ASYMPTOTICS OF VALUE FUNCTIONS OF DISCRETE-TIME
DISCOUNTED OPTIMAL CONTROL
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ABSTRACT. We study deterministic discounted optimal control problems associated with
discrete-time systems. It is shown that for small discount rates controllability properties of
the underlying system can guarantee the convergence of the discounted value function to the
value function of the average yield. An application in the theory of exponential growth rates of
discrete inclusions is presented. This application motivates the analysis of the infinite horizon
optimal control problems with running yields that are unbounded from below.

1. INTRODUCTION

This paper investigates the problem when the value functions of discrete-time discounted
optimal control problems converge to the value function of average yield (or 0-discount) optimal
control problems as the discount rate tends to 0. This topic has attracted the interest of various
researchers in recent years, where in the discrete time-case the studies are motivated by problems
in Markov decision chains, while in the continuous-time case results were obtained motivated
by the analysis of Lyapunov exponents, i.e. exponential growth rates of families of time-varying
systems.

In this paper we wish to present results for deterministic discrete-time optimal control prob-
lems. In the theory of Markov decision chains the behavior of optimal policies and of the
value functions as the discount rate ¢ tends to zero has attracted considerable attention, see
Cavazos-Cadena and Lasserre [4] and Lausmanovd [13] for early references. In [7] Dutta proved
convergence of the discounted value function to the average yield for stochastic Markov decision
chains in a set-up encompassing deterministic systems. The assumptions in this paper, however,
guarantee that the value function of the average yield optimal control problem is constant on the
state space. This excludes many applications of the deterministic theory. Yushkevich studied
convergence in [20], [21] for stochastic systems satisfying a simultaneous Doeblin-Doob condition
which essentially states that there exists a subset D of the state space with positive measure
such that for any measurable set D' C D with positive measure the following holds: given any
control value and any point in the state space there is positive probability that at the next time
step the system state is in D’. This assumption excludes all but the most simplistic deterministic
systems. A maximum principle for discounted optimal control was presented by Sorger in [15].
In Stern [16] several criteria of optimality in the infinite horizon case are discussed.

In this paper we follow an approach that was outlined in Colonius [5], Wirth [17] and Griine
[10], [11] for the continuous-time case. It has been shown in [17], that in general it is not possible
to approximate average yield optimal control problems by discounted ones. This example easily
translates to the discrete-time case. Thus it is necessary to find conditions that ensure conver-
gence. The basic idea of the present approach is to use the dynamics of the discrete-time system
in the construction of approximately optimal periodic controls. This is done by introducing con-
trol sets, that is sets where approximate controllability holds, and use controllability properties
in their respective interiors. We present results on uniform convergence of the discounted value
functions on compact subsets of cores of control sets, which largely resemble results obtained
in continuous time, though we use different ideas of proof and obtain results with less strin-
gent conditions. Further results on uniform convergence on compact subsets of backward orbits
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of control sets, are essentially new in the sense, that their continuous time analogues are not
available.

The paper is organized as follows. In Section 2 we present the class of optimal control problems
we wish to consider. In particular we will study the minimization as well as the maximization
problem. Motivated by problems in discrete inclusions the running yield will only be bounded
from above. This leads to problems not considered in [5], [17], [10], [11] so that we have to
develop different methods from those used in the continuous time case. Section 3 presents
preliminary convergence results along trajectories and their implications for the value functions.
The results of this section are independent of controllability properties. In Section 4 control sets
are introduced and it is shown how their properties may be used to obtain uniform convergence
in compact subsets of their interiors respectively their backward orbits. In particular the result
on uniform convergence on the backward orbit of control sets for the maximization problem is
new even in continuous time. As an application of the previously obtained results we discuss
Lyapunov exponents of discrete inclusions in Section 5. This topic has been of particular interest
in recent years, see Barabanov [2], Berger and Wang [3] and Wirth [19].

2. PROBLEM STATEMENT

Let M be a real, connected, paracompact, Riemannian, C*-manifold of dimension n, and
U C R™ be an open set. Assume we are given an analytic set X C M x U and a real-analytic
map f : W — M, where W := (M x ﬁ) \ X. We denote fy = f and define recursively
ferr(z,ug, .o ue) == f(fe(z,u0, ..., ue—1), us). The set of admissible control values for a given
point z € M is denoted by U(z) which is determined by {z} x U(z) = ({z} x U) \ X. The
sets of admissible control sequences of length ¢, respectively of infinite length is denoted by
Ut(z),UN(z). Assume that the set of admissible control values U and the map f satisfy

(i) For all € M it holds that {z} x U ¢ X.

(i) For all ¢+ € N and all z € M fi(z,:) is nontrivial with respect to u, ie. if
dfi(z,-)/0ug...0u;—y has full rank in some point u € U'(z), then in every connected
component of U?(z) there exists a point where this rank condition is satisfied.

We consider the discrete-time system

pt+1) = fot), u) L1EN (1)
z(0)=20 €M,

u € UN(zo).

The solution corresponding to an initial value z and an admissible control sequence u € U™(zg)
is denoted by ¢(+; zg, u). To define an optimal control problem assume we are given a continuous
running yield function

g: M xcllU—RU{—c0},
satisfying
g(z,u) <Gy € Rforall (z,u) € M xclU, (2)
g(m,u) = —00 = (mvu) €X.

