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On Stability of Infinite-Dimensional Discrete
Inclusions*

Fabian Wirth

Abstract

For discrete inclusions in Banach spaces we study stability ques-
tions. First it is shown that the Bohl exponent of a time-varying
discrete time system can be characterized via the spectral radius
of an associated operator on the space of p-th order summable se-
quences. The main result is that for discrete inclusions on a reflexive
Banach space various characteristic exponents characterizing differ-
ent concepts of stability coincide. Using this result it is shown that
the convexification of an exponentially stable discrete inclusions is
exponentially stable. It is examined to what extent these results can
be carried over to the time-varying case.
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1 Introduction

In this work we are concerned with stability properties of time-varying
discrete-time systems and of discrete inclusions. Several results that have
been obtained for finite dimensional systems are extended to infinite di-
mensions.

Time-varying linear systems have been at the center of active research
in recent years. Also discrete inclusions have appeared under many guises
in the literature. De Blasi and Schinas [9] are the first to characterize expo-
nential stability of finite dimensional discrete inclusions. Later Barabanov
in a series of papers [2], [3], [4] uses an approach via Lyapunov exponents
to obtain results on stability. In particular he shows that for discrete in-
clusions given by irreducible sets of matrices the dynamics of the system
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induce a norm which is a Lyapunov function for the system. Using the
idea of representing time-varying discrete-time systems as one or two sided
block weighted shifts that Ben-Artzi and Gohberg obtain a number of re-
sults on dichotomies of such systems. See [5], [6] and references therein for
results in the finite dimensional as well as in the infinite dimensional case.
Also Gurvits studies stability of discrete linear inclusions in the remarkable
papers [11], [12] giving in particular several examples showing which results
do not carry over from finite to infinite dimensions.

The study of infinite-dimensional time-varying discrete-time systems
has been carried out to a large extent by Przytuski in his series of articles
[19], [20], [21], [22] and the work of Przyluski and Rolewicz [23]. In these
papers it has also been noted that the study of discrete time systems on
Banach space is an appropriate setting for the study of delay differential
equations. Robustness of stability was studied for discrete time systems
in infinite dimensions by Hinrichsen and the author in [25]. As a discrete
inclusion may be interpreted as a time invariant system with a specified
region of uncertainty this paper extends and complements the results of
the previous work on robust stability.

An important concept in our study of stability is the introduction of
different characteristic exponents. The idea to characterize stability via
exponents is as old as the study of stability itself. The Bohl exponent is
the latest invention in this direction as it has been introduced by Bohl
only in 1913 [7]. It can be said to have been rediscovered for discrete-time
systems by Przyluski and Rolewicz, who termed it generalized spectral
radius.

Section 2 is devoted to the definition of various concepts of stability
for time-invariant and time-varying systems. For exponential stability of a
time-varying system it is not enough to require that all trajectories decay
exponentially. The fact as such has already been known to Bohl [7] and
has been discussed in the book on stability by Daleckii and Krein [8], and
the ideas are easily transferred to the discrete-time case.

In Section 3 Lyapunov and Bohl exponents of time-varying systems
are introduced. The first notion characterizes exponential stability of tra-
jectories while the second characterizes exponential stability of evolution
operators. Thus the maximal Lyapunov exponent may be strictly smaller
than the Bohl exponent. We give two example to this effect. One with an
unbounded and one with a bounded operator sequence defining the time-
varying system.

We will show that the Bohl exponent of an operator sequence A(:) €
£2°(N, £(X)) can be represented as the logarithm of the spectral radius of
an associated one sided block weighted shift operator A on f#(N, X), 1 <
p < 00. Using this kind of representation we discuss some the properties of
the Bohl exponent that were shown by Przyluski, which turn out not to be
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surprising as they are a simple reformulation of results well-known for time-
invariant systems. Also in terms of the block-weighted shift necessary and
sufficient conditions for equality of maximal Lyapunov and Bohl exponents
are given.

