are equivalent:

(i) (Px,u) is a regular pair.

(i1) ®,(t,0)x # 0 and the following rank condition holds:

'k Gy(z,u) = 1k <I>u(t,0)x§%<bu(t,0)x . (13)

Proof: It is clear that ®,(¢,0)z # 0 is necessary for regularity. An application of the chain
rule and a simple calculation in local coordinates yields the desired result. o
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The preceding criterion will be frequently used, as it is easily handled in lower dimensions,
where all our examples will be situated. Of course, if the dimension is high, or the structure
of the map A is complicated, this criterion is much too involved to yield a feasible procedure
for checking whether a system is forward accessible.

Definition 3.7 (Regular orbit) Let K = R, C and consider system (5). For £ € P ' we
define the regular forward orbit and regular backward orbit by

@:(f) = {n; Ju € intU'(€) s. t. (£&,u) is reqular and n = E(t;€,u)}, (14)

O, (€) == {n: Ju e intU'(n) s. t. (n,u) is reqular and & = £(t;n,u)}. (15)
The definitions of o (z) and O (x) are then analogous to Definition 3.1.

For subsets V C P2~! we will use the notations O (V) := Ugev O" () ete. The following
results exhibit some properties of the regular forward orbits. Items (iii) and (v) are shown
in [4] for analytic invertible systems and similar arguments are applicable here.

Lemma 3.8 For K =R C consider system (5). Let £ € PE!, then
(i) O, (€) is open in PE.
(i) O, (€) is open in PE L.
(iii) it OF (€) # 0 iff O, (€) # 0.
(iv) If, fort €N, O, (€) # 0, then O, (€) # 0 for all s > ¢.
(v) int Of (€) £ 0 = O/ (§) = O/ (¢€).

In the case when ¢ is a fixed point under a control u such that (£, u) is a regular pair,
the following property is immediately obtained.

Proposition 3.9 Let K =R C. For& € Py! there exist ug € int U',t € N such that (£, ug)
18 a reqular pair and

§ =& €, ue) (16)
if and only if there exists an open neighborhood V' of & such that V C @:r &n @; (€).

Proof: ”=": This follows as £ € @:(f) N O, (€) and the fact that both @;L (€) and O, (€)
are open by Lemma 3.8. ”<=": This is obvious as & € @:(6) O

Let us now extend this property to connected sets.

Lemma 3.10 Let K = R,C. IfT C P! is a connected set such that for every &€ € T the
assumption of Proposition 3.9 holds for some t(§) € N then there exists a connected open set
V' such that

rcvcNO (©no (). (17)

ger



Proof: Let £ € T and consider the set @+(f) N I, which is clearly open in . Let n €
rneo’ (€). As n € O (n), which is open, it follows that o €)NO () # 0 and hence
n e O (€). Thus @+(§) N T is open and closed in I' and nonempty. As I' is connected it
follows that I' ¢ O (€) and as € € I was arbitrary it holds for all &, & € I' that & € O (&)
and thus @+(§1) C @+(§2) by Lemma 3.5 (i). By symmetry we obtain (§+(§1) = (§+(§2).
Furthermore it follows for every n € T' that I' C O (n) and again for all &,& € T it
holds that @ (&) = O (&). As T is connected we can thus choose V to be the connected
component, of @+(§) N O () containing T for some & € T o

4 Asymptotic Properties on Projective Space

A first step in the study of the discrete-time system on projective space is the study of
the w-limit sets defined by constant matrices in Jordan block form, where we follow the
argumentation from [20] and extend the arguments used there so that we may treat cases
not considered in that reference. The following notation is used from now on.

Let B € K"™*". For an eigenvalue A € o(B) N K E()) denotes the eigenspace and
GE()) denotes the generalized eigenspace corresponding to A. If B € R*™*" and \ € o(B)
is complex then E'(\) denotes the real part of the sum of the eigenspaces corresponding to
the eigenvalues A\, \. GE()\) denotes the appropriate generalized eigenspaces.

It will also be convenient to consider the set of absolute values of the eigenvalues defined
by |o(B)| := {|A|; A € o(B)}. For 1 < i < n let r;(B) be equal to the i-th entry of

the ordered sequence |\;| < ... < |\,|, where each element of the spectrum of B appears
according to its algebraic multiplicity. For r € |o(B)| we denote
E(r)= @ E(X), GE(r)= P GE(). (18)

In the sequel we will be concerned with eigenspaces of ®,(t,0) generated by some finite
control sequence u € U'. To make the dependence on u explicit we write E(\,u), E(r,u) etc.
The projection of generalized eigenspaces is particularly important if regularity arguments
can be applied.

Definition 4.1 Let K=R C, t € N, u € U', r € |0(®,(¢,0))]. If r > 0 we call PGE(r,u)
regular if u can be partitioned as u = (uy,ug) with uy € U, up € int U2 and t = t; + t5 and
1t holds that

(&,u9) 1s a regular pair for every & € P®,, (t1,0)GE(r,u) . (19)

Definition 4.2 (Limit sets) Let K= R,C, u € UN, ¢ € P!, The positive w-limit set is
defined by

wh (€, u) = {77 e Pi Y Htrtren CN, klim t = oo such that n = klim E(ty; &, u)} . (20)
—00 —00
The negative w-limit set is defined by
w (& u) = {n € Pt Htp hhen C N, kli)m ty = 0o, IHm} C P,

& = &(tg; Mk, u) such that n = klim Uk} i (21)
—00
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Forte N, ue U, £ € Pyt wh(€ u) (w (€ u)) denotes the positive (resp. negative) w-limit
set that is obtained by applying the t-periodic continuation of u.

Note that with this definition we do not exclude the possibility that w-limit sets may be
empty, e.g. if u & UN(£). For a discussion of the concept of w-limit sets we refer the reader
to [1], Chapter 1. In the following lemma we collect some simple properties of limit sets
pertinent to our problem. The proof is left to the reader.

Lemma 4.3 Let K=R,C, t e Nu € Ut, £ ¢ P 1.
(i) wt (& u), w (& u) are closed.
(ir) Qu(t, 0)w™ (&, u) = w (& u).

(#i) If &€ = Px = IF’Z;:I x; with x; € GE(rj,u) is the spectral decomposition of £ and
T <re<...<r then
wt(&,u) C PGE(r). (22)

If 11 =0 then w (&, u) =0, otherwise

w”(&,u) CPGE(r). (23)

(i) If r > 0 then £ € PE(r,u) = £ € wt (&, u) =w (§,u) CPE(r,u).
The following lemma states the fundamental asymptotic property of the projected system.

Lemma 4.4 Let K =R, C.

(i) Let J,(\) denote a n x n Jordan block to an eigenvalue A € K\{0}. Then for any
z € K"\ {0}
lim PJ,(A\)'z =P[1,0,...,0]. (24)
t—+oo

(ii) Let K = R and let J,(\,X) denote a 2n x 2n Jordan block to a complex pair of
eigenvalues A\, \. Then for any Riemannian metric d on P! and any x € R?>"\{0}
it holds that

Jim d(PJa (A, Az, Pspan{[1,0,...,0],[0,1,0,...,0]'}) = 0. (25)
Proof: (i) For A € K\{0}, ¢t > n it holds that
[ P ! t )\tf(nfl) ]
cee e t—(n—1)
t t—1 t t—(n—2)
t 0 A" tA (t—(n—2)>)\
W=, . - (26)
| 0 0 A
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For ¢ > 1 it follows immediately that

(Jn(A)'ej)i
(Jn(N)fes)1
which proves the assertion in the limit ¢ — 4+o00. The assertion for ¢ — —oo follows

upon noting that J,(A)™" is similar to J,(5)f, where the vector e; is fixed under the
similarity transformation.

tliglo =0, (27)

(ii) The proof for the complex pair of eigenvalues follows the same pattern and is omit-
ted.

O

Corollary 4.5 Let K=R,C, t € N, u € U'. If forr € |o(®,(¢,0))|, r > 0 the generalized
eigenspace PGE(r,u) is reqular then there exists an open set V' such that

PE(rnu)cVe () O (©)nO (€. (28)

EEPE(r,u)

Proof: Let u = (u1,us) be partitioned in accordance with Definition 4.1. If & € PE(r, u),
then there exists a & € P®,, (t1,0)FE(r, u) such that & = &(t9; &2, uz) and (&, us) is regular.
Furthermore it holds by Lemma 4.3 (iv) that & € P®,, (t;,0)w (&, u) and so O (&) N

O (&) # 0 as the regular backward orbit is open by Lemma 3.8 (ii). Using Lemma 3.8 (v)

it follows that & € O (&).
As PE(r,u) is connected the assertion follows from Lemma 3.10. O

Corollary 4.6 Let K=R,C, t € N, u € U'. If forr € |0(®,(¢,0))], r > 0 the generalized
eigenspace PGE(r,u) is reqular then there exists an open set W such that

PGE(ru)cWc () O ()N (€. (29)

¢EPGE(r,u)
Proof: Letu = (uy,us) be partitioned in accordance with Definition 4.1 and £ € PGE(r, u).
By Lemma 4.4 and Corollary 4.5 there exists n € OF(€) N O (PE(r,u)) and it follows that
PE(r,u) C @+(§). On the other hand w=(&,u) C PE(r,u) and so by Corollary 4.5 there
exits an 7 € @+(]P’E(r, u)) and a k € N such that £ = £(kt;n, (u)¥). By regularity of the
pair (£((k — 1)t + t1;m, ((u)* 1, u1)), uz) and using the fact that (5;2 () is open we see that

n € O(€). Hence PE(r,u) C O (€). It follows that & € @+(§) and an application of
Lemma 3.10 completes the proof. o

Now that we have seen that for generalized eigenspaces in projective space certain con-
trollability properties hold if a regularity condition is satisfied, it is reasonable to ask, if we
can for certain controls guarantee that this condition holds. This is discussed in the next
section.
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5 Universally Regular Controls

A crucial point in the development of the theory is the construction of universally regular
controls and the proof of their genericity in U for ¢ large enough. The following result is
largely a restatement of results shown in [54] and [50].

Proposition 5.1 Let K = R C. For the projected system (5) the following statements are
equivalent.

(i) System (5) is forward accessible.
(11) There exist t € N, u* € int U such that u* is universally regqular.

(#i) There exists a t* € N such that for all t > t* the set of universally reqular control
sequences is generic in int U?.