The continuity of ¢ is to be understood with respect to the topology on R U{—o0} generated by
the standard topology on R together with the sets {—oco} U (—o0,¢),c € R as a neighborhood
basis for the point —oo. Furthermore, we assume the existence of a constant Gy € R such that
for every z € M there exists a u(z) € U with

Go < g(z,u(x)). (3)
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Without loss of generality we will assume that 0 < G := G; = —G2. The following values are
associated with a trajectory of (1). For 6 > 0 we consider the §-discounted yield

Ts(w,u) =Y e g(o(t;z,u),u(t)), weU(z), (4)

=0

and the average yield functionals

To(a )= Timsup £ 3 g6(si ), ) w € U(s), (5)
Jole )= limint 3" g(o(ss ), u(s)) v e UV(a). (6)

The associated optimal value functions are given by

Vs(z) == sup Js(z,u), wvs(z):= inf Js(z,u), (7)
weUN(z) weUN(z)

Vo(z) := sup Jo(z,u), ®o(z):= inf Jo(z,u), (8)
ueUN(z) u€UN(x)

Vo(z):= sup Jo(z,u), w(z):= inf Jy(z,u). (9)

T uEUN(x)_ T weUN(e) ™

Remark 2.1. Note that for every u € U™ (z) the expression for Js(z,u) is well defined. In
fact, it holds that the infinite sum is either absolutely convergent, or the partial sums tend to
—00. This may be seen as follows. Define fy(t) := max{0, e %g(o(t; 2, u),u(t))} and f_(t) :=
min{0, e=%g(p(t; z,u), u(t))}. Then
t t

Yol g(d(ss 2, w),uls) =D fils) +|F=(9)] -

s=0 s=0
Clearly the infinite sum over fi(s) exists, so that Ei:o f+(8) + f=(s) converges absolutely iff

limy_yee 22:0 f-(s) is a real number. If this is not the case then for every ¢ > 0 there exists a
T € N such that for all t > T it holds that 3" _, e=%g(¢(s; 2, u),u(s)) < —e.

The discounted optimal control problem is far easier to analyze, which is why one tries to gain
a relation between it and the average yield problem. The following theorem summarizes some
known properties of the value functions. The proof is omitted as we only slightly depart from
the standard assumptions in that ¢ is merely bounded from above. The standard arguments,
however, can be applied to obtain a proof. For details we refer to [8] Chapters 1 and 2.

Theorem 2.2. Consider a discounted optimal control problem given by (1)-(7). The following
properties hold

(i) (Bellman’s principle of optimality)
For all t € N it holds that

t—1 T

Valzo) = =P [Z e g(0(5; 20, ) + €T V3 ({8 20, ) | (10)
uelU(z) [s= _
t—1 T

uslon) = int [Z e g((s5 70, ) + ¢ vs(0(t 20, )| (1)
5=0 _

(ii) Vs is bounded and continuous. vs is bounded from above and lower semi-continuous.



4 FABIAN WIRTH

(iii) (Bellman’s principle of optimality 1)
For allt € N it holds that

Vo(z) = sup Vo(o(t;z,u)), o(z)= inf wg(d(t;z,u)), (12)
welt () u€U* ()

Vo(e) = sup Vo(6(iim ), wo(e) = nf w(oltie ), (13
uelU(z) ueU(z)

3. CONVERGENCE OF THE VALUE FUNCTIONS

We consider a system of the form (1) and present results on the values of the different optimal
control problems along trajectories. First properties on the convergence of the discounted prob-
lems to the average yield problems may thus be obtained. To several of the following statements
the continuous time analogue is to our knowledge not available in the literature. Note that the
analytic structure of the system is not used in this section. For a sequence a:N— R, define

t—1
ool
Jo(a) := hmgf : 2 a(s), Jo(a):= hin_:)l;p Z (14)
and if Jo(a) € R, respectively Jo(a) € R, let
1 < 1 o —
o) = g o 0(0) o) ) = gy Do) ~ o).

s=0 =0
Note that for any a satisfying Jy(a) € R we have that r, < 0 and also r4(t) converges monoton-

ically to 0 as ¢ goes to infinity. Converse statements hold for 7.

Proposition 3.1. leta: N— R,
(i) If Jo(a) € R then for any 6 > 0 we have

(o] i

Jo(a) + (1= e e (s 4+ 1)ru(s) < (1 —e%) lil}n inf Y e %a(s).
— - —00
s=0 5=0

(ii) If Jo(a) € R then for any § > 0 we have

o0
J_()cz—l—l—(2_52 6_555—|—1r_32 1—e” hmsup
@+ (=D o+ () > Hmz
Proof. (i) Note that because of the convergence of r, to 0 the series on the left hand side converges
absolutely and we may freely rearrange the sum. Thus to prove the assertion it is sufficient to
show that for all t € N
t t

D e o(a) + (1 - €)Y e (s + Drals) + e D (4 1ry(t) =

s=0 5=0

t

Ze + (s+ Dra(s) — sra(s — 1)) <> _e™a(s), (15)

s s=0

=0
where we set r,(—1) := 0. We proceed by induction. For ¢t = 0 equation (15) is immediate from
the definition of r,(0). Assume that (15) is shown for £ — 1 and consider

Z e~%%a(s) = e7ta(t) + i e~3%a(s). (16)

By definition we have that
t—1

als) > (o) + 1ot = 1), S a(s) > (4 1) (Jo(a) + ra (1))

5=0 5=0
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Note that the factor of a(t) in (16) is the smallest. Thus in order to minimize (16) we may
assume Y_'_{ a(s) to be as small as possible, i.e. equal to t(Jo(a) + ra(t —1)). It follows that
we may assume that

alt) > Jofa) + (4 + Vraft) — trat — 1)
This combined with the induction hypothesis implies (15).
(i) follows from (i) considering —a. O
Remark 3.2. Note that by monotonicity we have for allt € N
(t+Vrat) —tra(t = 1) 2 ra(t)

and conversely for ¥,. Thus by rearranging the series it follows immediately under the assump-
tions of Proposition 3.1 that

o] 13

=4 —8s = et —és
Jo(a) +(1—e )z_;e rq(s) < (1—e )htrgg)lf > e %a(s) (17)
(o] 1
Jo(a) + (1 - 6_5) e“ssﬁ(s) >(1- 6_5) lim 511pZe_55(1,(s) . (18)
s=0 i—00 s=0

From this property we obtain a number of corollaries. In particular, the right hand side in
the following corollary is the analogue of the statement of Theorem 2.1 in [10], which has been
proven in a different manner in that reference. In the following we do not assume that the the
discounted sums converge.