After this discussion of characteristic exponents we turn to the study
of discrete inclusions in the following Section 4. For discrete inclusions on
reflexive Banach spaces it is shown that the supremal Lyapunov exponent,
the supremal Bohl exponent and a further uniform exponential growth
rate coincide. In the final Section 5 time-varying discrete inclusions are
considered and stability concepts are studied. These class of systems forms
a generalization for time-varying systems as well as discrete inclusions and
this section therefore encompasses all the results obtained up to that point.

2 Time-varying Systems

Let X be a Banach space over the field K = R or C. £(X) denotes the
Banach algebra of bounded linear operators from X to X. The norm on
X and the induced operator norm on £(X) are both denoted by || - ||.

A Banach space X is called reflexive if the range of the natural embed-
ding of X into X** is X**. X is reflexive iff the unit ball in X is compact in
the weak topology which is in turn equivalent to the weak compactness of
the unit ball in £(X) (see [10] Theorem V.4.7 and Exercise VI.9.6). Recall
that a net {A4,} C L£(X) converges weakly to Aiff forallz € X and f € X*
it holds that < A,z, f > converges to < Az, f >. Weak convergence is
denoted by w — lim,, A,, = A. The weak closure of a set V is denoted by
w—clV.

We consider time-varying linear discrete-time systems of the form

2(t+1) = A@)z(t), teN, (1)

where A(-) = (A(t))ten € L(X)N is a sequence of bounded linear operators
on X. The evolution operator associated to this system is defined by

Qay(t,t) =Ix, @ay(t,s)=A(t—-1)-...-A(s), s,teN, t>s,
(2)

where we drop the subscript if this can cause no confusion. For time-varying
systems of this form various notions of stability have been introduced.

Definition 2.1 (Stability) System (1) is called

(i) stable, if for every e > 0 and to € N there exists a § = 6(e,t0) > 0
such that

lzoll < 8§ = ||®(t, to)zol| <& forallt>ty,
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(i) asymptotically stable, if it is stable and for every zo € X, to € N

tlim <I>(t,t0)x0 = 0. (3)

(i%3) exponentially stable, if there are constants ¢, 3 > 0 such that
||¢(t,3)||[,(x) < ce—ﬂ(t_s)a s,teN, t>s (4)
holds.

Remark 2.2 An immediate consequence of the definition is that if (1) is
exponentially stable, then A(-) € £*(N, L(X)).

For the time-invariant case A(-) = A € L(X) let us discuss the rela-
tionship between stability of (1) and properties of the spectrum of A.

Let X be a Banach space over C. For an operator A € £(X) we define
the spectrum

o(A)={A e C; I — Aisnot invertible in £(X)}, (5)
the point-spectrum
op(A) = {X € C; there exists z € X, z # 0 such that Az = Az}, (6)
and the spectral radius
r(4) = max{|A; A € o(4)}. (7)

If X is a real Banach space then we regard A as an operator in the
complexification X of X and call the spectrum of A € £(X) the spectrum
of A. Note that the complexification X may be endowed with a norm such
that the norm of the complexification of any operator in £(X) coincides
with the norm of the operator in £(X), see [24] Chapter 1.

If X is finite dimensional it is well-known that in the time-invariant case
asymptotic stability is equivalent to exponential stability which in turn is
equivalent to r(A) < 1 (See [1] Theorem 5.5.1 and Remark 5.5.3). Also by
the Gelfand-Levitan formula r(A) = limy_ ||A?||* ([18] Theorem 4.1.13)
it follows easily that in a Banach space X a time-invariant system is expo-
nentially stable iff r(A) < 1. A basic difference between the finite and the
infinite dimensional case is that even for time-invariant systems asymptotic
and exponential stability are not equivalent, and that asymptotic stability
is not characterized by properties of the spectrum. In [19] two examples
show that r(A) < 1 is not necessary for asymptotic stability and also the
fact that 0,(A) is contained in the open unit circle combined with r(A4) <1
is not sufficient for asymptotic stability. If time-varying systems are con-
sidered asymptotic and exponential stability are also not equivalent and

4
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exponential stability is not characterized by the spectrum of the transition
matrices A(t) even in the finite dimensional case, see e.g. [17] Chapter 4.4.