(iv) There exists at € N, u € int U such that for every r € |o(®,(t,0))| the generalized
eigenspace PGE(r,u) is regular.

Proof: The equivalence of (i),(ii) and (iii) follows from Corollaries 3.2 and 3.3 in [50]. For
this note in particular that by Proposition 3.6 the set of non-regular pairs in P§ ! x U
is analytic. To complete the proof note that ”(ii) = (iv)” is obvious. For the converse
direction let u be such that (iv) is satisfied. For any ¢ € P3~' Lemma 4.4 implies that

wt(&,u) C PE(r,u) for some r € |o(®,(t,0))|. Corollary 4.6 implies that o (€) # 0, so that
(i) holds. o

The set of universally regular u € U’ will be denoted by U}, while t* denotes the smallest
t € N such that U!,, # 0. It follows from the results in [50] that if int O; (§) # 0 for all

reg
¢ € P&! then t* < tn. Note that U, is open for all ¢ € N.

reg

Remark 5.2 Let us point out that we use the term generic for sets that are the complement
of closed subanalytic sets of lower dimension in the real case or proper analytic subsets in
the complex case. The reason that we work with analytically defined sets lies in the analytic
dependence of A on u. In particular we use in the proof of Proposition 8.1 that if the
complement of a set Z is generic then from every x € Z there exists a path that starts
in x € Z and leaves Z immediately. This is due to the fact that subanalytic sets can be
represented as a locally finite union of embedded analytic submanifolds, see [52]. o

Proposition 5.3 Let K = R C. Assume that (5) is forward accessible, then for linear
subspaces X,Y C K" such that
dim X +dimY <n (30)

the set {u € Ul, ; ®,(t,0)X NY = {0}} is generic in int U* for all t > t*.

eg’

Proof: For X = {0} there is nothing to show, so assume dim X > 1. Note that the set
{(&,u) € PX xint Ut;u ¢ U'(E) or [u € UY(E) and £(t;€,u) € PY]} is analytic in PX xint U,
From Remmert’s proper mapping theorem ([36] Theorem 45.17), respectively the definition
of subanalytic sets ([52] Section 8) it follows that the projection of this set given by

{u € int U'; 3¢ € PX such that [u ¢ U'(€) or £(;€,u) € PY]} (31)
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is analytic in int U? for K = C or subanalytic in int U* for K = R. As the set is clearly closed
and the intersection of two generic sets is generic the assertion is thus proved in the real and
the complex case, if the following statement is shown:

If t > t* and u € int U* then in any open neighborhood of u (32)
there exists a v € Uf,, such that ®,(¢,0)X NY = {0}.

reg

We prove (32) by induction over dim X. Let dim X = 1. Due to u € clU},, it holds that

reg
E(t;&, u) € cl @:r (&) for £ =PX, so (32) follows immediately. Assume that (32) is shown for
dim X =k <n—1and let X =span{zy,...,x51} for a linearly independent set of vectors
z; € K',i=1,...,k+ 1. Without loss of generality let Y C span{ego,...,e,}. Denote
X' = span{xi,...,7x}. Fix u € int U* and an open neighborhood V' C int U? of u. Thus
there exists v € V N U!,, such that

reg
®,(t,0) X" Nspan{egio,---,e,} = {0}. (33)
Due to forward accessibility v may be chosen such that
®,(t,0)zk11 ¢ span{exa; ..., €n}. (34)

Let W C VNUY,, be a neighborhood of v such that (33) and (34) are satisfied for all v' € W.
Let P € K¥t1X" be defined by

1 00 ---0
0 10 0
then
tk P®,(t,0)[x1: -« ixpqr] > k. (36)

If the rank is equal to k£ + 1, then indeed
®,(t,0)X Nspan{eia,...,e,} = {0}. (37)

Let ' € K™ and consider the mappings

hi: (—€,¢) — Kk (38)
hi(T) = P®yy 1 (t,0)x; (39)
fori =1,...,k+1, where ¢ is small enough such that v+7u' € W for |7| < . We claim that

there exist u' € K™ such that (37) holds for @, .. (¢,0) for some |7| < . Assume this is not
the case, then hy1(7) € span{h;(7)};—1, x for all |7| < e. Hence there exist continuously
differentiable functions

.....

it (—e,e) > K ,i=1,...,k (40)

such that \

P (7) = D pui(T) ha(7), (41)

=1
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where the differentiability follows from the differentiability of the h; and the fact that the

hi(t), i = 1,...,k are linearly independent. Hence if we differentiate with respect to 7 at
T=0 \
hi41(0) = 3 1i(0)hi(0) + 113 (0) 13 (0) (42)
i=1

or equivalently using the chain rule

P8<Dv (t, O)xkﬂ 6@1, (t, 0)$Z ’

oyl = ! ; SOV P———— .. 4
G = D O)A0) + (0P (13)
et 9B, (t,0)
x4
B -— i AN i Kk+1><mt 44
¢ ou < (44)

be our shorthand notation, then we obtain that if u' is such that Bju' €
span{h(0),...,hi(0)} fori =1,...,k and B 1u' ¢ span{h;(0),..., h(0)} then (43) cannot
be solved and there exist 7 arbitrarily small such that

rk Pq)u-f—Tu’ (t: 0)[%1 ot Sxk—f—l] =rk (Pu—{—Tu’ (ta 0)[$1 e Exk-f-l] =k+1 (45)

and hence (32) holds.
Assume there is no v’ satisfying these properties, i.e. for all u € K™ it holds that

Biu € span{hi(0),...,ht(0)},i=1,...,k = Bgiiu € span{hy(0),...,he(0)}.
By (33) we obtain dim{u € K™; B;u € span{h(0),...,ht(0)}} > mt — 1 and thus

dim{u € K™; B;u € span{h;(0),...,ht(0)} for i =1,...,k} (46)
= dim{u € K™; Byu € span{h1(0),...,ht(0)} fori=1,...,k+ 1} (47)
> mt — k. (48)
Hence in suitable coordinates the matrices B;, t = 1,...,k + 1 are of the form
mt — k k
BT X .. k]
k
(49)
1 [0 ... 0 k... %
and there are scalars v; € K ¢ =1,...,k 4+ 1 not all zero such that
k+1
Im Y v;B; C span{hy(0),...,h(0)}. (50)
i=1
Now for the vector T = ijll viz; # 0 and with G, as defined in (13) it follows that
k+1 k1
rk PGy(z,v) =tk | > vih;(0): Y vB; | <k (51)
i=1 Ti=1
which contradicts the universal regularity of v by Proposition 3.6. o
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In [34], [2], [4] accessibility and transitivity properties of analytic, invertible systems
have been studied. In particular Lie algebraic characterizations of these properties were
obtained. Also it was obtained that on compact manifolds transitivity, forward and backward
accessibility are all equivalent. Since forward accessibility of system (5) implies the existence
of a universally regular control, we can state the following

Proposition 5.4 Let K = R, C. Assume system (5) is forward accessible, then it is back-
ward accessible and transitive. Furthermore, it holds for every & € Py, that O (&) # 0.

Proof: This is clear from the existence of a universally regular control. =

This proposition shows in particular that the criteria for accessibility developed in [34],[4]
can be brought to use in our case, even though the full requirements of the theorems stated
in these references are not met. This is due to the fact that system (5) is forward accessible
iff there is an analytic invertible subsystem that is forward accessible. Where we call a
system a subsystem if the map A is the same but the set of control values is restricted.
Thus we could choose an open subset U’ of Uy, that is relatively compact in Uj,,. For
the system with control values in U’ it is clear that its forward accessibility implies forward
accessibility of the original system. But also the converse is true as forward accessibility
implies the generic existence of universally regular controls. Which implies that there exists
a universally regular control in U;te;, where t* is the constant of the original system.

The converse of the statement in Proposition 5.4 does not hold as shown by the following
example.

Example 5.5 Let K=R,C and U = K. Define

A(“):let)% 12»@]

Then the system
£t +1) = PAu(D)E(t), teN

is clearly not forward accessible, as O (P[1,0]) = {P[1,0]'}, O*(P[0,1)) = {P[0,1]'}.
However, an open set can be steered to P[1,0]" by applying the constant control given by
A = —1 (respectively P[0,1]" and A = —1/2). It is then easy to see that int O () # 0 for all
£ € Px. So that the system is backward accessible. O

6 Control Sets

Let us now give a precise meaning to the words ”sets where it is possible to steer arbitrarily
close from one point to another”. Control sets are defined as maximal sets where a control-
lability property holds. Precontrol sets satisfy the same controllability properties without
being maximal. We note that different control sets are disjoint, and that to every precontrol
set, there exists a unique control set containing it. Furthermore to every point in a control set
there exists a control sequence such that the corresponding trajectory stays in that control
set for all times, and the closures of the forward orbits of two points contained in the same
control set coincide.
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Definition 6.1 (Control set) Let K = R,C. Consider system (5). A set () # D C P!
1s called a precontrol set, if

(i) D C c1O*(€), V¢ € D.

(11) For every & € D there exists a u € UN(E) and an increasing sequence (ty)reny C N
such that &(tg; €,u) € D for all k € N.

A precontrol set D s called control set, if furthermore
(#i) D is a mazimal set with respect to inclusion satisfying (i).

A control set C 1is called invariant control set, if
cC=c0*¢),VeeC. (52)
With this definition we obtain the following basic results.

Proposition 6.2 Let K = R, C and consider system (5).
(i) For two control sets Dy, Dy C Pyt it holds that either D; = Dy or Dy N Dy = .
(i) To every precontrol set D' C P! exists a unique control set D such that D' C D.

(iii) If &1,& € D for some control set D C Py and for some u € Ut it holds that

§o = &(t; 61, u) (53)

then
E(s;&1,u) € D fors=0,...,t. (54)

(iv) For a control set D it holds that

cl 0+(€1) =cl O+(§2) , V&,& € D. (55)
(v) Let D be a control set. For every & € D there exists a control u € UN(E) such that
E(t;€,u)ye D, VteN. (56)

(vi) Let D be a control set. For every & € D and every T € N it holds that

d0*(e) =d |J 0 (0). 57)

t=T
In the forward accessible case invariant control sets enjoy further useful properties.

