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CONVERGENCE OF THE VALUE FUNCTIONS OF 
DISCOUNTED INFINITE HOR1,ZON OPTIMAL CONTROL 

PROBLEMS WITH LOW DISCOUNT RATES 

FABIAN WIRTH 

For autonomous, nonlinear, smooth optimal control systems on n-dimensional manifolds 
we investigate the relationship between the discounted and the average yield optimal value of 
infinite horizon problems. 

It is shown that the value functions of discounted problems converge to the value function 
of the average yield problem as the discount rate tends to zero, if there exist approximately 
optimal solutions satisfying some periodicity conditions. In general, the discounted ,value 
functions cannot be expected to converge, which is shown by a counterexample. A connection 
to geometric control theory is then made to establish a result of uniform convergence on 
compact subsets of the interior of control sets, if optimal trajectories do not leave a compact 
subset of the interior of these control sets. 

0. Introduction. In this paper we are concerned with convergence properties of 
value functions of discounted optimal control problems where the discount rates tend 
to zero. While the discounted value functions converge to a value function, which 
represents the maximization of the present value, if the discount rate tends to infinity 
(Sieveking 1986), convergence of the discount rate to zero is often interpreted as 
passing over to the average yield problem. The connection between the average yield 
and low discount rates has been extensively studied for Markov decision chains and 
stochastic games; see (Veinott 1975, Bewley and Kohlberg 1976) and references 
therein. Here we will study this problem in the following setting: 

Consider a connected Cm-manifold M of dimension n and an optimal control 
system on M satisfying the following conditions. 

d 

(0.1) x ( t )  = X,(x(t)) + u i ( t ) x i ( x ( t ) )  = X(x( t ) ,  u ( t ) )  a.a. t > 0; 
i =  l 

x(0) = x, E M; 

X,,, X,,  . . . , Xd are Cw-vector fields on M; 

u( . ) E U = {u: R+ -, u lmeasureable); 

U c R~ compact with nonempty interior; , 

h: M X U 4 R continuous on M X U; 

0 G h ( x , u )  < H f o r a l l ( x , u ) ' ~  M x U ;  

For all x E M and all u ( . )  E U the trajectory 
p ( t ,  x,  u ( . ) )  exists for all t > 0. 
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The A-discounted yield starting from a point x using a certain control u(-) is defined 
as: 

whereas the average yield from x using u(.) is 

1 T 
(0.10) JO(x,  u ( - ) )  := limsup - h(cp(t, x,  u ( . ) ) ,  u ( t ) )  dt 

T + m  T/, 

The associated value functions are then given by: 

V,(x) := sup J,(x,u(.))  
ll(.)€Ll 

REMARKS. (a) Instead of condition (0.7) we can assume that h is uniformly 
bounded, as positivity of h can be easily obtained by addition of an adequate 
constant. 

(b) By (0.7), (0.9) and (0.10), we have 0 G Vo(x) G H and 0 G AV, G H for all 
x E M. 

(c) (0.8) holds for instance, if M is compact or the supports of the vector fields X,, 
i = 0,. . . , d are compact (Coddington and Levinson 1955, Chapter 2, Theorem 1.3). 

In the theory of Laplace-transforms one formulation of Abel's Theorem states 

l imf(t)  = c  implies limA 
t - m  A + O  

(Doetsch 1976, Satz 34.2). In our context this can be interpreted in the following way: 
If u(.) is a control steering the system asymptotically to an equilibrium position 
(x,  u), then 

lim hJA(xO, u ( . ) )  = h(x,  u) = JO(xo, u ( . ) ) .  
A-0 

The second equality is an immediate consequence of Lemma 1.1 below. If u(.) is 
optimal for all problems, then lim, ,,, AVA(x) = Vo(x) holds. 

In $1 we will introduce some conditions which guarantee the convergence of AV,(x) 
as the discount rate A approaches zero in a more general situation. Although it might 
be expected that a decrease in the discount rate will also diminish the difference 
between the discounted optimal value and the optimal average yield, such that AVA(x) 
always converges to V,(x), an example will show that AV,(x) need not converge at all 
as A goes to zero. 