Corollary 3.3. Let a: N— R, with Jo(a) < oo, Jo(a) > —co then

T 50 {500

t t
) < liminf(1 —e™®) liminf } e %*a(s) < limsup(l — e~%) lim =% q(s) < Jo(a).
Jo(a) < im in (1—e7%) imin sz:;e a(s) < limsup(1 —e™°) 1mq11psz_;e a(s) < Jo(a)

Proof. To consider the first inequality note that if the limit inferior over the averaged sums is
—oo there is nothing to show. If Jy(a) € R the assertion follows from (17) and the fact that
because of the convergence of r, we have

. T —8s _
1= )Y o) =0

which may be seen by a straightforward calculation. The middle inequality in the assertion is
obvious and the statement on the RHS can be shown by considering —a and using the first part
of the proof. O

Remark 3.4. In particular it follows that if the limit of 1/t Y.'Z} a(s) exists than also the limit
of the discounted values exists. Note that for a periodic there is a particularly easy way to
calculate the average yield. Namely, if a has period p, then

—

t—1

1 1 <
liminf — % a(s) =limsup n z_; a(s) =

a(s) .

1
t—oo t
s=0 =00 p s=0

It is worth noting an immediate consequence of the preceding proposition with respect to the
value function.

Corollary 3.5. Consider system (1). For all z € M it holds that
liminf (1 — e~®)Vs(z) > Vo(z),
5—0 -

limsup(1 — e~%)vs(z) < To(z).
=0
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Proof. Let {ux} C UN(z) be a sequence such that
lim Jo(z,u;) = Vo(z) .
k—oo — -
By Corollary 3.3 for all k£ € N it holds that
liminf(1 — e~ Vs(2) > liminf(1 — e™%)J5(z, up) > Jo(z, ur) .
5—0 50 -
This shows the first assertion and the proof of the second is analogous. O

For a converse statement we introduce the following definition.

Definition 3.6. Consider system (1). The average yield Vy(z) is called uniformly approximable
if there exists a function r : N — Ry with limsoo () = 0 such that for allt € N

wp 13 g(o(ss ), u(e)) < Vo) +7(0)

w€UN(z) ¥ 2o

vo(2) is called uniformly approximable if for allt € N

inf Zg si2,0),u(s)) > vo(@) - r(t),

weUN(z
for a suitable positive function r converging to 0.

Corollary 3.7. Consider system (1) and fir x € M.
(i) If Vo(z) is uniformly approzimable then
Vo(z) < lirgl_;lgf(l — e YVs(2) < lh?_f:)lp(l — e YVs(z) < V().
(ii) If vo(z) is uniformly approximable then

vo(z) < lign_)i(r)]f(] - 6_5)?)5(37) < lir;l S(l)]p(] - 6_5)?)5(37) < Tg(z) .
—

Proof. (i) By Corollary 3.5 we only have to show the right hand side. Proposition 3.1 (i) and
Remark 3.2 show that for all § > 0 and all u € U™(z) we have
(1= ™) Ts(x,u) < To(w,u) + (1— €)Y e *r(s).
s=0
This shows that

(1 — e O)WVs(z) < Volz)+ (1 —e” Qie

s=0
and the assertion follows.
(ii) If wo(2) = —oo there is nothing to show. Otherwise we proceed as in part (i). O

Proposition 3.1 may be strengthened if we consider shifted bounded functions for a fixed
discount rate. In Theorem 2.2 in [10] the inequality (20) has been shown and here we use the
same idea of proof.

Proposition 3.8. et § > 0 be a fized discount rate and a : N — R be bounded, then

o) t—1
1
.. =6 _§s s d
htrg})rolf(l e ) e Ca(s+1t) < htrg})rolf ; a(s) < (19)
s=0 s=0
1 t—1 el
lim su —E a(s) < limsup(l —e~ E e Pa(s+1t). 20
t—)oop t ( ) - t—)oop ( )
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Proof. (i) We begin by proving (19). Let

C :=liminf(1 — e~ Ze a(s+1t).

t—o00
s=0

and fix € > 0. An easy calculation shows that if we replace a by @ := a — (C' — 2¢) then

h}r_lﬂl)gf (1—e” z_;e a(s+1) (21)
If it is shown that
=
liminf — % a(s) >0,
t—oo ¢ g

then the assertion for a follows as € > 0 is arbitrary. In the following assume that a already
satisfies (21). Let 5 € N be such that for all ¢ > ¢,

3
(1—e” 26_53 a(s+t) 278.