Proposition 6.3 Let K = R C. Assume that (5) is forward accessible. A control set C' is
invariant iff it is closed and satisfies int C' # ().
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Proof: “=7: If C = P& ! there is nothing to show. Assume that £ € c1C \ C. This
implies that £ € c1OT(n) for alln € C. As € ¢ C it follows that OF(£)NC = ) for otherwise
C C clO"(€) and this would imply € € C. By assumption there exist t € N, u € U(§)
such that £(¢;€,u) € int O (€). By continuity there exists a neighborhood V of £ that is
steered to int OF(£) and therefore there exists n € C such that O"(n) Nint O1 (&) # 0.
But O(n) C clC, a contradiction. Hence C is closed, and C' = 1O (§) for £ € C. As
int O1(€) # 0 it follows that int C' # ().

“<": Let C be a closed control set with int C # @. If C = P4 ! there is nothing to show.
Otherwise we have to show for every £ € C that clO"(£) C C, or equivalently as C' is closed
O*(€) C C. For every n € C there exists t € N, u € U'(n) such that £(t;n,u) € int C. By
continuous dependence on the initial values there exists an open neighborhood V() of n such
that £(¢;V(n),u) C int C. Hence there exists an open set V O C such that OF(£)Nint C # ()
and therefore C' C cl O (€) for every £ € V.

Assume now that there exists a & € C and a u € U(§) such that £(1;&,u) ¢ C. As
C C clO" (&) there exists an n € OF(£) N C and Proposition 6.2 (iii) guarantees that there
exists a v € U(€) such that £(1;&,v) € C. Now clOf () N C # O but also cl O (€) ¢ C.
Since cl O (€) is connected, it follows that there exists a ¢ € Of (£) N (V' \ C). But then
¢ €clOf(n) for alln € C and C C clOF(¢) and thus ¢ € C, which is a contradiction. o

Cores of control sets, a strictly discrete time concept, have been introduced in [4]. We
give a definition of core that slightly differs from the original definition in that we require
a regularity condition to hold. So to contrast it it might be called regular core of a control
set. It should, however, be noted that for the systems studied in [4] core and regular core of
a control set coincide.

Definition 6.4 (Regular core) Let K =R C. Let D C PE! be a control set with int D #
(). The (regular) core of D is defined as

core(D) := {6 € D; 0 (€)ND # 0 and O ()N D # 0} . (58)

Proposition 6.5 Let K =R, C and consider system (5). It holds that £ € (§+(§), iff there
erists a control set D such that & € core(D).

Proof: ”=": This follows from Proposition 3.9.

"<": Let n € O (€)ND. By the implicit function theorem there exists a neighborhood V
of p with V.C O (£). As n € D it follows that VNOT(€) # 0. Therefore O (£)NOT(€) # 0
and so £ € @+(§). O

Proposition 6.6 Let K = R C and consider system (5). Let D C PE ! be a control set
with int D # 0. If system (5) is forward accessible from every & € D, then

(i) core(D) is open in P§ .

(ii) clcore(D) = clint(D) =l D.

(iii) If € € core(D) then core(D) C O (€) and D C O (€).

() If € € core(D), t € N, u € int U}, and £(t;&,u) € D then &(s;&,u) € core(D) for
s=0,...,t
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Proof: (i) If £ € core(D), then by Proposition 6.5 £ € @+(f). Thus the assertion follows
from Proposition 3.9, as there exists an open neighborhood V' of ¢ satisfying V' C @+(§) N
O (£). V is a precontrol set satisfying the rank condition in (58), and thus contained in
core(D).

(ii) Clearly clcore(D) C clint D C clD. Let £ € c1 D and V be any open neighborhood of
€. Let n € int D. By Lemma 3.8 (v) and Proposition 6.2 (vi) we have D C cl o (n). Thus
we may choose ( € DNV N @+(77) and it follows that @ ({)Nint D # @. As ¢ € D we have
as before that int D C D C (’5+(C) and so also @+(C) Nint D # (). Thus ¢ € core(D)NV.
(iii) If € € core(D) then & € c1O*(n) for every n € D. By Proposition 3.9, £ € O () and
so Ot () NO (€) # 0 and hence n € @ (£). This shows that D C O (£). As € € core(D)
was arbitrary this implies also that core(D) C o' (&) for every £ € core(D).

(iv) This is clear as D ¢ O (€) € O (&(s;€,u)) for s = 0,...,t by Lemma 3.5, and
core(D) € O (6(t:6,u) € O (¢(5:6, u). .

From now on control sets of the system on projective space are studied, using the underlying
linear structure which allows more precise statements. We begin by considering projected
generalized eigenspaces that satisfy a regularity condition.

Proposition 6.7 Let K=R C, t € N, u € int U*. Assume that for r € |o(®,(t,0))], r >0
the generalized eigenspace PGE(r,u) is regular, then there exists a control set D such that

PGE(r,u) C core(D). (59)

Proof: This follows from Corollary 4.6 (i), and the fact that to every precontrol set there
is a control set containing it. o

Proposition 6.8 Let K = R C, t € N. Assume that v : [0,1] — U' is a continuous path
with an associated continuous path s : [0,1] — R such that for every T € [0, 1]

0 # 70(7) € |0(Dyr(1,0)) (60)

and PGE(y2(T), (7)) is reqular, then there exists a connected open precontrol set D contained
in the core of a control set with

U PGE(y(r),7(r)) € D. (61)

T€[0,1]

Proof: By Proposition 6.7 for every 7 € [0, 1] there exists an open precontrol set V(1) D
PGE(v2(7),v(7)) which we may assume without loss of generality to be connected and
contained in the core of a control set. By the continuity properties of the eigenprojections, see
[13] Chapter IL.8 for every 7 € [0, 1] there exists an £(7) > 0 such that PGE(v ("), v(7")) C
V() if |7 — 7'| < e(7). This shows that

D = U V(r) (62)

T€[0,1]

is connected, and by Lemma 3.10 a precontrol set with the desired properties. o
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For the system (5) the core of a control set corresponds to regular pairs (£, u), where & is
an eigenvector of ®,(¢,0) by Proposition 6.5. For a forward accessible system even more is
true. For any control set D with nonempty core we may find universally regular controls u
that generate an eigenspace whose projection lies in any prescribed open subset of core(D).

Proposition 6.9 Let K = R C. Assume that system (5) is forward accessible. For every
control set D C P ' with core(D) # () and every open set ) # V C core(D) there erist
t €N, u e U, such that for somer € |o(®,(t,0))]

reg

PE(r,u)NV #0, and PGE(r,u) C core(D). (63)

Proof: Let £ € V. By Proposition 6.5 £ € @+(f), and we can choose t € N, u € int U?
such that r(¢t;&,u) =n —1 and
§=¢t:& ). (64)

Without loss of generality let ¢ > t*. As the set of universally regular controls is generic
in int U' and by Proposition 6.5 we can choose u; € Ut such that n, := &(t;&,uy) €

reg
(’5: ()N O, (6) V. Using the universal regularity of u; and applying the implicit function
theorem it may be concluded that there exists an open neighborhood V(§) C V such that
for every n € V(&) there exists a universally regular u(n) € Ul with n; = &(¢;n,u(n)).

reg
Furthermore as m; € O, (€) we may choose uy € int U such that s := £(t;m1,us) € V(£).

Hence
= 6 (Qtu M, (U’Qa U’(n2))) (65)
and as up € int U} and u(n) € UL, it follows by Lemma 3.5 that (us, (1)) is universally

inv reg
regular. Now 7 is the projection of an eigenvector of @y, u,))(2¢,0), which proves the first
half of (63). To complete the proof note that by Proposition 6.7 there exists a control set

Dy D PGE(r,u). But then DN Dy # () and hence D = D, by Proposition 6.2 (i). o

It should be noted that elements of the cores of control sets need not be eigenvectors
corresponding to eigenvalues for universally regular controls even though it holds that & €

(5+(§) & & € core(D) for some control set D. This phenomenon will be exhibited in the
following example. The small sidestep necessary in the proof of the previous Proposition 6.9
is thus explained.

Example 6.10 Let K = R, C, and consider the map

AR 5K A(a,b):lé g] (66)

Define U := {[a, b € K?; |a| < 1, [b| < 1}. The system (5) given with these data is forward
accessible, which is most easily seen using the rank criterion of Proposition 3.6. Define

1
V=[x, 29) € K%z, #0, J2] < -0 (67)
1| 2

It is easy to show that PV is an invariant subset of Pk. Also for the point & :=P[1,0]' € V
and the control uy = (0,0) it may be seen that & = PA(ug)& and (&, ug) is a regular pair.
Thus by Proposition 6.5 there exists a control set D satisfying &, € core(D) and by invariance
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of PV it holds that D C clPV. (In fact D is the unique invariant control set, but this will
be shown later.) However, &, does not belong to the projection of a generalized eigenspace
of a universally regular control. Note that there is no generalized eigenspace of dimension
2 corresponding to a universally regular control as otherwise Py would be contained in the
core of a control set (by Proposition 6.7), which contradicts the invariance of V. It is easy to
see that if det A(u) # 0 and & = PA(u)no, then ny = P[0, 1]’ ¢ c1PV. As universal regularity
implies invertibility it follows that if & = &(¢; &, u) for some universally regular control u
then &£(t — 1; &y, u) = mo, contradicting the invariance of PV . =

This difference between the projected eigenspaces of universally regular controls and
the regions of complete controllability is unique for discrete systems and does not occur
in continuous time. Compare [20] Proposition 3.8. The reason appears to be the non-
invertibility possible in discrete-time.

Proposition 6.11 Let K = R,C. Assume that system (5) is forward accessible. If U =
Uinv, then
£ €core(D) < 3t €N, ue U, suchthat &€ =E(t;€,u), (68)

reg

where D 1s some control set.

Proof: 7«7 This is clear from Proposition 6.5.
"=" As & € core(D) by Proposition 6.6 (iii) it follows that core(D) C @+(§). Hence

there exist ¢ € N, u € U/,, such that {(t;£,u) € core(D). As core(D) C O™ (€) there exist
s €N, v €intU® =int U}, such that & = &(t + s;&, (u,v)). By Lemma 3.5 (u,v) € int U'**
is universally regular. o

A slight modification of the previous Example 6.10 will show that there exist indeed cases
where core(D) # int D for control sets D.

Example 6.12 Let K=R, C.