Nevertheless convergence can be shown, if there exist approximately optimal 
solutions satisfying two conditions: 

(a) they become periodic after finite time T,; 
(b) the length of the periods and the T, do not increase too fast as A goes to zero. 
As "existence of approximately optimal, periodic solutions" seems a somewhat 

technical and impractical condition, 02 will strive to improve the results obtained up 
to that point. Periodicity can only be expected in so-called control sets studied in 
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geometric control theory. We will therefore introduce control sets and quote some of 
the basic properties of variant and invariant control sets, the proof of which can be 
found in Colonius and Kliemann (1989) and Kliemann (1987). 

In Colonius (1989) it is shown that optimal trajectories of discounted problems 
converge to an optimal trajectory of the average yield problem, if the trajectories stay 
in some compact subset of the interior of an "invariant control set." Under similar 
assumptions we will show AVA -t Vo uniformly on compact subsets of the interior of 
control sets. 

1. Pointwise convergence of hVA. We will first give sufficient conditions for 
pointwise convergence of AVA(x) to Vo(x)  as h tends to 0. Afterwards we will show in 
an example that hVA(x) need not converge at all. 

Let us begin by noting three simple properties of Vo and AV,. The proofs are 
straightforward and therefore left to the reader. 

LEMMA 1.1. For all u( .  E U and all T > 0: 

1 T 
l i m s u ~  T/o h ( $ " ( t ,  x ,  u ( ' ) ) ,  ~ ( t ) )  dt 

T-m 

1 T 
= limsuP T [  h ( q ( t ,  X ,  u ( . ) ) ,  u ( t ) )  dt. 

T - t m  

LEMMA 1.2. Suppose f: R -t R is continuous and uniformly bounded, and there are 
sequences {A,}, {T,) and {t,) such that: 

lim A,  = lim hnTn = lim Antn = 0. 
n+m n-*m n - t m  

LEMMA 1.3. Suppose f :  R -+ R is continuous, and there are T ,  s > 0 such that 
f ( t  + s )  = f ( t )  for aU t > T ,  then: 

We will now calculate the average yield and the discounted return for periodic 

PROPOSITION 1.4. Let x E M ,  u( . )  E U and s, T > 0, satisfy for all t > T :  

u ( t )  = u ( t  + s )  and ~ ( t ,  X ,  u ( - ) )  = q ( t  + s, x ,  u ( - ) ) .  
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By Lemma 1.1 we know: 

Using the periodicity of u ( - )  and cp(t, x ,  u( . )) ,  we obtain: 

v T+s 
= lim sup --- T +  V s j T  

v+m 
V G N  

Applying Lemma 1.2 to the first term and Lemma 1.3 to the second using the 
periodicity of h  in t ,  we obtain 

lim hJA(x ,  u ( . ) )  = lirn 
A + o  

A + O  [ 1 - y i S e - i t h ( c p ( ~ ,  e-As x ,  u ( . ) ) ,  41))  d l ]  

1 T+s 
= 91, h(cp(t,  x ,  u ( . ) ) ,  u ( t ) )  dl .  ~ 

The last equality is obtained by applying the rule of de I'Hospital. 
Theorem 1.5 deals with the pointwise convergence of AVA to V,,. Using Proposition 

1.4 we could expect to prove that AVA(x) converges to V,,(x), if there exist approxi- 
mately optimal periodic solutions. It turns out, however, that we need some further 
restrictions regarding the length of one period and the time which elapses before 
periodicity is achieved. 

Note that in part (a) of the proof of Proposition 1.4 we actually prove that the, 
average yield converges, so that the result holds as well, if the average yield is defined 
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By Proposition 1.4, (ii)(c) and (d): 
:h that: 

I( -1). 
,", T,' > 0, such 

isfied. Then by 

i(x) + E. 

r all A > 0. We 

lim sup AVA(x) G lim SUP J,(x, u:( -1) + E G Vdx)  + E .  