5=

First we show that for all ¢ > t, there is a f t) >t such that

i(t)
Z —. (22)

To this end fix # > #5. By assumption there is a unique #(#) > # such that for all # < ¢/ < #(¢)

tl

—6&(s—t) —5.5 t) €
Ze a(s) < 1_6_5 and Z 21_6_5.

s=t
Thus it follows that f(£(¢)) > 0 and therefore
t(t)—1 i (1) .
> e a(s) + e O p(i(1)) > e a(s) 2 (23)
s=t s=t
As
#(t)—2 -
Z e ) < 1T_ ="
s=t
equation (23) implies that f(£(t) — 1)+ €® f(£()) > 0 and therefore
& 5 —8(i(t)=1—1) 26 _—5(F(t)—t) p(5 i —5(s—t) €
3 als) + e JUEE) = 1) + 2T E00 p(i(1) > 3 eHea(s) > S (24)
s=1 s=t
Continuing this process we obtain
(1) i(t) .
als) = 30 005000 (s) > (25)
s=t s=t
For N :=sup;cy|a(t)| let T € N be such that
— —és €
Ze N < 74(1_6_5) .
s=T

Thus it follows for all £ € N that t(t) —t < T, for otherwise we obtain a contradiction between
(21) and the definition of #(t). Denote b := maxsen(t(t) — t). For t > to there is a unique
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sequence to, tpt1 = f(tk) + 1,t; =t, for 0 < k < [, where ¢; < f(tl_l) + 1. It is readily obtained
that

t to—1 =2 tg41—1 t
doals) =D als)+), Y als)+ Y als) (26)
s=0 s=0 k=0 s=tg s=t;_1
e (t — to) e
Taking ¢ to infinity it follows that
B . € (b+to)N
llgglf;;a(s)Zhggfb(l_e_é)— " >0.
(i) The middle inequality is obvious and (20) follows by using (i) for —a. O

Remark 3.9. [t has to be pointed out that part of the statement of the previous proposition
remains true if we only assume that f is bounded from above (or below). More specifically (19)
remains true if f is bounded from above, because in this case if liminf,_ ., f(t) = —oco it is easy
to see that also

o0

lim inf (1 — %) Z e a(s4+1) = —0.

t—o00
s=0

The converse statement holds for (20).

Again the previous proposition entails an immediate corollary. First we need the following
definition.

Definition 3.10 (Orbits). Consider system (1). The forward orbit of x at time t is defined as
Of (z) :={y € M;3u e U'(z) withy = ¢(t;z,u)}.
The forward orbit of x is then defined by
Ot (2):=JOf (2). (27)
teN
The backward orbit of x at time t is given by

O7 (z) :={y € M;3uc U'(y) with z = ¢(t;y,u)} .
which leads to a definition of O~ (z) analogous to (27).
Corollary 3.11. et § > 0 be fized. For all x € M it holds that

(i)
inf (1 —e"?)Vs(y) < Vo(z).
veOF () _
(ii) If there exists a sequence {u,} C UN(z) such that
(a) For every n € N the set {g(¢(t; z,u,), un(t)) | t € N} is bounded,
(b) limpye0 J5((F; 0, Un,s)s Uns(t+ ) = vs(D(t; 20, Un,5)) uniformly int € N,
then
sup (1 - e %)vs(y) > To(a) .
veOF ()
Proof. (i) Fix € > 0 and choose u. € UN(z) such that for all ¢ > 0 it holds that V(¢ (t; 2, u.)) —
e < Js(o(t;z,u.), us(t +-)). Note that by assumption on g the set {g(¢(t;z,u.), u-(t)) | t € N}

is bounded from above. By Proposition 3.8 and Remark 3.9 we have for every € > 0

Vo() > Jo(w,ue) > liminf (1 — e~ I5(d(t; 2, us), us(t + ) >
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liminf(1 - €7) (Vs(¢(t;w,u) =€) > inf  (1=¢7) (Vs(y) —¢)
t—oo Oty
yel/ " (z)
which shows the assertion as € > 0 was arbitrary.
(i) This may be seen just as (i). O
Thus on the set of points that can be reached from z the infimum of the discounted value
function (1 — 6_5)V§ is less than the average yield while in 2 itself we have the converse. This

suggests that convergence results can be proven using controllability properties, which relate the
forward orbit of 2 with z. This is the topic of the next section.

4. CONVERGENCE IN CONTROL SETS

We begin with the following definitions are vital for our analysis of the optimal control prob-
lem.

Definition 4.1 (Accessibility). System (1) is called forward accessible from z if int O (z) # 0
and forward accessible if it is forward accessible from all x € M.

It has been shown that forward accessibility is intimately related to the rank of the map f; in
the case of smooth invertible systems [1]. In our case we consider the rank of the linearization
of fi(z, ) : U'(z) = M at ug € int U" C R™ with respect to the control variables and denote it
by r(t; x, uo).

Definition 4.2 (Regularity). A pair (z,u) € M x int U? is called regular, if u € int U'(z) and
r(t;z,u) = n.

By Sard’s theorem forward accessibility implies the existence of regular pairs for every z € M.
We denote by (;):_ (z) the regular forward orbit of z at time ¢, which is defined as the set of points
reachable with a control sequence u € U?(z) such that the pair (z,u) is regular. In an obvious
way analogous definitions hold for o (z), O; (z) and O (z). Using local surjectivity and the
implicit function theorem it is easy to see that all these objects are open sets. T'he nontriviality
of f; guarantees that cl @j(m) =cl (’)j(m) if and only if int (’);r(m) # (. Further properties in
connection with regularity are shown in [14].

Definition 4.3 (Control set). Consider system (1). A set ) # D C M is called a control set,
if

(i) D CclOt(z),Vz € D.

(ii) For every x € D there exists a u € U™ (z) such that ¢(t;x,u) € D for all t € N.

(iii) D is a mazimal set with respect to inclusion satisfying (i).