3

A: K> — K2 A(a,b):lbl?, Cg ] (69)
Let U := {[a, b] € K% |a| < 1, || < (i)%} Note that with this definition the system
defined by (69) behaves no different from the system in Example 6.10, in the sense that
for every point £ the forward and backward orbits of the two systems coincide, which is
clear from the definitions of A and U. Hence there exists the same control set D as in
Example 6.10. But still the point & that was critical in the previous example now does
not even belong to the core of D. For this we show that @ (P[1,0]') = @ (P[0,1]'). Let
t €N u= (u0),...,ut—1)) € U with u(t — 1) = [a,0]' and = ¢ Ker ®,(¢,0) then
E(t;Px,u) = P[1,0]" = & but

* -

Gi(z,u) = [0

3 ]Q@u(t—l,())x x 0 (70)

1 a
0 0 ou 0 0

and hence rk Gi(z,u) = 1, and (Pz,u) is not a regular pair. If b # 0 and & = PA(a, b)x
it follows that A(a,b) is invertible. As we have seen in the previous Example 6.10 that if
det A(u) # 0 then any trajectory going to the point £ must first go through ny = P[0, 1]’ ¢

lOF(€) forall € € PV. So & ¢ O (&) and hence & € int D \core(D). o
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It should also be noted that it cannot be concluded that the projection of an arbitrary
eigenspace corresponding to any control is contained in the closure of a control set with
nonempty interior. In fact, in the following example we show that any point of the projective
space may be a precontrol set, but the control sets with nonempty interior do not cover the
whole projective space. Note that the following example is given here as it fits well in our
discussion of control sets and generalized eigenspaces. We do, however, use a fact from the
next section namely the existence of a unique open and and a unique invariant control set.

Example 6.13 Let K = R,
2 22 1 ab

AR - R™, Ala,b) = e 1| (71)
Define U = {[a, b eR0<a<3,2<b< 4}. Then clearly choosing a = 0 leads to a
transition matrix for which every £ € P} is a fixed point. Furthermore b may be chosen such
that the rank condition (13) is satisfied. However, the controls for which this is possible are
not in the interior of U, and hence the statements made up til now do not infer that the
system (5) is completely controllable on Pk. In fact, for the set

V.= {[$1,$2]I€R2; 0 < z9 <.’E1}, (72)

PV is an invariant set of system (5), and thus the invariant control set satisfies C' C clPV.
On the other hand we have that the open control set satisfies

C~ C P{[z1,15] € R?; my25 < 0}. (73)

as for every t € N, u € int U* the matrix ®,(¢,0) has only strictly positive entries. Thus
by the Perron-Frobenius theory for positive matrices ®,(t,0) does not have two linearly
independent nonnegative eigenvectors, and the eigenvalue corresponding to the nonnegative
eigendirection has algebraic multiplicity 1 (see [39] Chapter 15.3 Theorem 1 and Exercise 11).
This implies that for any v € U},, the evolution operator ®,(t,0) has an eigenvector z =
[x1, 2] satisfying z12o < 0 corresponding to an eigenvalue of algebraic multiplicity 1, while
the eigenvector corresponding to the other eigenvalue of algebraic multiplicity 1 projects to
PV. As to every control set D with nonempty interior there exists a universally regular
control u such that PGE(r,u) C D for a suitable value r by Proposition 6.9, it follows
that the set P{[z1, 73] € R?; 0 < 21 < x5} does not intersect a control set with nonempty
interior, although every point in this set is a precontrol set. o

7 The Maximal and the Minimal Control Set

It is now shown that there exists a unique invariant and a unique open control set. These two
can be described in a particularly easy fashion: they are the intersection of the closures of
forward orbits, respectively in the interior of the intersection of closures of backward orbits.
We call these control sets the maximal respectively minimal control sets. This terminology
is justified as we may introduce a natural order on the set of all control sets on PE !, in
which the maximal control set is the invariant one and the minimal is open.

Theorem 7.1 Let K =R, C. Assume that system (5) is forward accessible, then
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(i) There exists a unique invariant control set C C Px 1. It is given by

C:= (] d0%(¢). (74)

-1
£ePy

(ii) There exists a unique open control set C~ C P . It satisfies

dC =C*:= (] dO (¢). (75)

gepp?!
Moreover is holds that core(C~) = C~.

Proof: (i) To begin with it has to be shown that C' as defined by (74) is not empty. Let
u € Uk, and |o(®,(t,0))] = {ry,...,r,} with r; < ... < r,. By Proposition 6.7 there
exists a control set D such that PGE(r,,u) C core(D). By Lemma 4.3 it holds for all
¢ ¢ P@! GE(rj,u) that

wt(&,u) C PGE(r,,u). (76)

Note that the set of & for which (76) holds is generic in Pz ~*. By forward accessibility we
may steer from any point into that generic set, as the interior of each forward orbit is open,
and it follows that PGE(r,,u) N cl Ot () # 0 for all ¢ € PE'. However, we know that
PGE(r,,u) C core(D) so that O (&) N core(D) # () and therefore core(D) C OF(€). In all
we have obtained that core(D) C C. By definition of C' it follows furthermore that D = C,
for if £ € C, then core(D) C cl OF(£), and also £ € clO™(n) for all n € D, so that £ € D.
C is therefore a closed control set with nonempty interior and invariant by Proposition 6.3.
As C C clO*(n) for every n € P! there can be no other invariant control set.

(ii) Let D be the control set with PGE(ry,u) C core(D). Recall that by Proposition 5.4

A —

O (&) # 0 for all ¢ € P& '. Hence for all £ € P!, we may choose a control v € int Ut
and & € P! such that (&,v) is a regular pair, & ¢ P®;_o GE(rj,u) and § = £(t*; &, v)-
By Lemma 4.3 (iii) it follows that w™ (&, u) C PGE(ry,u). Thus there exists a & € core(D)
such that & € O (€). As by Proposition 6.6 core(D) € O () for ¢ € core(D), it follows
that core(D) ¢ @ (€) for all £ € P2~! and thus core(D) C C*.

In particular for n € D it is obtained that core(D) C O (n) and thus 5 € core(D). This
implies that D is an open control set by Proposition 6.6 (i).

Finally, it has to be shown that c1D = C*. Let n € C*\ clD. As n € C* it follows that
n € 1O~ (&) for all £ € D. Hence in every neighborhood of 7 there exists a ¢ such that

D C O*(¢). On the other hand D ¢ @ (¢) and thus ¢ € D, by maximality. This however
implies that n € cl D, a contradiction. Thus ¢l D = C* and hence C'~ = D is the only open
control set contained in C*.

It remains to show that there is no other open control set in P§ !. If D is a control set
with core(D) # (), then by Proposition 6.5 there exists & € core(D), t € N, u € U'.
such that (&, u) is regular and & = &(¢; &, u). By Proposition 6.9 we may assume that v is
universally regular. Let |o(®,(¢,0))] = {r1,...,m}, 1 < ... < r,. Thus £ € PGE(r;,u)
for some ¢ > 1, for otherwise £ € C~ which may be seen using the previous arguments.
Now for n € P(GE(r;,u) ® GE(ry,u))\PGE(r1,u) it holds that w*(n,u) C PGE(r;,u) by
Lemma 4.3 (iii). Thus 0D NP(GE(r;,u) ® GE(r1,u)) C D and D is not open. o

Corollary 7.2 Let K =R C. Assume that system (5) is forward accessible. If there exists
ezactly one control set D in Pi*, then D = core(D) = P ",
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Proof: By the previous Theorem 7.1 it follows that D = C' = C~ = core(C~). Thus D is
open and closed and not empty, which shows that D = core(D) = P§ *. o

Using the fact that the invariant control set is closed we may prove the following result
on its connectedness.

Proposition 7.3 Let K= R, C. Assume that (5) is forward accessible. Then the invariant
control set C' is connected.

Proof: For each connected component YV of C' and u € Uy, the image PA(u)Y is connected
as the continuous image of a connected set. As also Of(€) is connected for all £ € YV
and clOf (Y) C C it follows that there exists a connected component Y’ of C such that
clOf(Y) C Y. Let u € Uf,,. For the connected component of C' satisfying PGE(r,,u) C
Y, which exists as PGE(r,,u) is connected, it follows that O (Y) C Y, but then C =
O (Y) c Ut_, clOf (Y) C O, so that there are k < ¢* connected components of C. Hence

we may assume that the connected components of C' are ordered in such a way that
dOf(Y)cYi, ,i=1,....k—1,
and

Let v € UF' 1. Then by universal regularity of v

reg
PGE(ry,v) C core(C),
and for every ¢ = 1,...,k it holds that
€Y= &kt +1L,§v) € Vimodk1-

But if ¢ € PGE(r,,v) then clearly £(kt*+1;€,v) € PGE(r,,v) and PGE(r,,v) is connected.
So that 7 =imod k + 1 and thus k = 1. =

Remark 7.4 (i) The uniqueness of the invariant control set system (5) has been shown in
[32] for the case that all system matrices A(u) are invertible. The proof relies, however, on
a theorem in [7], where it has to be assumed that the group generated by {A(u);u € U} is
a Lie group. We have shown that in our case these assumptions are not necessary.

(ii) From the proof of Theorem 7.1 it follows that for all ¢ > t*, u € U, we have

reg

PGE(r (®,(t,0)),u) C C~, (77)
PGE(r,(®u(t,0)),u) C C. (78)

The last argument in the proof of Theorem 7.1 contains the fundamental idea on what
order is in a sense natural on the set of control sets.
Let Dy, Dy be control sets in P " for the system (5). We define
D, < Dy :& There exist £ € Dy, t €N, u € U’ such that £(t;&,u) € D,. (79)

A priori this defines only a partial order on the control sets. What is however evident at
this point is the following.
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Proposition 7.5 Let K =R, C. Assume that system (5) is forward accessible.

(i) C is the unique mazimal control set with respect to the order "<” on the control
sets.

(i) C~ is the unique minimal control set with respect to the order "<” on the control
sets.

Proof: (i) is immediate from (74), while (ii) follows from (75). o

8 Main Control Sets

In this section we give sufficient conditions for which it is possible to recover exactly those
results that are known in the continuous-time case. Namely, the number of control sets
with non-void interior is bounded by n, the dimension of the state space, the control sets
are completely ordered with respect to the order defined in the previous section, and to
each control set an index may be assigned as the sum of the algebraic multiplicities of all
the eigenvalues corresponding to a universally regular u, whose generalized eigenspace is
projected into the core of that control set. Furthermore in the complex or real invertible
case the control sets are connected.