The following example is an adaption of an example in [8] to the discrete-
time case. It shows that for exponential stability it is not sufficient that all
trajectories of a system of the form (1) decay exponentially

Example 2.3 Let X =R and

A(t) — e—2+(t+1)sin Vit+1—tsin \/57 teN. (8)
Then
B(t,s) = e 2(t—s)ttsin VicssinVs 4 s e N, t> s. (9)

So that we have for all g € R, tg € N
1B (t, to)zo| < efo'—sinVio) . e=(t=t0) ||z || ¢ €N, t>to.  (10)

Hence every solution corresponding to an initial condition (tg,z9) € N x R
goes exponentially fast to zero. However, (1) is not exponentially stable.
By the mean value theorem we have for some T € [t,t + 1]

(t +1)sinv/t + 1 — tsin vt = sin /7 + W. (11)

It is thus easy to see that the left hand side is not uniformly bounded from
above and therefore |A(t)|| is not uniformly bounded. By Remark 2.2 it
follows that the time-varying system determined by (8) is not exponentially
stable.

3 Characteristic Exponents

To characterize exponential stability the concepts of Lyapunov and Bohl
exponents have been introduced. The largest exponential growth rate of
system (1) is given by the discrete time version of the (upper) Bohl exponent
[8] (named generalized spectral radius in [21]). In the following definition
we do not assume (1) to be exponentially stable and let (A(t)):eny be an
arbitrary sequence in £(X).

Definition 3.1 (Bohl exponent) Given a sequence (A(t))ien in L(X)
the (upper) Bohl exponent of the system (1) is

BACL) =inf{B € RiTeg > 1:t> 5> 0= ||B(t,5)]| < cgel=2)}, (12)

where inf ) = oo.
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B(A(-)) may be infinite, but if ||A(¢)|]] < v for all ¢ € N then it follows
from (2) that

12t )l < JAE =D - .. - [IAG) <27, (13)

hence B(A(-)) < logy. Thus B(A()) < oo if and only if (A(t))ien is
bounded.

In contrast Lyapunov exponents focus on the exponential growth rates
of trajectories.

Definition 3.2 (Lyapunov exponent) Given a sequence (A(t))ien in
L(X) and an initial condition (tg,zo) € Nx (X \ {0}) the Lyapunov expo-
nent corresponding to (to,xo) is defined by

Ato, zo) = inf{\ € R;3cy > 1:¢ > tg = ||B(t, to)wo|| < exe10)||ao]|}.
(14)

Furthermore we define the supremal Lyapunov exponent by

K(A(+)) := sup{A(to, z0); (to, z0) € N x (X \ {0})}. (15)
Remark 3.3

(i) From the definition it is immediate that negativity of the Bohl expo-
nent characterizes exponential stability of (1), while negativity of the
Lyapunov exponent characterizes exponential decay of a single tra-
jectory. Indeed, it holds that B(A(-)) < 0 iff (1) is exponentially
stable. For if B(A(-)) < 0, then there exists a € > 0 such that
B := B(A(:)) + € < 0 and c, — B satisfy (4), while if (4) is satisfied
for (A(t))ten and ¢, B > 0, then by definition B(A(-)) < —3 < 0. By
the same argument we may treat the case of the Lyapunov exponents.

It should be noted that Lyapunov and Bohl exponents do not charac-
terize asymptotic stability.

(ii) In the theory of continuous-time time-varying systems it is cus-
tomary to define Lyapunov exponents only for the initial time tqg = 0.
This is justified in this setting because all evolution operators ®(t,s)
are invertible. As it is easy to show that

)‘(07'730) = /\(to,@(to,@)mo) ) (16)

it follows that in this case {A(0,z¢); o € X} comprises already the
whole spectrum of Lyapunov exponents. However, in the discrete-time
case ®(t,s) may be singular and so we have to consider initial times
different from 0.
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From the definition we immediately obtain the following relation be-
tween Bohl exponent and Lyapunov spectrum for any A(-) € £(X)N:

B(A()) = K(A())- (17)

In general the inequality in (17) may be strict. We return to Exam-
ple 2.3 to exhibit this phenomenon.