A - + O  A 4 0  

This completes the proof, as E > 0 is arbitrarily small. 
The following example is designed to show in certain cases AVA(x) need not 

converge at all if A -, 0. Since the proof of Theorem 1.5 uses only the periodicity of 
the running cost h(q(., x, u(.)), u(.)) in t, we will construct an example where this 
does not hold. 

EXAMPLE 1.6. Consider the following optimal control problem on R: 

(1.2) 

(1.3) 

Maximize 

By (1.1) and (1.2) our ability of steering is very limited. As we can easily see for all 
t 2 0 and all u(.) E U the following holds: 

(1.4) t S q ( t ,  0, u ( . ) )  G 2t. 

Furthermore for all A > 0: 

spectively and 
<m 

For short we will write a = log(8/7) and b = log(8). 
Consider the sequence {A,) and a sequence of intervals I,, defined as follows: 
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Denoting the control u(t) = 1 by 1 for short, we have by (1.4) for all n > 0: 

q ( t ,  O,1) E IZn, if t E [a/'zn? 

q ( t ,o ,u ( . ) )  €I,,+, v u ( . )  E U , i f t E  [:a/'2n+l,b/h2n+1]. 

2 , x € I 2 , ,  n > 0 ,  
0 ,  x E IZn+*,  n 2 0, 

and we obtain by (1.5) and (1.6) for all n 2 0: 

A2,V,,J0) 2 jb/A2nh2ne-"'. '~(q(t, 0 , l ) )  dt = 5 .  
a/A2, 

On the other hand, we have by (1.5) and (1.6): 

Azn+IV,*+p) < SUP ~ b / A 2 n + ' ~ , n + , e  
L'(.)€L1 a/A2,+1 

In all we have obtained: 

Now we have defined the running cost h to be discontinuous, so that it does not 
satisfy condition (0.6). It can be easily seen how to construct a continuous function h,  
which allows for the same conclusion. 

2. Convergence in control sets. We will now turn to the problem of describing 
situations in which the assumptions of Theorem 1.5 do indeed occur. It turns out we 
can construct approximately optimal solutions satisfying the assumptions of Theorem 
1.5, provided there exist optimal solutions that do not leave some compact subset of 
the interior of a control set. The notion of control sets has been discussed in 
Kliemann (1987). Existence of periodic, approximately optimal solutions in control 
sets has already been proved in Colonius and Kliemann (1989). Here we will have to 
prove a more specific result, as we need some information about the length of one 
period and the time span elapsing before periodicity is achieved. 

We will first give the basic definitions and state some properties of control sets. 
Afterwards we can show periodic solutions with the desired properties exist in 
compact subsets of the interior of control sets. This can be used to prove a result of 
locally uniform convergence of AV, to V,. 

DEFINITION 2.1. The positive orbit of x up to time T is given by: 

O;,(x) := { y  E Mlthere are 0 < t < T and a control u ( . )  

such that cp(t ,  x,  u ( . ) )  = y.) 
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DEFINITION 2.2. A subset D c M is called a control set, if: 
(i) D c Of ( x )  for all x E D. 
(ii) D is maximal with property (i). 
(iii) If D = {x}, there is a u E U, SO that cp(t, x, u) = x, Vt >, 0. 
DEFINITION 2.3. A control set C is called invariant, if 

Note that periodic trajectories can only occur in control sets, variant or invariant. 
To avoid degenerate situations the following setup is standard in geometric control 

theory: Let L denote the Lie-algebra generated by the vector fields X,(.), i = 0,. . . , d. 
Let A, denote the distribution defined through L in TM, the tangent space of M. 
Assume that 

(2.1) dim A,(x) = n for all x E M. 

This assumption guarantees that the positive and negative orbits (defined analo- 
gously to Definition 2.1) of x up to time T have nonempty interior, a fact that will be 
vital for all following results. For a proof of this property see (Isidori 1989, Chapter 2, 
Theorem 2.7). 

If L is of locally finite type or dim A,(x) is constant, then M can be partitioned 
into maximal integral submanifolds invariant under the vector fields X, ,  which can in 
turn be assumed to be the new state space (Isidori 1989, Sussmann 1973). Under 
these circumstances condition (2.1) holds on the maximal integral submanifolds. 