We begin with the following definition. For every ¢t € N, u € U, we will from now on
consider the set {ry,...,r,}, where r; € |0(®,(¢,0))|, 1 < ... < r, and each r; occurs as
often as the sum of the algebraic multiplicities of those A € o(®,(t,0)) with r; = |A|. We
define fort=1,...,n

Qi(t) = U PGE(ri,u), Q;:= @Qi(t)- (80)

u€Ut,,

Furthermore for a map A : U — R* " we introduce the following index which is a measure
of what sets of rank deficient matrices separate A(int U). Define the sets

U; == {u € U; dimKer A(u) < i}, (81)
and the singularity index
1(A,U) := min{s; int U; is pathwise connected} . (82)

Note that all the sets U; are generic in U, as U; D Uy, # 0. Moreover, K = C implies
that #(A,U) = 0 as proper analytic subsets are nowhere separating in the complex case, see
[36] Proposition 7.4. The significance of the indices ¢ > (A4, U) is explained in the following
proposition.

Proposition 8.1 Let K =R, C. Assume that (5) is forward accessible. If i > i(A,U) then
Q; is contained in a precontrol set.

Proof: Let u,v € Urteg, where we assume without loss of generality that the length of the
sequences is the same, and that ¢t > ¢* + 1. Denote u = (u(0),u’) and v = (v(0),v") where
u(0),v(0) € int Usp, and u/,v' € int UL, Let 71 : [0,1] — intU be a continuous path

connecting u(0) and v(0). ; can be chosen piecewise analytic. Hence we may assume there
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is a finite number of points 75, j = 1,...,k such that det(A(y1(7;))) = 0. By definition we
may assume that dim Ker A(7y;(7;)) < (A, U) for j = 1,..., k. By Proposition 5.3, the set

7 = {u e Ul,,; ®u(t —1,0) Im A(n(r;)) NKer A(yi(75)) = {0} for j =1, .. .,k} (83)

is generic in int U"! as it is the finite intersection of generic sets. We may therefore choose
a continuous path 7, : [0, 1] — int U~! such that v,(0) = v’ and v,(7) € Z for all 7 € (0, 1].
Let @' := yo(1).

Now consider the path:

3 :[0,2] — intU* (84)
u(0), vo (7 0<r<l1
wlr) = { ol 1<r<a (85)

For 0 < 7 < 1, 73(7) is universally regular as 73(0) = u and v(r) € U/ for 7 € (0,1].

Furthermore we obtain for 1 <7 <2 and 7 > i(A4,U) that 7;(®,,(7)(¢,0)) > 0. This is clear
if det(A(y1 (1 —1))) #0. Forr=1+7;, j=1,...,k we have that

O (t —1,0) Im A(7: (7)) N Ker A(y1(7;)) = {0}

and hence for the eigenvalue 0 of @z (¢ —1,0)A(y1(7;)) algebraic and geometric multiplicity
coincide.

In all we have constructed a continuous path from u = (u(0),u’) to (v(0),@’) such that
r; > 0 along this path if 4 > 7(A,U) and furthermore @ € Z can be chosen arbitrarily close
to u’. We wish to continue this procedure in an inductive manner. Assume that for some
0 < j < t—1 we have constructed a continuous path from u to (v'(0),...,v' (j—1),v(j), w(j+
1),...,w(t—1)) € U, where (v/(0),...,v'(j — 1)) is arbitrarily close to (v(0),...,v(j —1))
and (w(j+1),...,w(t—1)) is arbitrarily close to (u(j+1),...,u(t—1)). Furthermore along
this path the i-th entry in the ordered spectrum is never 0 if 7 > 1(A,U).

As for all w} € U772, w) € U,wy € Uy, the Jordan structures of

and
(I)wg(] + la 0)(I)w’1 (t - .7 - 2: O)A(w;)

coincide by similarity, we may work as in the first part to construct a path with the desired
properties from (w(j + 1),w(j + 2),...,w(t — 1),2'(0),...,v'(j — 1),v(4)) to (v(j + 1), D),
where @ may be chosen arbitrarily close to (w(j +2),...,w(t—1),v'(0),...,v'(j —1),v(j))-
Note that this rearrangement does not destroy universal regularity by Lemma 3.5. By rear-
ranging the sequence to the original order, we obtain the desired path in the j-th step.
Continuing this procedure we obtain a continuous path v, from u to ¥, where v may be
chosen arbitrarily close to v. As v € U,‘feg, the path may be assumed to go from u to v.

By construction r;(®,,(-(¢,0)) > 0 along this path if ¢ > i(A,U). Now consider the contin-
uous paths

Y5, % : [0,1] — intU* (86)
(1) = (alr),u) (87)
(1) = (1l —1),0) (88)



connecting (u,u) with (v,u) and (u,v) with (v,v), respectively. As u and v are universally
regular, we have that for i > i(A, U) and all 7 € [0, 1] the sets

PGE(r:(7), (7)), BGE(ri(r), (7)) (59)
are regular. Hence each of the sets

L[J ]PGE(H(T),%(T)), (90)

U PGB (7)) (91)

is contained in an open precontrol set by Proposition 6.8. Furthermore it holds that
PGE(TZ" (Ua U)) = ]P(I)U (ta O)GE(TU (U, U)) J (92)

which is clear by the relation ®,,)(2t,0) = @, (t,0)P,,4)(2t,0)P,(¢,0)"'. By symmetry we
obtain furthermore that

PGE(r;, (u,v)) = P®,(t,0)GE(r;, (v,u)), (93)
Thus it may be concluded that
U PGE(ri(1). (1)U U PGE(ri(1),76(7)) (94)
T€[0,1] T€[0,1]

is contained in a precontrol set. The proof is completed by fixing one universally regular
control and noting that we may apply the procedure of this proof for a path to any other
universally regular control. o

Remark 8.2 In the preceding theorem we did not make a statement about connectedness.
In Example 6.12 in the case K = R we have seen a system, where indeed the core of the
invariant control set C' is not connected. On the other hand we know by Proposition 6.9
and by the fact that )y is contained in the open control set C~ that for every connected
component W of core(C) it holds that Q2 N W # (. Note that in this example the index
(A, U) =1 as rkA(u) > 1 for all w € U and the controls (1/2, —¢) (1/2,¢) can only be
connected through a point of the form (a,0) which leads to a rank drop. =

The following statement includes in particular the case of real invertible and complex systems.

Proposition 8.3 Let K =R C. Assume that (5) is forward accessible. If i(A,U) =0 then
for each i =1,...,n the set Q; is contained in a connected component of core(D) for some
control set D.

Proof: Fix u;,u, € U},, (where again without loss of generality the length of the control
sequences is the same) and let y : [0,1] — int U},, be a continuous connecting path. Such
a path exists as int U}, is connected, but there may be 7 € [0,1] such that v(7) is not

universally regular. Then the path

Yo 1 [0,2] — intU* (95)
U1, YT ,0<7<1
)= { D ) 15753 (%6)

is a continuous path connecting (u1,u;) and (ug, us) in int U?*. By Lemma 3.5, the invert-
ibility of A((7)) and the universal regularity of ui,us it follows furthermore that ~o(7) is
universally regular for all 7 € [0, 2]. The assertion now follows due to Proposition 6.8. O
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Theorem 8.4 Let K = R,C. Assume that (5) is forward accessible and that i(A,U) < 1,
then the following statements hold:

(i) The number k of control sets D1, ..., D, with nonempty interior satisfies
1<k<n. (97)
(i) For everyt > 0, u € Ul,,, m € [0(®y(t,0))| there exists a control set D; 1 <1i < &
such that
PGE(r,u) C core(D;). (98)
(iii) The core of the control sets Dy, ..., D, consists of evactly those elements ¢ € Pi"

which are eigenvectors to a nonzero eigenvalue of some ®,(t,0) where (€, u) is a reqular
pair. If U = Uy, the control may be chosen to be universally regular.

() For every t > 0, u € U', r € |o(®,(¢,0))| there exists an j € {1,...,k} with
PGE(r,u)NclD; # 0. Also for everyt € N, u € U* and every j = 1,..., k there exists
an r € |o(®y(t,0))| with PGE(r,u) Ncl D; # 0.

Proof: (i) Let D be a control set with core(D) # (). By Proposition 6.9 there exists
ani € {1,...,n} such that @; N D # (. If i = 1 then Q; is contained in a control set
by Remark 7.4 (ii). Using Proposition 8.1 it follows that ¢); C D. Thus the number of
control sets with nonempty interior is bounded by n, the number of the sets Q);.

(ii) This follows from Corollary 4.6 and (i).
(iii) This follows from Propositions 6.5 and 6.11.

(iv) The statement is clear for u € U/,,. If t < t* choose I such that it > ¢* and
consider the control (). If t > ¢* and u ¢ Uf,, by genericity of the universally regular
controls there exists a sequence (ug)gen C Uy, With limg o ugp = u. Using again the
continuity properties of the eigenprojections (Chapter I1.8 in [13]) it follows that for
ri € |o(®4(,0))] it holds that PGE(r;,u) Ncl Q; # (. This implies the assertion.

O

It has been shown that under the assumption of the previous theorem for every i €
{1,...,n} there exists a control set D such that @; C D. From now on the following
terminology is used.

Definition 8.5 (Main control set) Let K =R C. Assume that (5) is forward accessible.
A control set D is called main control set if for every index 1 < i < n it holds that

QZHD%(Z) = @; CD.

The result of the previous theorem may then be paraphrased by saying that in the case
where 1(A,U) < 1, i.e. in particular in complex or real invertible case the only control sets
with nonempty core are main control sets. Let us now examine further properties of main
control sets. Recall that n(A,u) denotes the dimension of the generalized eigenspace of the
eigenvalue \ of ®,(t,0).
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Theorem 8.6 Let K = R C. Assume that (5) is forward accessible, then the following
holds.

(1) If i(A,U) = 0 then the core of every main control set is connected.
(i) The main control sets are completely ordered with respect to the order "<”.

(#i) For each main control set D the number

m(D) = > n(A, u) (99)

PGE(A,u)Ccore(D)

is independent of u € Ut, and t € N.

reg

Proof: (i) Let D be a main control set. For any open set W C core(D) there exists an
i such that W N Q; # 0 by Proposition 6.9. As the sets @; are contained in connected
components of the core by Proposition 8.3, it is sufficient to show the following: If
there exists 4,5 € {1,...,n} i # j such that Q;, Q; C D, then there exists a1 <k <mn
such that Qx C D, QN Qk # 0 and Q; N Qx # 0.