Example 3.4 We continue to use the notations of Example 2.8. Recall
that in (10)

|®(t, to)xo|| < efot=sinVio) L g=(t=to) |0 ||l ¢t €N, ¢t >tp. (18)

Therefore k(A(-)) < —1. On the other hand, ||A(t)| is unbounded and
hence B(A(+)) = 0.

The preceding example is in a sense a worst case example as the Bohl
exponent is infinite while the supremal Lyapunov-exponent is finite. It
has the disadvantage, however, of leaving open the problem whether the
inequality in (17) can also occur for bounded sequences of operators. To
clarify this question consider the following example.

Example 3.5 Let X = R and consider the sequence A(-) given by

1 1
7_71717_7
2 2
0

while K(A(+)) = —1log2.

1

- 1,1,1,...).
1o D )
)

N | =
N =

7

It is easy to see that B(A(")) =

Both Bohl- and Lyapunov-exponents have asymptotic expressions that
are easily shown from the definition. For the Bohl exponent it is derived
in [21].

Proposition 3.6 Let A(-) € L(X)N, then
(i) If B(A(-)) < oo then

i 1
A(A()) = limsup ——log [|2(2, s)ll -
s,t—s—oo L — §
(i1) For every (to,mo) € Nx X
1
A(to, o) = lim sup log ||®(t, to)xo||- (19)
t—o0 t— tO
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In [21] Bohl exponents have been named generalized spectral radius, as
properties of the spectral radius for time-invariant systems coincide with
properties of the Bohl exponent for time-varying systems. Let us now
explain why the relation between these concepts is such a close one.

Let 1 < p < o0 and X'p = (P(N, X) be the space of all sequences
(wi)ien C X satisfying ;o [|lzi]|P < oo if p < oo or that are uniformly
bounded if p = oo. Xp is a Banach space if it is endowed with the
norm (2 )ienllx, = (Sien 12ill7)7 , respectively if p = oo [[(z:)iexll s, =
Sup;ey ||2il|- On X, we define the block-weighted shift operator A by defin-
ing for z = (z9,21,...) € X,

A(z) := (0, A(0)zo, A(D)zy, . . .)- (20)
From the definition it is immediate that
Ae (X,

iff
A() € £2(N, L (X))

The following relation holds between the spectral radius of A and the Bohl
exponent of A(+). Implicitly this has been noted for p = oo in [15] and for
p = 2 in [21]. In [14] the spectral criterion for p = oo has been used to
analyze stabilization of time-varying discrete-time systems.

Proposition 3.7 Let 1 < p < oo, A(-) € £*°(N,L(X)) and A on X, be
defined by (20), then

ePAN) = r(A), (21)
where we use the convention e~ = 0.
Proof: Let (z;)ieny € X,. By (20) we see that
Alz = (0,...,0,®(t,0)z0, ®(t + 1,1)21,...), (22)

where the entries from ¢ = 0 to t — 1 are zero. Thus by the Gelfand-Levitan
formula

r(A) = lim sup ||®(t + s, )|t >
1—00 4N
lim sup [|®(t + s, 5)||7 = A0, (23)
t,s—00
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To prove the converse inequality note that by Proposition 3.6 (i) for every
€ > 0 there exists M > 1 such that ||®(t,s)|| < MeF(AC)+e(E=3)  Thys

r(A) = lim sup |[(t + 5, )|} < lim (MelBAOII T = (BAC+e
t—00 sEN t—o0
This shows the assertion. O

As the Bohl exponent can be expressed as the spectral radius of the
operator A € P(N, X) we have obtained a new way to prove the following
results that first appear in [21] and [23].

Proposition 3.8 Let (A(t))ien € I®(N; L(X)). Then

(i) The function 5 : (I°(N; L(X)), || -|lec) = RU{—00} is upper semi-
continuous.