LEMMA 2.4. Consider a control system on M satisfying (0.1)-(0.8) and (2.1). Then: 
(i) If C is an invariant control set, then C = c. 
(ii) Every invariant control set has nonempty interior. 
(iii) If D is a control set, then int D c O+(x) for all x E D. 
(iv) If M is a compact manifold, then there exist at least one at  most finitely many 

invariant control sets. 

PROOF. Kliemann (1987, Lemmas 2.1 and 2.2.) 
The definition of control sets only demands approximate reachability, i.e., existence 

of controls steering into any neighbourhood of a given point. There is even a finite 
time controllability property in the interior of control sets, which we will need for the 
construction of periodic solutions. 

DEFINITION 2.5. We define a "first time hitting map" by: 

( x ,  y) ++ infitlthere is a u ( . )  E U such that cp(t ,x,u(.))  = y) .  

PROPOS~T~ON 2.6. Consider a control system on M satisfying (0.1)-(0.8) and (2.1). 
Assume there exist a control set D c M with int D # 0 and two compact sets K, c D 
and K ,  c int D. Then there is a constant r dependent on K, and K,, such that: 

(i) k(x, y) f r for all x E K, ,  y E K,. 
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PROOF. Colonius and Kliemann (1989, Proposition 2.3.) 
Now we can finally turn to the construction of periodic solutions. As the average 

yield case is far simpler, we will consider this case first. A more general statement of 
this Proposition can be found in Colonius and Kliemann (1989, Theorem 4.2). 

PROPOSITION 2.7. Consider an optimal control system on M satisfying (0.1)-(0.8) 
and (2.1). Assume there are a control set D c M, a point x E M ,  a compact subset 
K c int D, a control u( . )  E 21 and a T > 0, such that cp(t, x ,  u( . ) )  E K for all t > T.  
Then for every E > 0 there exists a control u,(- ), such that 

(i) u,(T + . ) and cp(T + a ,  x ,  u,(.)) are periodic with the same period. 
(ii) Jo(x,  u( . ) )  - Jo(x,  u,(.)) < E .  

PROOF. Fix E > 0. By Lemma 1.1 we know Jo(x, u(.)) = J o ( ~ ( T ,  x ,  u(.)), u(T + 
.)), and we can therefore assume, without loss of generality, T = 0. By Proposition 
2.6 there is an r 2 0, such that k ( x ,  y )  G r for all x, y E K.  

By definition of the average yield there is a t,, such that: 

If t ,  is large enough, then for all v ( . )  E U: 

,, y r  f t rh (cp( t ,  x , v ( . ) ) , u ( t ) )  dt + ; 

Since cp(t,, X ,  u( . ))  E K there are a control w( . )  and a t ,  G r,  satisfying ~ ( t , ,  
cp(t,, x ,  u(.)),  w(.))  = x. Define u,(.) by: 

Because of cp(t, + t ,, x ,  u,(.)) = x we can continue u,( . ) ( t ,  .f t ,)-periodically. By 
Proposition 1.4 and the inequalities (2.2) and (2.3) this leads to: 

PROPOSITION 2.8. Consider a control system on M satisfying (0.1)-(0.8) and (2.1). 
Let x E M be B e d .  Assume there are a control set D, a compact subset K c int D, a 
control u ( . )  E U and a T 2 0, such that cp(t, x ,  4.)) E K for all t >, T .  Then there 
exists a constant r = r ( K )  and for all E > 0 and all A > 0 there exist positive constants 
s,, s, and a control w( . )  all dependent on E and A ,  such that: 

(i) AJ,(x, 4.)) - AJ,(x, w ( - ) )  < E .  

(ii) For all t 3 T + s1 we have: 

w ( t )  = w ( t  + s,) and cp(t, x ,  w ( . ) )  = cp(t + s,, x ,  w ( . ) ) .  
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( iii) 

(iv) lim,,, AS,(€, A) = 0 = limA,,, As2(€, A) holds for every E > 0. 