A control set C' is called an invariant control set, if
dC=cdOt(z),Vz e C. (28)

In particular it holds that if (1) is forward accessible and C'is an invariant control set, then C'
is closed and has nonempty interior. This may be seen as in [19]. The importance of control sets
lies in the ability to construct periodic orbits. Contrary to the continuous time case, in discrete
time it may not be possible to construct periodic orbits through any point in the interior of a
control set. This has been noted in [1], where the concept of a core of a control set has been
introduced. We slightly modify the definition for our possibly non-invertible case in introducing
the regular core. 1t should, however, be noted that for the systems studied in [1] core and regular
core of a control set coincide.

Definition 4.4 (Regular core). Let D C M be a control set with int D # (). The (regular) core
of D is defined as

core(D) :={z € D; @+(r) ND#0 and O ()N D #0}. (29)

We note the following properties of the core of a control set [1].
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Proposition 4.5. Consider system (1). Let D C M be a control set with int D # (. If system
(1) is forward accessible, then

(i) core(D) is open in M.

(ii) clcore(D) = clint(D) =cl D.

(iii) If x € D then core(D) C @+(x) If z € core(D) then D C O™ (z).

Let us now introduce the main technical tool for the construction of periodic orbits in control
sets. Consider the function

h:Mx M — NU{} (30)

h(z,y) := min{t € N; there is a u € U’ such that ¢(¢;z,u) = y},

where min ) = oco.

The previous definition is the discrete—time analogue of the first-time hitting map. As g may
be unbounded it is important for us not only to obtain information on the time that elapses to
steer from x to y but also on the cost that is necessary to do so. In analogy to the first time
hitting map, we define the minimal absolute cost map by

Hy: M x M — Ry U{co} (31)
Hy(z,y) = inf{max lg(8(s;z,u),u(s)l; ¢€N, ueU'()

satisfying ¢(t; z,u) = y},
where inf ) = co. The essential point is that both these values may be simultaneously bounded
if one tries to reach a compact subset of the core of a control set. This will be vital in the
construction of periodic trajectories.

Lemma 4.6. Let system (1) be forward accessible. Let D C M be a control set. Assume there
are two non-void compact sets K1, Ky with Ky C O~ (D) := UxED O~ (z) and Ky C core(D).

Then there are constants h € N, H € Ry such that
h(z,y) <h foralzc K,y € K;, (32)

Hy(z,y) < H forallz € K1,y € K. (33)

Proof. (i) Let z € Ky, y € Ky. Choose any point z € core(D) N @+(m), which is possible by
Proposition 4.5 (iii). Thus there exist uy € int U (z) such that z = ¢(t1; 2, u1) and (z,u4) is a
regular pair. By the implicit function theorem there exist open neighborhoods Vi of z, W; of
uq and a continuous function w : Vi — Wy such that z = ¢(ty;2', w(z’)) for every 2’ € Vy. This
shows that h(z’, z) < t; for all 2’ € V;. Furthermore, by continuous dependence of g(s; z’, w(z'))
on z' it may be also obtained that H,(z',z) < H; for some suitable constant H; € R and all
2’ € Vi, where possibly V; has to be chosen to be smaller than the original choice.

On the other hand using again Proposition 4.5 (iii) there exist t2 € N, uy € int U'2(2) such that
y = ¢(ta; z,uz) and (z,uq) is a regular pair. By the regularity for any open neighborhood W,
of uy the set {¢(t2; 2z, u'); v’ € Wy} contains an open neighborhood V; of y. Choosing W; small
enough so that cl W, C int U'2(z) we see that h(z,y) < t, for all y' € V; and also H,(z,y') < H;
for all ' € V3 and some suitable constant Hj.

In all we have obtained that

h(z',y') <t1+ty forall z'eVi,y €V,
and
Hy,(z',y") < Hi+ Hy forall 2’ € Vi,y € Va.
The assertion now follows because we may choose a finite sub-cover of the open cover

{Vi(z) x Va(y); =€ Ky,y € Ky}
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of the compact set K1 x K. O

An immediate consequence of the preceding proposition and Theorem 2.2 (iii) is that
Vo, Vo, g, vg are constant on the cores of control sets. The following proposition gives a suf-
ficient condition for equality equality of the maximization, respectively minimization problems.
We denote the w-limit set of the trajectory {¢(t;2,u)}, i.e. the set of limit points of this se-
quence, by w(z,u). The idea for the following proof is contained in [6], where in particular
approximation of average yields by periodic trajectories is studied.

Proposition 4.7. Assume that system (1) is forward accessible. Let x € M and D C M be a
control set.

(i) Assume there are sequences {u,} C U"(z) and {t,} C N such that for everyn € N

o(tn;x,uy) € core(D), and w(z,u,) C D, (34)
and
Tim To(e, ) = Vale) (35)
then
Vo(z) = Vo() . (36)
If, furthermore, Vo(z) is uniformly approzimable then
lim (1~ =) Vi(a) = Vo(a) = Vo(a). (37)
(ii) Assume there are sequences {u,} C UN(x) and {t,} C N such that for every n € N
(tn; T, uy) € core(D), and w(z,u,) C D, (38)
and
7}1—130 Jo(z, un) = vo(z), (39)
then
5(2) = (@) (40)
If, furthermore, vo(x) is uniformly approximable then
lim (1 - e~*)us(z) = To(x) = wo(a). (41)