(1) If A(t) = A € L(X) is constant in t € N then
1
) = exp(Jim T Tog | 4°]) = r(4)

is the spectral radius of A.
(is) The following statements are equivalent:

(a) (1) is exponentially stable.

() BAW) <0,

(c) r(A) < 1.

(d) For everyl < p < oo there exists a v > 1 such that Vs € NV, €
X 3 18 9)zllP < APlfaolP

t=s
Proof:

(i) This is an immediate consequence of the fact that the spectral radius
is upper semi-continuous, (see [16] Chapter 4 §3.2), and the observa-
tion that the map

1°(N; £(X)) — L(Xp)

A() = A
is continuous.
(ii) This follows as r(A) = r(A) if A is generated by A(t) = A.
9
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(iii) The equivalence of (a), (b) and (c¢) follows from Remark 3.3(i) and
Proposition 3.7. Let 1 < p < oo. If (b) holds then for all s € N and
2o € X it holds that for suitable constants ¢, 3 > 0

P
ZH(I) (t,8)zoll? < Zcpe PA(E=8)|| g ||P = fwllwoll ;o (24)
t=s t=s

so that (d) is satisfied. If (d) holds then it follows also that for any
T>1andall xg € X

STt s)zllP = > [1B(t, s)xollP — [|B(s + T — 1, 5)m|”
t=s+T t=s+T-1
(25)
o0
<=7 Y (8wl <. <
t=s+T-1

o]
Y N2, s)aoll” < (1= 777)TP|lzol”.

t=s
As we may see from (22) it holds for any & = (z;)sen € X, that
|At:ﬁ||” Z |t + 4, 4)zs|7,

and hence for T € N by (25)

o0 o0
Al <SOSR+ i Dall? < (1Yl

P
t=T =0 t=T

NE

Now it follows that || Y-, At|| is a bounded operator and the infinite
series converges uniformly. Thus we may apply von Neumann’s theo-
rem (see [13], Satz 12.4) and it follows that r(A) < 1. This completes
the proof.

O

Let us also note how the information on Lyapunov exponents is con-
tained in the operator A. In the statement of the following proposition S :
(N, X) — ¢P(N, X) denotes the unilateral shift given by S(zo,z1,...) =
(0,20, 21,...)-

10
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Proposition 3.9 Let (A(t))ien € I®°(N; £(X)) and let A be the corre-
sponding operator defined by (20) on Xp, 1 <p< oo. Let 0 # x9 € X. For
the corresponding Lyapunov exponent \(to,xo) at time to it holds that

(i) S (x9,0,0,...) € Im(sI — A) for all s € C,|s| > eMto:zo),
(ii) St (x9,0,0,...) ¢ Im(sI — A) for all s € C,0 < |s| < eXltozo),
Proof: Let us denote A := A(to, xo)- First of all note that an easy calcula-

tion yields that for §%(zg,0,0,...) = (sI — A)y to hold y must be of the
form

y=s18%(xq, s  A(to)xo, s 2 A(tg + 1)xp,...).

(i) If |s| > e* then for any € > O there exists an M > 1 such that
l|s~FA(to + k — 1)mo|| < MeA+2)*|s|=* Choosing ¢ small enough we
see that y € X.

(ii) If |s| < e* choose ¢ > 0 such that (1 +¢)|s| < e*. Then for every
constant M > 1 there exists a subsequence (k;)iey C N such that
|A(to + ki — Dol > M(1 4 )*|s|*. In this case the sequence y
defined above is not an element of X,,.

O

As we have seen in the previous Examples 3.4 and 3.5 it is possible that
Bohl and maximal Lyapunov exponent are different. Let us now charac-
terize when they are equal.

Theorem 3.10 Let K = R, C. Let X be a Banach space over K. For a
sequence (A(t))ien € I®°(N, L(X)) the following statements are equivalent

(1) B(A(-)) = k(A()).
(i) For alle >0 :

M= sup if{M; [B(t, to)al] < MelAO )} < oo,
toEN,zoEX

(i13) For every € > 0 sufficiently small there exists a to € N and an
x9 € X such that

§%(9,0,0,0,...) ¢ Im((r(A) —e)I — A).