Let £ € Q;, n € Q;. Hence there exist t,s € N, u € U}, , v € U, such that

reg’ reg
o= (g, (100)
& = &(ssmyv). (101)
(Indeed if £ € PGE(r;,u') for u' € U,’f;g and & = £(t'; ¢, u') then by the implicit function

theorem there is an open neighborhood of & that can be steered to & with universally
regular controls. Into this neighborhood we can steer from 7 using an invertible control.
A concatenation yields the desired control.)

Now (v,u), (u,v) € ULs. Furthermore as o(®,(s,0) ®,(t,0)) = o(P,(¢,0) ®y(s,0)) it

reg *
follows that there exists a A € C* such that
¢ € PGE(\, (v,u)). (102)
and
n € PGE(A, (u,v)). (103)

If A = 7x(P(uw) (5+,0)) = 7%(P(o,u)(s+1,0)) it follows that &, € Q. Hence Q) C D;
and @; U Q; U Q) is contained in a connected component of the core of D.

(ii) Let Dy, Dy be two main control sets. Then there exists Q; C Dy, Q; C Ds.
Let us assume that ¢ < j then we claim that D; < D,. Indeed let u € Uﬁ;g and
£ € P(GE(ri,u) ® GE(rj,u)). As r; < r; it follows that

PGE(r;,u) if ¢ € PGE(r;,u)

_|_
wh(§,u) C { IPGE(T]';U) otherwise (104

As PGE(r;,u) C core(D;) there exists n € D; such that w*(n,u) C core(Dy). This
proves the assertion.

(iii) It is clear that
m(D) = #{1 <i<n; Q; C D}, (105)

which is independent of v € U?,_, t € N.

reg’
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As a result of the preceding Theorem 8.6 the following definition is straightforward.

Definition 8.7 (Index of a main control set) Assume that (5) is forward accessible.
For a main control set D C Pk the number m(D) is called the index of the control set D.

It remains to analyze the case where 7(A4,U) > 1. By the discussion up to this point it is
clear that for i = 1,n and 7 > i(A, U) there exists a main control set D; such that Q; C D;.
For the remainder of the indices the question of whether there exists a unique control set
with this property must for the moment be left unresolved.

To summarize we have obtained the following picture of the control structure of the
system on projective space. For a map A and a set of admissible controls U such that the
system on P ' is forward accessible and i(A4,U) < 1, there exists a sequence of indices
i1,y b, With 3751 45 = n.

To each index i; there exists a control set D; such that m(D;) = ;. More specifically it is

shown in [56] that if we write
J

mEDI

=1
for 5 =1,...,k then
1
U Qi & core(D;).
t=pj—1+1
where equality holds if U = Uj,,. So the numbers from 1 to n are partitioned into x non-
interlacing subsequences which represent the indices 7 such that @); C core(D;):

1o pr, pr+ 1,00 e, o+ 1,000 oo o e—1, k-1 F+ 1, om0
N 2N P AR A N )7 - _
D1 D2 ............ DK,

The order between the main control sets is simply reflected in the order of the subsequences.
In case there are control sets with nonempty core that are not main control sets this can
be extended in a natural way by considering indices that do not correspond to main control
sets, but to control set clusters, see [53].

With this notation we may formulate the the following invariance principle which also
motivates the interpretation of control sets and their indices as an extension of eigenspaces
and their dimension. For a proof we refer to [53] or [56].

Theorem 8.8 Let K = R,C and assume that (5) is forward accessible. For u € UN define
d(u) := maxsey dim ker ®,(¢,0). Let p, ..., py be the indices for the control set structure as
described above.

(i) For every main control set D; with p;_y > d(u) there exists a linear subspace X ;(u)
satisfying
dim X;(u) = m(Dj) = pj — prj1,
for all t € N it holds that P®,(t,0)X,(u) C cl D, .

(i1) If d(u) > 0 and a main control set D; exists such that p;_1 < d(u) < p; then there
exists a linear subspace X;(u) satisfying

dim X;(u) = pj — d(u),
for all t € N it holds that P®,(t,0)X,(u) C cl D, .
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9 Characteristic exponents

Up to now we have described the control structure of a system on projective space. With
the insight that has been gained let us now discuss properties of the set of characteristic
exponents that may be deduced from our knowledge about the control sets.

For systems of the form (2) let A(zg, u) denote the Lyapunov exponent corresponding to
the initial value (0,z9) € N x K" and the sequence A(u(-)) € £*(N,K"*") determined by
u € UN, i.e. the exponential growth rate of the corresponding solution:

1
)‘(an ’LL) = lim sup — IOg ||(I)u(t’ O)l'()”,
t—oo L

while 3(u) denotes the Bohl exponent determined by u € U™N:

1
f(u) = lim sup log [|®, (2, s)]| -

s,;t—s—oo L — S

Note that it is sufficient to study Lyapunov exponents corresponding to the initial time 0,
as control sequences may be shifted, i.e. the Lyapunov exponent to the initial value (¢, z;)
and the control sequence u € UN may be recaptured by studying the initial value (0, ;)
and the control sequence v € UN defined by v(s) = u(s + t). It is known that in general
mMaXg,£o0 A(%o, u) < B(u) where strict inequality is possible, see [24].

Floquet exponents are the Lyapunov exponents corresponding to periodic sequences u €
UN. Fort € N, u € U it is easy to see that the set of Floquet exponents determined by the
t—periodic continuation of u is given by

o) = {%logr; r € |o(®y(t,0)]}, (106)

where we continue to use the convention log0 = —oo. For a system of form (2) determined
by the map A and the set of admissible controls U the Lyapunov spectrum is defined as the
union

Yry(A,U) == {A(wo,u) ; 79 € K*\{0},u € UN}. (107)
The Floquet spectrum of (2) is defined by
Sn(AU) = | omlu). (108)
t>1,uett
Furthermore we define
1
Sri(A,U) = {Z log 7;(®,(¢,0));t > 1, u € U'}. (109)

Recall that PGE(r,u) is called regular, if v = (u1,us) and (&, uy) is a regular pair for all
¢ € Pd,, (t1,0)GE(r,u). For a control set D with nonempty core we define the Floquet
spectrum of D to be

Ym(D) = | {%logr; r € |o(®y(t,0))|, PGE(r,u) C core(D)

t>1,uelt

and PGE(r, u) is regular }. (110)
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Finally, we consider the Bohl spectrum of (2) defined as the set of all Bohl exponents the
system can generate
Ypo(A,U) :={B(u);u € UN}. (111)

Let us begin by explaining how to obtain the Lyapunov exponent \(xg, u) from the trajectory
£(+;Pzg,u) of the projected system. For ¢ € P ', u € U(£) define
[ A(u)z]]

q(&,u) :=log el where z #0, Pz =¢. (112)

This is well defined as multiplication of x with a non-zero scalar does not alter the value of
q(&,u). For £ e PRt t €N, u € UHE) define

t—1

J(t;€,u) =" q(€(s; €, u), uls)). (113)

s=0
Then we obtain the following expression for Lyapunov exponents:

Lemma 9.1 Let K=R,C. Forzy € K"\ {0}, u € UN it holds that

limsup, ., 1J(tPro,u),  if ue UN(x).
—00, otherwise.

Mao, u) = { (114)

Proof: This can be shown by a straightforward calculation. o

The previous lemma shows that we may speak of the Lyapunov exponent corresponding to
(€0,u) € Pt x UN which we denote by A(&, u).

10 The Floquet Spectrum

The Floquet spectrum is closely related to the structure of the control sets examined up to
now. In order to explore this relationship we need a controllability property in the cores of
control sets. Let K =R, C and consider system (5) on P% . Consider the function

h:Prt x Pt — NU{oo} (115)

h(&,n) := min{t € N; there is a u € U’ such that &(¢;&,u) = n},

where min () = co.

The previous definition is the discrete-time analogue of the first—time hitting map, as defined
for instance in [17], [18]. As we treat non-invertible systems as well it is important for us to
obtain information not only on the time that elapses to steer from & to n, but also on the
"cost” incurred in doing so. For the projected system (5) and the function ¢ interpreted as
a cost |g(&,u)| may be arbitrarily large if u is chosen such that A(u) is almost singular. In
analogy to the first time hitting map, we define the minimal absolute cost map by

H:MxM—R, U{co} (116)
H(¢n) = inf{1n<1az |J(s;€,u)|; t€N; ueU'such that £(t;&,u) = n},

where inf() = oco. The essential point is that both these values may be simultaneously
bounded if one tries to reach a compact subset of the core of a control set.
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Lemma 10.1 Let K = R, C and assume that system (5) is forward accessible. Let D C Py *
be a control set. Assume there are two non-void compact sets K1, Ky with K1 C O™ (D) and
K, C core(D), then the following statements hold:

(i) There are constants h € N,H € R, such that
h(&n) < h for all § € K1, n € Ko, (117)
H(,n) <H forallé€e Ki,neK,. (118)

(i) If Ko = PGE(r,u) for somet € N, u € U}, and r € |o0(®,(t,0))|, then h, H may be

reg

chosen such that for all £ € K, n € Ky there exists v € U, with

reg

n=¢&(t:€,0), (119)
t <h, (120)
max |J(s;€,v)| < H. (121)

Proof: (i) Let £ € K;, n € Ky. Choose any point ¢ € core(D) N @+(§), which is possible
by Lemma 3.8 (i) and Proposition 6.6 (iii). Thus there exist u; € int U" () such that
¢ = &(t1;&,u1) and (&, uq) is a regular pair. By the implicit function theorem there exist
open neighborhoods V; of & W; of u; and a continuous function w : Vi — W; such
that ( = &(t1, &, w(€')) for every ¢ € Vi. This shows that h(¢',() < t; for all £ € V.
Furthermore, by continuous dependence of J(s;&', w(¢')) on £ it may be also obtained that
H(¢',¢) < H; for some suitable constant H; € R and all £ € V;, where possibly V; has to
be chosen to be smaller than the original choice.