Proof. (i) Clearly it holds that Vo(z) > Vo(z). By Remark 3.4 and Theorem 2.2 (iii) it is
sufficient to show that there exist periodic controls v,, generating periodic trajectory through z
such that lim,_.. Jo(z,v,) = Vo(z). Fix n € N. Without loss of generality we may assume that
tn, = 0. Let {tx}reny C N be an increasing sequence such that

t—1
kh—glo a SZ; g(¢(8; Z, un)7 un(s)) = ]_O(ra un) :

Taking a subsequence we may assume that

lim ¢(te;z,un) =1y € w(z,u,) C D.
k—o0

As z € core(D) it follows that y € O (z) by Proposition 4.5 (iii) and hence thereis a ¢ € Nand a

neighborhood V (y) such that V(y) C O; (z). For all k large enough it holds that ¢(ty; 2, u,) €
V(y). We can therefore find a controls vy € intU" such that @ = ¢(t;d(tr;z, u,),vr). By
Remark 3.4 the average yield corresponding to the (periodic continuation of the) concatenated
control (uy,v) and z is given by

tp—1 t

Tol, (1 v0)) = — (Zg(qﬁ(s;r,un),un(S))+Zg(¢(8;¢(tk;m,un),vk)M(S)))-

tk + t s=0 5=0
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Letting £ — oo and noting that Lemma 4.6 guarantees that the v can be chosen so that
lg(&(s; p(tr; z,un), vi), ve(s))| is bounded independently of 0 < s <t and & for k large enough,

we see that limg_eo Jo(2, (un,vk)) = Jo(z,v,). Thus we may choose for each n a k(n) such

that lim,, e %(m, (U, Ul-:(n))) = V(). This completes the proof of (36). The last assertion is
immediate from Corollary 3.7.
(i) This may be shown as in (i). O

For the convergence of the discounted yield we may formulate the following proposition. An
equivalent statement to (ii) below appears in [10], but here we have to consider the case of
unbounded yields, so that we have to argue in a slightly different manner.

Proposition 4.8. Assume that system (1) is forward accessible. Let D be a control set, xy €
core(D), and K C D be a compact set.

(i) If for every & > 0 there exists a sequence {u, s} C UN(zo) such that
o(t; w0, uns) € K, VteN, and nh_)rréo Js(xo, un,s) = Vs(zo), (42)
then
(1-e)Vs—= Vo,

uniformly on compact subsets of core(D).
(ii) If for every § > 0 there exists a sequence {u, s} C U (o) such that

o(t;zo,uns) € K, VYt €N, and nli_)moO Js5(zo, Un5) = vs(zo) , (43)
then
(1-e%)v; — 7,
uniformly on compact subsets of core(D).
Proof. (i) Note that Vy(z¢) > —oo because of condition (3). Let K C core(D) be compact. By

Bellman’s principle of optimality and finite-time controllability there exist constants h € N, H >
0 such that for any 2,y € K5 it holds that

Vs(z) > e~ Vs(y) — hH .
By symmetry we obtain that there are constants ¢;(6) > 0 such that
(1— e 9|Vs(z) = Vs(y)| < e1(8), Va,ye Ky, 6>0, (44)
where lims_¢1(8) = 0. By the same argument applied to y € K and zg € core(D) there is a
constant c3(6) > 0 with lims_g c2(8) = 0, such that
(1= e)Vs(y) > (1= ) Vs(wo) — c2(8) .
Assume without loss of generality that zo € Ky. As Vy is constant on core(D) by Theo-

rem 2.2 (iii), we only have to show that
lim (1 — ™) Vs(z0) = Vo(zo) ,
5—0 -
then it follows from (44) that (1 — e~%)Vs converges uniformly on K.
Let tg > 1 be such that A(y, zo) < to for all y € K which is possible by Lemma 4.6 and denote
the corresponding bound on the yields by H. As a first step we claim that for any control u, s
and any ¢ € N it holds that

LS 0000 20,11 5),115(9) < Valeo) + 2( + Vi(zo) (45)

- t
Otherwise, we may choose a control u, s and a T' > 0 such that (45) is not satisfied. Let v be a
control that steers back from ¢(7; zo, uns) to o in time so < tg, i.e. we have

2o = ¢(80; (T 0, Un ), v) -
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Denote the periodic continuation of this control by (u,s,v). Using Remark 3.4 and assuming
that (45) does not hold we obtain

1 _ _
T+ s (TVo(zo) + to(H + Vo(0)) — soH) > Vo(o),

@(xo, (un,57 U)) >

a contradiction.
Using Proposition 3.1 (ii) we obtain that for any 6 > 0

(1- 6_5)V5(:C0) = nli_>moo(1 - 6_5)J5(33o, tn5) < Vo(zo) — e2(6), (46)

where ¢3(8) — 0as § — 0 and thus Vp(zo) > limsups_,o(1—e~%)Vs(zo). Hence with Corollary 3.5
it follows that Vo(zo) = lims_yo(1 — e75)V5(z0).

(ii) If Tg = —oo on core(D) we can apply Corollary 3.5 and use finite-time controllability on
Ky C core(D) in conjunction with Bellman’s principle of optimality as in (44) to obtain the
assertion. If Ty is finite on core(D) the claim may be shown as in (i).

O
In particular, the preceding results yield the following statements for invariant control sets.

Theorem 4.9. Consider system (1). Let C C M be a compact invariant control set. Then for
& — 0 it holds that

(1 — e %)V5 = Vo = Vi uniformly on compact subsets of core(C).

(1 —e™%Yvs — Tg = vy uniformly on compact subsets of core(C).

Proof. 1t suffices to show the statement for the maximization problem, as the proof follows
exactly the same lines for the other case.