11
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Proof: (i) < (ii): If for € > 0 it holds that M, < oo then we obtain that
for all t > s > 0 it holds that |®(¢,s)|| < M.e((A()+e)(t—to) and hence
B(A(-)) < &(A(-)) + e. Now (17) implies the assertion.

(1) = (4i): Assume there exists an € > 0 such that M, = oo. Hence
there exist sequences (sg)ken, (tk)ren and (Mg )ren such that for all K € N
tr > s and limyg_, oo M}, = oo and furthermore

1@ (tr, s1)|| > Mke(ﬂ(A(-)HE)(trsk) .

By definition this implies B(A(-)) > k(A(-)) + ¢.
The equivalence of (i) and (iii) follows from Proposition 3.7 and Proposi-
tion 3.9. O

4 Discrete Inclusions

Let X be a Banach space and M C £(X) be a bounded set. We consider
the discrete inclusion

w(t+1) € {Az(t); Ae M} teN. (26)

A sequence {z(t) }+¢n is called solution of (26) with initial condition zp € X
if z(0) = zo and for all ¢t € N there exists an A(t) € M such that z(t+1) =
A(t)z(t).

We may introduce two immediate concepts as regards characteristic
exponents of (26).

(M) = sup{s(A(")) ; A(") € M}, (27)

B(M) = sup{B(A(")) ; A(-) € M} (28)

A further quantity that will be of interest is given by the uniform exponen-
tial growth rate

1
0(M) :=limsup —log sup [|D 4 (¢, 0)]. (29)
A(-)eM

t—o0

Corresponding to these definitions we introduce the following concepts of
stability:

Definition 4.1 Let X be a Banach space and M C L(X) be a bounded
set. The discrete time inclusion of the form (26) given by M

(i) has exponentially decaying trajectories if K(M) < 0.

12
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(ii) is called exponentially stable if 3(M) < 0.
(i#) is called uniformly exponentially stable if §(M) < 0.
Let us note that for every M bounded every A(-) € MY satisfies:
1

B(A()) = limsup

s,t—s—o00 UL — 8

log [[®.a(.(t, )l

1

= limsup

s,l—s— o0

10g 1@ 4051 (¢ = 5,0)]

1 _
< limsup log sup || @4 )(t—s,0)[| =6(M).
s,t—s—oo U — S A()eMN

This together with (17) implies that
R(M) < B(M) < 8(M). (30)

It is our goal to show that the three quantities in (30) are in fact equal
for discrete inclusions on reflexive Banach spaces. In order to do this we
need the following proposition.

Proposition 4.2 Let X be a reflexive Banach space and let M C L(X)
be weakly compact. Then for every sequence {zy(t)} of solutions of (26)
with bounded initial condition, i.e. ||zx(0)|| < ¢ for all k € N, there exists
a subsequence {xy, (t)} of solutions and a solution {x(t)} of (26) satisfying

w —limxy, (t) = z(t), for allt € N. (31)

[—o0

Proof: As every closed ball B(0,7) is weakly compact in X, we may
choose a subsequence {zpo(t)} of the original sequence such that
w—lim;_, CL’k?(O) = xo for an appropriate £o € X. Now choose a subse-
quence {z1(t)} of the sequence {zyo(¢)} such that w —lim;_.o A1 (0) =
A(0) for some appropriate A(0) € M. Continue this process inductively
and consider the diagonal sequence {zy, (t)} := {z;;(¢)} and the solution
{z(t)} of the discrete inclusion (26) determined by the initial condition zg
and the operator sequence (A4(0), A(1),...) € MN.