On the other hand there exist to € N, uy € int U*2(() such that n = £(t; ¢, uz) and ({, us) is a
regular pair. By regularity for any open neighborhood W of uy the set {£(t2; ¢, u'); u' € Wa}
contains an open neighborhood V5 of . Choosing Wy small enough so that cl Ws C int U'2(()
we see that h((,n') < ty for all n € V; and also H((,n') < Hj for all ¥ € V, and some
suitable constant Hs.

In all we have obtained that

h(gl777!) <t +ty forall 51 € ‘/1:77/ € ‘/27

and
H( n')<Hi+Hy, foral ¢ eVin el

The assertion now follows because we may choose a finite sub-cover of the open cover

{Vi(§) x Va(m); £ € Ki,n € Ky}

of the compact set K x K.

(ii) Let £ € Ky, n € Ky. Choose (' such that £(t; (', u) = 1. As u is universally regular
there exists an open neighborhood V of (', V' C core(D), such that for every " € V there
exists u(¢") € Uy, with n = £(t;¢",u(¢")). As (" € core(D) there exists ¢; € N, u; € int Ui,
such that ¢ := &(t1;&,u1) € V. Let to =1, us = u((), then n = &(t1 + t2; &, (u1, uz)), (u1, us)
is universally regular and we may proceed as in the proof of part (i) by genericity of U},
and U:Zg. o
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With this result in hand we may start to examine the structure of the set of Floquet expo-
nents.

Proposition 10.2 Let K=R,C. The set Xp;;(A,U) is an interval.

Proof: Consider the function

Nig: U — RU {—oc0}
u — 1logr(®y(t,0)).

By Chapter I1.8 in [13] ); ; is continuous and therefore \; ;(U?) is connected as the continuous
image of a connected set, and thus an interval. Now

o0

EFl,i(Aa U) == U /\i7t(Ut)

t=1

and furthermore for u € U and all t > 1
log|ri(A(u))] € Xib(U),
as we may simply consider the sequence (u)’. Thus the assertion follows. O

Thus from the connectedness of the set of admissible controls it is immediately obtained,
that the Floquet spectrum is the union of at most n intervals. However, a weak point of
this statement is that it totally ignores the dynamics of the system. The interplay between
Floquet spectrum and dynamical behavior is studied from now on.

Proposition 10.3 Let K = R, C and assume that (5) is forward accessible. For a control
set D with core(D) # 0 the set cl X (D) is an interval.

Proof: By Proposition 6.9 there exist ¢ > t*, u; € U}, and A, € o(®,,(t,0)) such that
PGE(A,u1) C core(D). It is sufficient to show that for any A € Yp (D) the Floquet
exponents of D are dense in the interval determined by A and 1log [Ay].

Let to € N uy € intU® be such that for some Xy € o(®,,(t2,0)) we have that
PGE(Aa,us) C core(D) and the eigenspace is regular. Without loss of generality we may
assume that t = ¢, and || < |Ag].

By Lemma 10.1 there exist constants h, H such that for any £, € PE(\y, u; )UPE()g, uy)
it holds that

h(&,m) < B,

H(,m) <H,

where furthermore the corresponding control steering from & to n may be chosen to be
universally regular if n € PE(A;,u1). Choose §; € PE(Aj,u;), j = 1,2. Clearly it holds for
j=1,2

1
A&y ug) = glogW\-

We wish to construct controls such that the corresponding Floquet exponents are dense in
the interval [} log|A[, 7 log|Az|]. To this end define the control ugm, k,1,m € N by

U g = ((U1)™, 01 fms (U2)™, Vomi) 5
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where  $1gm,Somi < h and v, €  intUStkm is  chosen such that
E(51,e,m; E(Mkt; €1, (u1)™), V1 km) = & and analogously &(sg,1,m; £(mlt; o, (u2)™), Vo m) = &
for a universally regular control ve;,,, which is possible by Lemma 10.1(ii). We obtain
in all that & = &Em(k + Dt + S1pm + S2km; €1, Ukim). Thus for some r € R it holds
that & € PGE(r, ugm). This projected sum of generalized eigenspaces is regular by the
universal regularity of vy;,,. The corresponding Floquet exponent is given by

1

e T DT oG Ly Rt €0, (1)) + T (mlts &, (ua)™) o+ H (k, )

A&y Uk im) =

where h(k,l,m) < 2h and |H (k,l,m)| < 2H for all k,I,m € N. Thus for k,1 > 1 it may be
seen that

A A Uk im) = lim mu(mkt; &1, (un)™*) + J (mit; &, (uz)™))

_ kA(é-l: ul) + l)\(é-% U’?)
B k+1

Clearly the set of points that may be obtained by choosing different &,/ € N is dense in
(A&, ur), Ao, ua)]- O

Corollary 10.4 Assume that (5) is forward accessible.

ecl EFl(D)

(1) If K =R, C then for every control set D with core(D) # 0 it holds that

ASuD)=d | {LlogA; A € o(®a(t,0)), PGE(\, u) C core(D)} . (122)

teNueUf,, ¢

(1) If K =R then for every control set D with nonempty core

1
teNJueU} t
’ reg
Proof: (i) If for some u € U' and 7 € |o(®,(t,0))| it holds that PGE(r,u) C core(D)

then by the genericity of the universally regular controls and the continuity of the
eigenvalues and eigenprojections we may choose universally regular controls whose
eigenspaces project to the core of D and whose corresponding Floquet exponents ap-
proximate the Floquet exponent %logr arbitrarily close. This shows the assertion.

(ii) As the intermediate values A\(&1, ug ) constructed in the previous proof are in fact
Floquet exponents corresponding to a real eigenvalue of ®,,, (m(k + 1)t + s14m +
S2.1m,0) it follows that it is sufficient to consider real eigenvalues. Now we may argue
as in part (i).

O

Theorem 10.5 Let K = R,C and assume that (5) is forward accessible. Let k be equal to
the number of main control sets.
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1) For each main control set D; j = 1,...,k the closed Floquet spectrum is an interval.
1) Fe h mai trol set D; j =1 the closed Fl t t ' nterval
We define

AEpL(Dj) =: oy, B, o5 < 0. (124)

(i) If all control sets with nonempty interior are main control sets then

CIEFL(A, U) = O[O!j,ﬁj]. (125)

Jj=1

(1) If there exist control sets with nonempty interior that are not main control sets
then there exists a constant B € R such that

() If for two main control sets Dj, < Dj, then

aj, < aj,, (127)
Biy < By, - (128)
(v) Forj=1,...,k it holds that
#clXpL(D;)\ Zpr(D;) <m(D;)+1. (129)
Proof: (i) This is clear by Proposition 10.3.

(i) Let t € N, u € U* and consider op(u). As the Floquet spectrum of u does not
change if we consider (u)’ for some [ > 1 we may assume that ¢ > ¢*. Hence, we may
choose a sequence {uy}ren C Uy, converging to u for k tending to infinity. By the
continuity of the spectrum it follows that op(u) C Uj_,[y, B;]-

(iii) For a control set D with nonempty interior that is not a main control set it holds
by Proposition 8.1 that inf ¥z (D) = —oo. The assertion thus follows from Proposi-
tion 10.3 and the argumentation of (ii).

(iv) If for two main control sets D; < Dj;, then @; C D;, and @; C D;, implies
that 4 < j. Thus the assertion follows from the obvious inequalities inf Xy ;(A,U) <
inf EFl,j(Aa U) and sup EFl,z'(Aa U) < sup EFl,j(Aa U) if 1 < 7.

(v) Lett € Nand u,v € Uf,,. Consider a continuous path ~ : [0, 1] — int U* with (0) =
u and (1) = v. Now consider the control (y(7),u). For every 7 € [0,1] and every i €
{1,...,n} it holds by the universal regularity of u that r;(7) := ri(®(y(r))(2¢,0)) > 0
ifft PGE(r;(7), (7(7),u)) is regular. Thus it follows for every ¢ € {1,...,n} that the
interval [r;(®u)(2t,0)),7(P(,4)(2t,0))] is contained in ¥ (D) for some control set
D by Proposition 6.8. As the sets int Xp;;(A, U) are intervals and by clXp(D;) =
Uqicp; clXp (A, U), it follows that the only points where the Floquet spectrum of a
main control set and its closure may differ are the endpoints of the intervals X ;(A, U).
Of these there are at most m(D;) + 1, which shows the assertion.
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It should be noted, that the spectral intervals corresponding to different main control sets
may overlap, i.e. that the statement o; < o, 8; < B; in Theorem 10.5 does in no way
exclude the possibility that 3; > «;. In fact, it is even possible that o; = o and 3; = 3; for
1 # j. To illustrate this phenomenon consider the following example.

Example 10.6 Let K = R. Define
A: RN — R*>*?

A(a,b,c,d) == lz Z] )

Let RY, denote the set of vectors with nonnegative real entries. Define
U:={labcdl eRiy; a+c<1;b+d<1}.

Then A(U) is exactly the set of nonnegative matrices in R?*? with 1-norm less or equal
to 1. As the set of nonnegative vectors in R? is invariant under A(u) for any u € U, i.e.
A(u)RZ, C R%,, it follows that the invariant control set Dy = C' C PR2,,. Hence there exists
also a minimal control set D; = C~ and no other control set D with core(D) # ().

Clearly oy = ap = —oo0 as 0 € A(U). Let us show that also 8; = 32 = 0. For any ¢ > 1,
u € U, it holds that

r(@u(t,0)) < (| @u(t, 0)lls < JACu(t = D)l - - - [[A(u(0))[]s < 1.

Hence (1, f2 <log1 = 0. On the other hand I € A(U) and so 0 € cI1Xp.(C), 0 € clXp(C7)
and (1, B2 > 0.

In order to construct a two-dimensional example with identical spectral intervals and
U = U, it is sufficient to replace the set U of the previous example by U’ := {u €
U ; det(A(u)) > 0}. If we require that cl A(U) consists of invertible matrices then it is still
possible to make upper or lower boundaries of spectral intervals equal, e.g. if the map A
is replaced by u — exp(A(u)). Note that also exp(A(U)) consists of nonnegative matrices.
Then similarly to the preceding discussion it is possible to obtain that for this modified
example #; = B2 = 1. However, this comes with the price that a; = —1 # @y = 0. It is not
known whether identical spectral intervals to different main control sets are possible if it is
assumed that det(A(u)) # 0 for all u € clU.