Vo = Vo on core(C) holds as by the invariance of C' the assumptions of Proposition 4.7 are
automatically satisfied. For 2y € core(C') we may construct controls u, s satisfying (42) by
recursively choosing u, s5(t) such that

9(9(t; zo, un,5)a “n,5(t)) + e_‘”Vg(cb(t + 1; 2o, “n,5)) > Vs(o(t; zo, un’(g)) - % .

Then by Bellman‘s principle of optimality

Vs(zo) < Y e° (g(¢(8; 20, tn,6), n,3(5)) + l)

n
s=0
= 11
5=0 .

Choosing K = (' the assumptions of Proposition 4.8 are satisfied, and the assertion follows. [

The following theorem gives conditions for the convergence of the value functions on the
backward orbits of control sets, under the assumption of pointwise convergence in the core of
the control set and some uniform growth condition on the possible yields.

Theorem 4.10. Consider a forward accessible system of the form (1) on M. Let D be a control
set and K C O™ (D) be compact. Assume there exists an zo € core(D) such that

=1
Vo(ro) = sup Vola) = im  sup 3" g(6(si2,u),u(s))
z€K =00 pe K uelt(x) T =0
If D is not invariant, assume furthermore that there exists a sequence {u,} C UN(zo) such that
Volzo) = nh_)rnoo Jo(zo,u,) and w(xg,u,) C D, V¥Yn€EN.
Then the following properties hold.

(i) Vo = Vq is constant on K.
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(i) (1 —e=3)Vs — Vo uniformly on K for § — 0.

(iii)

. . LNV () — T ) ) = Vo
%ﬂ)ggj{lﬁ(l e )\Vs(z) = %11}1% lglea}zi(l e ")Vs(z) = Vo k- (47)
Proof. (i) By Theorem 2.2 (iii) it holds for all y € K that
Vo(y) 2 Vo(o) = max Vo(z) > Vo(y) . (48)

The equality Vy = Vi follows by Theorem 4.9 in case D is invariant. Otherwise note
that to every z € K there exist approximately optimal controls u € UN(m) such that
o(t;z,u) = zg € core(C') for some t € N satisfying the conditions of Proposition 4.7.

(i) Fix € > 0. By assumption we may choose T" € N such that for all £ > 7" it holds that

L(g) :=sup Vo(z) +e>  sup Zg s;z,u), u(s)) . (49)
€K zeKuelUt(x
Denote
=1
J(x,u,t) = Zg(gb(s; z,u),u(s)).
s=0

For every z € K, u € UN(z), § > 0, such that Js(z,u) € R it holds that

t

Jalay) = fim 3 e g(6(s:,0),u(5)

t—1
= lim [e_ﬁ.](ac, u, t) + Z(l — e e 5 (2, u, s)]

t—00,1>T

t—1
< _lim [e-‘”m(st(l—e e85 +21_e e

t—o0,t>T

i
- [ lim " e L(e) + (T - 1)e*" L(e) +Z (1—e%)e % sG

s=T
The last two terms are bounded by a constant Ly(¢) independently of z, u and §. Thus
after multiplying with (1 — %) we obtain
m;ﬂ_}g(l — e YWi(x) < e TL(e) + (1 — %) Ly(e).
reEN

As the factor of L(¢) tends to 1 for § — 0 it follows by (49) that for every ¢ > 0 there
exists §. such that for 0 < § < 4,

max (1 — e~%)Vs(z) < sup Vo(z) + 22 = Vo(zo) + 2¢. (50)
zeK veK
By Lemma 4.6 there exist constants h, H, such that h(z,z0) < h for all 2 € K and the

absolute value of the yield along the trajectory is bounded by H. Thus by Bellman’s
principle of optimality for every x € K and every § > 0 it holds that

(1= e ) Ws(2) > e (1 — e~*)Vs(z0) — (1 — e )R H.

By assumption V(zg) is uniformly approximable and by (i) and Proposition 4.7 we have
lims_o(1 — 6_5)V5(m0) = Vo(wo). Tt follows that liminfs_o(1 — 6_5)V5 > Vp uniformly in
z € K. Combining this with (50) the assertion follows.
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(iii) This is obvious by (i) and (ii).
O

A converse statement holds for the minimization problems. The proof is as in the previous
case and is left to the reader.

Theorem 4.11. Consider a forward accessible system of the form (1) on M. Let D be a control
set and K C O™ (D) be compact. Assume there exists an zo € core(D) such that

t—1
1
= inf = li inf " ; :
vo(wo) = inf vo(r) = lim _ inf 7 ;gw(s, z,u),u(s))
If D is not invariant, assume furthermore that there exists a sequence {u,} C UN(zo) such that
vo(zo) = li_>m Jo(zo,un) and w(zo,un,) C D, VnéeN.

Then the following properties hold.

(i) To = vg is constant on K.

(ii) (1 — e~%)vs = T uniformly on K for § — 0.

lim min(1 — e~ %)vs(z) = [i 1— e Hous(z) = o1 1
lim min(1 — e™)vs(z) = lim max(1 — e™")vs(z) = To|x (51)

5. APPLICATION: LYAPUNOV EXPONENTS OF DISCRETE INCLUSIONS

Consider a time-varying linear system of the form

Alu(t)z(t) := (AO + zm:ui (t)AZ') z(t), teN (52)

z(0) = =zo €R"

where u(t) € U C R™ and U is a bounded set with connected interior satisfying U C clint U.
Let us assume without loss of generality that 0 € U. The evolution operator generated by a
control sequence u € UN is defined by

z(t+1)

O,(s,8) =1, D, (t+1,s)=A(u(t))®,(t,s), t>seN. (53)

With this notation ®, (¢, 0)z¢ is the solution of (52) corresponding to the initial value zo and
the control u at time t. We are interested in the exponential growth rates of trajectories of the
linear system which are given as follows.