PROOF. Let us first note (iv) is an immediate consequence of (iii). As r is 
independent of E and h the assertion follows from: 

H ( l  - e-") 
H ( l  - e-") 

lim A A A - 0  A-0 E 

Fix E > 0 and A > 0. Define r := sup{k(x, y)lx, y E K )  < m. For short we will 
write 

For each y E K define U(y) := {u(.) E Ulq(a, Y, u(.)) E K). 
We know by assumption that U(y) is not empty for all y E K. If a > r ,  that is if 

e-Ar 2 €/3H, which is always true provided E and h are small enough, then 

U(y) # 0 for all y E K. 
Choose 2 E K and E(.) E U(2), such that 

(2.5) 
2 SUP sup [ )a~e-A'h(c( f ,  x, u ( . ) ) , ~ ( ~ ) )  dt. 

x e K  u ( . ) ~ L l ( x )  

By assumption there are a control w,(.) and r ,  ,< r ,  such that 

q ( r , , q ( T  + a , x , u ( . ) ) , w , ( . ) )  = x  

and a control w,(.) and r, < r ,  such that 

We will now define the control w(.) we are looking for by first steering to K as 
does the original control u(.). We will continue to follow u(.) for time a. Then we 

i 
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In all we have: 

O < t < T + a ;  

wl(t - ( T  + a ) ) ,  T + a < t < T + a + r , ;  

w(t)  = ( ~ ( t  - ( T  + a + r ,)) ,  T + a + 7, < t < T + r, + 2a;  

w , ( t - ( T + r l + 2 a ) ) ,  T + ~ , + 2 a < t < T + r ,  + 2 a + r 2 ;  

\w(t - ( a  + r2)), T + T~ + 2a + r, < t .  

We have now constructed a control w(.) for which assertions (ii) and (iii) are 
obviously true. It remains to show, that: 

AJA(x, u ( . ) )  - hJ,(x,w(.)) < E .  

Keeping in mind that s, = a + r, and s, = a + r,, we proceed as follows: 

AJA(x, u( . ) )  - J ( ( ) )  = ~ e - " [ h ( ~ ( t ,  x ,  u ( . ) ) ,  u(t))  
T+a 

-h(cp(t, x ,w( . ) ) ,  w(t)) l  dt. 

Using the periodicity of w(-) starting at time T + s,, we obtain: 

hJ,(x,u(.)) - hJ,(x,w(.)) 

x [h(qo(t, x,  u ( . ) ) ,  u ( t ) )  - h(qo(t, x ,w( . ) ) ,w( t ) ) ]  dt 

m 

Remembering inequality (2.5) and using the properties qdT + s, + us,, x, w(.)) = Z 
as well as v(T + s, + vs,, x, u(.)) E K,  we can continue: 

hJ,(x,u(.)) - AJ,(x,w(.)) 

m 

m 

< ~ e - " ( 1  - e-"1) + 
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The last inequality is true, because by (2.4) we know: 

!a ;  

2a + r,; 

and (iii) are 

W e  will now state the convergence result o f  Colonius (1989). 

THEOREM 2.9. Consider a control system on M satisfying (0.1)-(0.8) and (2.1). 
Furthermore we will assume the running cost h can be expressed as 

Assume there exist an invariant control set C,  a compact subset K c int C,  and optimal 
controls u,(-), such that p(t, X ,  u,(.)) E K for all t a 0 and all A > 0. Then there exist 
a subsequence A,  -, 0 and a control u( . ) ,  such that for all T > 0: 

( i)  u ,  ( . ) I [O,  TI converges weakly to u(.)I[O, T ]  in L ~ ( [ o ,  TI,  R~). 
(ii) p( . ,  x ,  u,,{.)) converges uniformly to p ( . ,  x ,  u( . ) )  on [0, TI. 
(iii) Vo(x )  = Jo(x, u( .)). 