11 The Lyapunov and the Bohl Spectrum

Let us now discuss how the results on the Floquet spectrum can be related to the other
spectra of characteristic exponents. We begin by showing that the Lyapunov exponents
corresponding to trajectories that evolve in a specific way in the core of control sets, are
contained in the closure of the associated Floquet interval. On the other hand to every
element of the closure of the Floquet interval of a control set there exists a control sequence
that realizes this number as a Lyapunov exponent.

Theorem 11.1 Let K =R, C and assume that (5) is forward accessible.

(i) Let D be a control set, with core(D) # (. Assume that (&, u) € PE ' x UN(&) are
given with wt(&,u) C D. If there exists a ty € N with £(to; &, u) € core(D) then
)\(fo,u) c cl EFI(D)
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(ii) Let D be a control set, with core(D) # 0, then

X (D) C $1,(A,U). (130)

Proof: (i) Without loss of generality we may assume that ¢y = 0 as the Lyapunov exponents
satisfy A(&, u) = M(&(to; &0, 1), u(to+ -)) where u(to +-) = (u(to), u(to+1),...) is the shifted
control. Let {tx}ren C N be an increasing sequence such that

lim —J(t; &0, 1) = (o, 1) (131)

k—o0 tk

Taking a subsequence we may assume that
Jim E(tk; &o,u) = € wh(&,u) C D. (132)

As & € core(D) it follows that n € @ (&) and hence there is a t € N and a neighborhood

V(n) such that V() c O, (&). For k large enough it holds that &(ty;&,u) € V(). By
continuous dependence of &(tx; &y, u) on u, the continuous dependence of J(tx; &, u) on u
and the genericity of Uk, we may choose controls u; € Uk, such that &(ty; &, ux) € V()
for all k£ large enough and

lim tl‘](tka §07 uk) = )‘(507 U) :

k—00 k

We can therefore find a controls v, € int U* such that & = &(¢; &(tx; &o, uk), vk). The
Floquet exponent corresponding to the control (ug,vy) and & is given by

1

Ao, (ug, vg)) = P (J (tr; €0, un) + J (t; E(trs; o, ur), vi)) (133)

= A& (tr; o5 ur), (Vk, ug)) € Xpi(D)

by the universal regularity of u,. Letting & — oo the assertion follows after noting that
Lemma 10.1 guarantees that the v, can be chosen so that |J(¢; &(ty; &o, uk), vk)| is bounded
independently of k.

(i) Let A\* € clXp(D). Let uy, € Utk

%4> k € N be a sequence of controls such that

.1 .
klg{)loa log [Ag| = A (134)

where A\, € o(®(t, ux)) and PE(Ag, ug) C core(D). By Corollary 10.4 such a sequence exists
and we may assume that A\, € R, if K =R. For k € N let & € PE(M\, ug). Therefore it
holds for all I,k € N that &(ltg; &, (ur)') = & € core(D). For all k € N there exists a
control vy € U®* such that &1 = &(Sk; &k, vk)- Let Hy be such that |J(s; &, v)| < Hy for
0 < s < s,. We construct a control that generates the Lyapunov exponent A* as follows:
Choose m; € N such that

m1t1 ) 1 1
—1)—log|\|| < =, 135
‘(m1t1+81 +t2 tl g‘ 1| 8 ( )
H, 1
<L 136
i <8 (136)



1
<3 0<s<iy, (137)
Let u} := ((u1)™,v;) € UM and T} := mqt; + s;. Using (135) and (136) it may be seen that
for 0 <5< s

myty

‘ J(87 62: u2)

‘ﬁ«f(mﬂh + ;&1 u]) — %log | A1 (138)
< G|+ (S 1) gl < 5.
Note also that by (137), we obtain as in (138) that for 0 < s <t and v = (u], us)
(T s 60) - log (139
< |t &) - log | + 7+ | (s 6w < 5

For k > 1 assume that we have constructed uj_,, my_1 and Tj_; such that for —s;_; < s <t
it holds that

1

1
— J(Tp1 +s; . — —log |Ae_1]| < 271 140
e 6 () = o | (140)
Choose my, € N such that
1
—  J(Tp 1;&,ut )| < 27 *+3) 141
T+ el (Th—1; 615 up 1) (141)
¢ 1
Tk — 1] = log ||| < 27+ (142)
Tk,1 + myly + Sk + tk+1 i
H
L — N G 143
Tk—l + mktk ( )
J .
‘ (5580w | 9042 <5<ty (144)
mktk

Set uy := (uf_q, (ug)™, vy) and Ty := Tp—1 + myty + s,. For Ty_1 +myty <t < T} we obtain
with (141),(142) and (143) that

1 1
\;J(t;a,uk) ~ ~log |\
k

1
< ;J(Tk—l;beZq)

1
+ ¥|J(t - Tk—l - mktk;gkavkﬂ

Mt )1
—1) —log|A
+‘< p I 0g | Ak

< 2—(k+3) + 2—(k+3) + 2—(k+3) < 2—(/6—1—1) ]

Analogously to (139) it may be seen from (142) and (144) that for 0 < s < t4; and

V= (ult:ulc—f-l) 1

<27k, 145
T is (145)

1
J(Ti + s;61,0) — alog|)\k|
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For the control u* that is recursively defined via up, 5,) = uj we claim that
MEnu?) = Tim —log Mg = A* (146)
(61,U)—k;n;otk g || = A

As we have shown that for £ > 1 and Ty_1 + myty <t < Ty 4 tx41 it holds that

1 1
It = s log | <27,
t tr
our claim follows if we can show that for ¢t = Ty_1, ..., Tx_1 +(my — 1)t the following relation

holds

1 1
(66, u) — - log .

t

because this means that the sequences behaves in a monotonic way, at least if viewed at
every tx-th step. For [ =0,...,my — 1 and ¢t = T}, + lt; this is clear by

1 . 1

It up) - —log |
t te

1 1
> |—— J(t+ e &, ul) — —log |\
> |+ i) — 1 log [

1 1
(i) + Hog |Ac]) — - log [0

T

1
log |\
i og | Ak

1
= 7 ‘J(Tkﬁfl,UZ) -

The other cases can be treated using the same argument, with the modification that the
time from which periodicity is used is not Ty_1 but T;_1 + s for some 0 < s < ¢, — 1. This
proves the assertion. o

A further question of interest, especially if stabilization and robust stability questions are
considered, concerns the lower and upper bounds of the spectral sets that we have defined.
For a general discrete inclusion given by a bounded set ¥ C K"*" and

z(t+1)e{Ax(t); AeX}, teN (148)

this has been studied in (8], [15], [38], [27]. In particular the latter three references study
the relation between the generalized spectral radius
A(X) = limsup g, (X)?,
t—00

where

pi(X) :==sup{r(As_1-...- Ag); A, € 8,s=0,...,t—1}.

and the joint spectral radius
H(X) := limsup py(X)?,

t—o0
where

p1(X) ;== sup{||As1-...- Ao|; As € E,s=0,...,t —1}.

Theorem IV in [15] states that for every bounded set ¥ we have p(¥) = 5(3). Although
Berger and Wang restrict themselves to the real case, it is clear that they also prove the
complex case, which may be seen via identification of C**" with R?**2", Note that these def-
initions correspond to our definitions but for the fact that we have introduced the logarithm
thus it is easy to see that

log(p(A(U))) = sup X (A4, U), (149)
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and .
log(p(X)) =limsup  sup  —J(t€,u). (150)
t=00 4N, gePp !

We therefore immediately obtain the following corollaries where we do not have to make
our usual forward accessibility assumption. In order to conform to our previously introduced
notation we will still think of the discrete inclusion to be given by an analytic map A and
a set U. Note, however, that if we drop Assumption 2.1 then any bounded set of matrices
may be represented in this way.

Corollary 11.2 Let K =R, C and consider system (2). Assume that A(U) is bounded then

1
sup Xpi(A,U) =sup Xy (A, U) =supXp,(A,U) =limsup  sup EJ(t; & u).

t—o0 UEUN, feP%_l
Using this result we can also prove the following statements on the infima of the spectra.

Proposition 11.3 Let K = R, C and consider system (2). Assume that A(U) is bounded,

then
1
inf ¥p(A,U) =inf £, (A, U) =liminf  inf = —J(t €, u). (151)

t=00  yeUN, gePp !

Proof: Obviously, it holds that

1
inf Xpr(A,U) > inf ¥, (A,U) > liminf  inf —J(t; €, u) .

t=00  yeUN, gepp!

If there exists a u € clU such that det(A(u)) = 0 the claim is trivially true as both infima
are given by —oo. If this is not the case we may consider the time-reversed system

z(t+1) = A(u(t)'z(t), teN
z(0) = zyeK" (152)
u(t) € U, teN

Denote the Floquet spectrum of the time-reversed system by X5,(A4,U). It is immediate
that sup X£5,(A,U) = —inf ¥ (A, U). Note also that

inf  log||®,(t,0)z|| = — sup 10g||q)u(t,0)7lac||

i
zeK? ||z]|=1 T€K? ||z]|=1
and therefore

1 1
lim inf inf —J(t;&,u) = —limsup  sup %J_ (t; &, u)

t—00 ’LLEUN, fG]P’][Z_I t t—00 UEUN,é-EP%_I

where J~ (t;&,u) = log 20 "2l| g & = Px. The assertion now follows by applying Corol-

ll]l

lary 11.2. o

Barabanov [9] proved that to each discrete inclusion given by a bounded set of matrices there
exists a trajectory that realizes the maximal Lyapunov exponent. The following statement
brings this in relation to the control structure of system (5).
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Proposition 11.4 Let K = R,C, let Assumption 2.1 hold and assume that (5) is forward
accessible, then

(i) There ezist u € UN, € € C such that A(&,u) = B(u) = sup S, (A, U).
(i) There erist v e UN, n € C~ such that A(n,v) = inf 1,(A,U).

Proof: (i) resp. (ii) follow from Corollary 11.2 resp. Proposition 11.3, Remark 7.4(ii) and
Theorem 11.1 (ii). 0

If the finiteness conjecture holds as discussed by Lagarias and Wang [38] then the previous
result can be restated in terms of the Floquet spectrum, i.e. it would be possible to realize
maximal and minimal Floquet exponent via some periodic control sequence u. This is the
topic of ongoing research.

Let us also note that Gurvits [27] has shown that for discrete inclusions given by finitely
many matrices the indices inf Xp;,(A,U) and inf¥p,(A,U) coincide. It remains to be
investigated how this result may be carried over to our case.
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