Definition 5.1 (Lyapunov exponent). Given a sequence u € UYN and an initial condition z, €
R™\ {0} the Lyapunov exponent corresponding to (zo,u) is defined by

1
A(zo, u) = limsup — log ||, (¢, 0)zo||. (54)

t—o00 t

As we will see value functions Vj,Tg may be defined which correspond to the problem of
determining the supremal, respectively the infimal Lyapunov exponent that can be realized
from a particular initial condition z4. This corresponds to the following two problems in control
theory.

If we assume that the time-invariant system

z(t+1) = A(0)z(t), teN
z(0) = =z €R"”

is stable, then system (52) may be interpreted as a model for the time-varying uncertainty to
which the nominal system is subjected. The set U and the matrices Ay, ..., A,, determine the
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structure of the uncertainty. A question of interest is then to determine whether the perturbed
system is still stable, i.e. if sup,cpn Vo(z) < 0, see [18].

A converse problem is to determine if (55) is open-loop stabilizable, that is for every initial
condition a control sequence may be found such that the corresponding trajectory is exponen-
tially decaying. In terms of the value functions this means sup,cpn»o(z) < 0, see [9], [10].

Using formula (54) it is easy to see that the Lyapunov exponent is invariant with respect
to (non-zero) scaling. This is why the study of Lyapunov exponents may be undertaken on
the projective space P?~'. In our discrete-time system we do not exclude the possibility that
the origin may be reached from non—zero states. If this is regarded from the point of view of
stability or robust stability this poses no problem for once system (52) is at zero it remains there.
However, this means that system (52) as such may not be projected onto projective space. To
avoid degenerate situations we assume that I := [, . ker A(u) = {0}, otherwise system (52)
may be studied on the quotient space R"/L.

On projective space the exceptional set X is naturally given by {(&,u) € P*~1 x U ; £ C
Ker A(u)}. For £ € P*~" and u € U(€) we define the transition map

PA(u) :=PA(u)z iff { =Pz,

where P denotes the projection onto P*~!. With this notation the projected system correspond-
ing to our linear system (52) is given by

E(t+1) = PA(u@)E(), teN (55)
£0) = &eP!
U € UN(&)) s

and it is easy to see that all the assumptions for system (1) are satisfied. Let us now explain
how to obtain the Lyapunov exponent A(zg,u) from the trajectory &(-; Pzg, u) of the projected
system. For £ € P"~1 w € U(&) define
Alu)x
g(&, u) == log %, where z #0, Pz = ¢. (56)

This is well defined as multiplication of z with a non-zero scalar does not alter the value of

g(&,u). For E e PP~ t € N, uw € U'(€) define

Tts€u) = 3 0(6(s: €, u(s). (57)

Then we obtain the following expression for Lyapunov exponents:

Lemma 5.2. For zo € R™\ {0}, v € UY it holds that

_ J limsup,,. 1J(t;Pao,u),  if uwe UN(zp).
Ao, u) = { —00, otherwise. (58)
Proof. This may be seen by a straightforward calculation. O

Thus we can use g as a running cost that satisfies the assumptions of the general optimal con-
trol problem considered in the previous sections. If system (55) is forward accessible, then there
exists a unique invariant control set C' C P”~!, as the projective space is compact. Existence
may be seen via an argument using Zorn’s lemma on the set

{1OF(&); Py,

that is partially ordered by inclusion, see [12]. For uniqueness of C' we refer to [19] where it is
also shown that C' is closed and has nonempty interior. Furthermore, for £ € C' it holds that
Vo(é) = SUP, cpn-1 Vo(n) by Theorem 2 in [2], which shows that Vj is constant on P71

So we have to check just one more item to fulfill the conditions of Theorem 4.10 for the
invariant control set C'. The following statement is a consequence of Theorem 4 in [3].
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Proposition 5.3.

1
sup{A(z,u); 0 # 2 € R” u e UN} =limsup sup —J(t; &, u), (59)
t—oo  yeUN, ¢gpn—1

Thus we obtain the following as a corollary to Theorem 4.10.

Corollary 5.4. Let system (55) be forward accessible and consider the running yield g defined
in (56), then

(1—e W5 = Vo =Vo=sup{A(z,u); 0£ 2z € R ue U} uniformly on P"1.

If we assume furthermore that there exists a u € U such that A(u) is invertible, and that the
set

{u € U ; dim Ker A(u) > 2}

does not separate int U then by the results in [19] there are Dy,..., D, different control sets
with nonempty interior for (55) on P"~! where 1 < x < n. These control sets may be linearly
ordered such that D; C O7(Diy1), i = 1,...,k — 1. It follows that ¥o|core(n;) < V0|core(Diy1)-
It is an open problem whether the conditions of Theorem 4.11 can be satisfied via a statement
analogous to Proposition 5.3. We conjecture that the following statement may be obtained as a
corollary to Theorem 4.11.

Conjecture 5.5. Let system (55) be forward accessible and consider the running yield g defined
n (56). Assume there are Dy,..., D, linearly ordered control sets with nonempty interior on
P~ Let1 <i<kand K C (O™ (D;)\ clO7(D;_1)) be compact then

(1— e %Yvs = Tg = vy = inf{\(&u); 0£E € D;,uec UV} uniformly on K .

If further conditions on so-called chain control sets of the system are satisfied, and the
running yield is bounded the preceding conjecture is shown in the continuous time case in [11,
Theorem 8.4].
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