We will prove (31) by induction. For ¢ = 0 the assertion is clear by
construction, so consider the case ¢t 4+ 1, then for any f € X™* it holds that

<z(t+1)—zp(t+1),f>=

< A@®)x(t) — A()zr, (t), f > + < A(t)wr, () — Ag, (O)ap, (), f >
13
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The first term of the right hand side converges to zero by the induction hy-
pothesis, while the second term converges to zero by the weak convergence
of the Ay, (t) to A(t). O

Using the preceding fact we can show the following proposition on the
boundedness of the solutions of an asymptotically stable discrete inclusion
partly using ideas that were also used in [9] for the finite dimensional case.

Theorem 4.3 Let X be a reflexive Banach space and let M C L(X) be
weakly compact. If for all A(-) € MN it holds that

lim @A(.)(t, 0)xo =0,
t—o00
then there exists a constant caqr € R such that
sup{[|®a)(t,0)]| ; t € N A(-) € MV} < epm (32)
Proof: In order to show (32) we have to show that
sup{|[|®4¢)(t, 0)zoll ; t € NJA(-) € MY ||zo]] €1} < 0.

By the principle of uniform boundedness (see, [16], Theorem III.1.27) it is
sufficient that for each f € X* there exists a constant ¢y satisfying

sup{| < ®4(y(t,0)z0, f > |; t € N, A(-) € MV, [|lzo]| <1} < ¢p.  (33)

Assume there exists an f € X* for which (33) does not hold, i.e. there
exist sequences {Zn, }neN, {tn}nen and {A,(-)}nen such that

| < ®a,()(tn,0)Tn, f > >n+1. (34)

Let us assume that the sequences have been chosen in such a way as to guar-
antee that for all solutions {z(¢)} of (26) with initial condition g, ||zo|| < 1
it holds that

|<z(t),f>]| <n+1 fort=0,1,...,t,—1. (35)
As M is bounded it follows immediately that
t1 <ty <ty..., tn— 00.
We claim that for every n it holds that
| <z (t),f>]|>1, t=1,... t,, (36)
for otherwise consider a 1 < ¢/ < t, with
| <an(),f>|<1.

14
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The sequence z(t) = z,(t + t') is a solution of (26) with initial condition
zo = zn(t'), ||zo]] < 1, by (35) it follows that
n+1>|<z(tn—t), f>|=|<znltn), f >,

in contradiction to (34). Now consider a subsequence {zy,(t)} of {z,(t)}
such that

w — lim z,,; (t) = 2(t),

j—oo

for some solution {xz(t)} of (26). By assumption there exists a 7' € N such
that ||z(¢)]] < 1/2||f|| for all ¢ > T and hence

- 1
|<x(t),f>|<§, forallt >T.
Now for all j big enough it holds that
| <@n,(T),f>]>1,

by (36) and thus z(T') is not the weak limit of the x,,;(T"). This contradicts
our construction, which completes the proof. O

Remark 4.4 In the finite dimensional theory Theorem 4.3 can be used to
show that an asymptotically stable discrete inclusion is in fact exponentially
stable [9]. Note that this is false in infinite dimensions as even for time-
invariant systems asymptotic stability does not imply exponential stability,
see [19].

Using Theorem 4.3 we obtain the following for growth bounds of discrete
inclusions:

Theorem 4.5 Let X be a reflexive Banach space and assume that M C
L(X) is weakly compact, then

R(M) = B(M) = §(M). (37)
Thus a discrete inclusion given by a weakly compact M has exponentially

decaying trajectories iff it is exponentially stable iff it is uniformly expo-
nentially stable.

Proof: By (30) it remains to show that 6(M) < &(M). Assume without
loss of generality that &(M) < 0 < §(M). By the definition of the Lya-
punov exponents this implies that all solution of (26) converge to zero and
hence by Theorem 4.3 there exists a constant cpq such that

sup{[|®.4((t,0)[| ; t € N, A(-) € M} < e
This implies that §(M) < limsup,_,, 1/tlogcas = 0, a contradiction. O

15
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Corollary 4.6 Let X be a reflerive Banach space and let M C L(X) be
weakly compact. For every € > 0 there exists a constant cpq,. such that

19 4 (£, 0)I| < epgeelPAOTON, (38)
for all A(-) € MN and all t € N.