PROOF. Colonius (1989, Corollary 2.7). 
W e  can now deduce two results concerning the convergence of  AV, in control sets 

from Theorem 1.5. By Lemma 1.1 it is clear, Vo is constant on the interior o f  control 
sets. AV, converges uniformly on compact subsets to this constant value, under the 
following assumptions: 

THEOREM 2.10. Consider an optimal control system on M satisfying conditions 
(0.1)-(0.8) and (2.1). Assume there exist a control set D c M, an x E int D,  a 
compact subset K c int D,  and optimal controls u,(.) and uo( . )  (optimal with respect 
to the A-discounted and the average yield problem respectiuely), such that 

Then : 

hVA + V,, uniformly on compact subsets of int D.  

2 ,  x,  w ( . ) )  = 2 
PROOF. By Proposition 2.8 and Theorem 1.5, h K ( x )  -+ V,,(x). Fix a compact 

subset Q c int D. By Proposition 2.6 there is a constant > r = sup{k(x, y)lx, y E 

Q U { x ) ) a  0. For every y E Q there exist a control u ( . )  and T 6 r such that 
p(T, x,u(.)) = y. By Bellman's principle (Elliot 1987) we know for all A > 0: 
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By symmetry, we therefore know: 

AVA(x) - AV,(y) < H(1  - eCAr). 

As lim, ,, H(l  - e-") = 0 we know lim, ,, AVA(x) = lim,,, AV,(y) for all y E Q. 
Uniform convergence follows, since we have shown for all y, z E Q: 

I AV,(Z) - hV,(y) I < H ( l  - e-"). 

This result can be reformulated, if we assume the starting point to lie in an 
invariant control set C. Under these circumstances no assumption concerning the 
average yield problem is necessary, if we assume condition (2.6) and make use of the 
result by Colonius (1989). 

COROLLARY 2.11. Consider an optimal control system on M satisfying conditions 
(0.1)-(0.8), (2.6) and (2.1). Let C c M be an invariant control set. Assume there exist 
an x E int C, a compact subset K c int C, and optimal controls u,(.), such that 

c p ( t , x , u , ( . ) ) ~ K ,  Vt>O,VA>O. 

AVA + V, uniformly on compact subsets of int C. 

PROOF. By Theorem 2.9 there exists a subsequence of {u,(.)) converging weakly 
to a control u,(.) which is optimal as regards the average yield problem. We know 
cp(t, X, u,(-)) E K for all t > 0 by part (ii) of Theorem 2.9. Therefore we can now 
conclude as in the proof of Theorem 2.10. 

REMARK 2.12. If a control system satisfying (0.1)-(0.8) and (2.1) is considered, 
the assumptions of Theorem 2.10 hold, for instance, if M is a compact manifold on 
which the system is completely controllable, because then M is the invariant control 
set, which is open and closed. o 

The following example intends to show the assertion of Theorem 2.10 is as general 
as can be expected in the following sense: The convergence of the discounted value 
functions need not be uniform on the whole of a control set, if the assumptions of 
Theorem 2.10 are satisfied. 

EXAMPLE 2.13. Consider the optimal control problems on R given by 

f = x - u ,  UE[-1 ,1 ] ,  

Condition (2.1) concerning the Lie algebra is obviously satisfied. D = (- 1 , l )  is 
easily shown to be a variant control set of the control system. Furthermore there exist 
optimal trajectories for all A > 0 and all x E D staying inside a compact subset of 
int D. The same is true for the average yield problem. For instance it is always 
optimal to steer to 0 by a constant control 1 or - 1 and to stay there afterwards. By 
Theorem 2.10, AV, converges uniformly to V, on compact subsets of D as A tends 
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The convergence is not uniform on the whole of D: It can bc casily shown, that 

On the other hand we know for all A > 0 that VA(l) = 0 holds, since it is impossible 
to steer from 1 to D. Uniform convergence would imply for every 6 > 0 there is a 
Ate), such that for a11 0 < A < A(€) and all x E D, the inequality (1 - AK(x)l < 6 

holds. On the contrary, it is a well-known fact that value functions of discounted 
optimal control problems are continuous (Elliot 1987). Note A V ~ ( ~ )  could also be 
constructed to be divergent in a similar example, using the techniques of Example 1.6. 
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