Proof: This follows from the definition of §(M). 0

Corollary 4.7 Let X be a reflexive Banach space and let M C L(X) be
weakly compact. If the discrete inclusion (26) given by M has a positive
uniform growth rate, then there exists a trajectory with positive exponential
growth rate. In particular there exists an unbounded trajectory.

Proof: This is obvious from Theorem 4.5. O

Let us note that Theorem 4.5 also has implications on balanced convex
sets. For M C £(X) we denoted the balanced convexification by

bcoM := co U aM.
a€K la|=1

Corollary 4.8 Let X be a reflexive Banach space and assume that M C
L(X) is weakly compact, then

B(M) = B(co M), (39)

and

B(M) = B(bco M). (40)

Proof: In view of the preceding Theorem 4.5 for (39) it is sufficient to
show that (M) = é(co M) as it holds that

B(M) < B(coM) < b(coM).
To this end it is sufficient to note that for each ¢ € N it holds that

sup  [[@ay(t,0)[| > sup  |[@4(t,0),
A(-)emH A(-)Eco MM

due to the convexity of the norm. Now (40) follows from (39) as the matrix
products considered in (40) are up to a constant of modulus one the same
as in (39). O
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Corollary 4.9 Let X be a reflexive Banach space and assume that M C
L(X) is weakly compact, then

B(M) = B(w — clbcoM). (41)

Proof: As in the proof of the preceding corollary we have to show that
8(M) = §(w — clco M) and for this it is sufficient to see that §(co M) =
6(w —clcoM). As for convex subsets of £(X) weak closure and strong
closure coincide (see [10], Corollary VI.1.5) the assertion follows after noting
that for a strong limit A of an operator sequence {A,} it holds that ||A| <

lim sup,,_, o |14nll- O

5 Time-varying Discrete Inclusions

Let X be a Banach space and let for every t € N the set M(t) C £(X) be
bounded. We consider the time-varying discrete inclusion

z(t+1) € {Az(t); Ae M(t)} teN. (42)

A sequence {z(t) }+¢n is called solution of (42) with initial condition 2o € X
if £(0) = zo and for all ¢ € N there exists an A(t) € M(t) such that
z(t+1) = A(t)z(t). Also we say that a sequence A(-) € M(-)if A(t) € M(¥)
for all t € N. We say that M(-) is uniformly bounded if there exists a
constant ¢ such that sup{||4|; A € M(t),t € N} <ec.

As before we introduce the characteristic exponents

R(M(-)) :=sup{k(A(-)) ; A(-) € M()}, (43)
BM(-)) == sup{B(A(")) ; A() € M()}. (44)
FM()) = limsup ~log  sup  [[Bay(t+ss)l,  (45)

t—oo 1t A(-)EM(-),s€EN

and define the concepts of exponentially decaying trajectories, expo-
nentially stable and uniformly exponentially stable as in Definition 4.1.
Let us note that for M(:) uniformly bounded we have

R(M() < BM() < 8M(), (46)

where the first inequality may be strict. This follows from Examples 3.4
and 3.5 as time-varying systems are a special case of time-varying discrete
inclusions where each M(t) is a singleton set. Also for time-varying systems
it is clear that both 3 and & reduce to the Bohl exponent (by (23)) and are
therefore equal. This extends to the general case.

17
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Theorem 5.1 Let X be a reflexive Banach space and let M(-) be uniformly
bounded. Assume furthermore that for each t € N the set M(t) is weakly
compact, then

BM()) = 8(M()) - (47)

Thus o time-varying discrete inclusion is exponentially stable iff it is uni-
formly exponentially stable.

Proof: Choosing p = 2 recall the definition of the space X, from (20) and
introduce the set

M:={A4; A() e M(")}.

For the discrete inclusion on X, given by M we can apply Theorem 4.5:
it is quite straightforward to see that X5 is reflexive and that M is weakly
compact. Thus we have that

(M) = B(M) = §(M).

k=]

Now A(M) > sup ;. v, logr(A) = B(M(-)) and on the other hand

1
§(M(-)) = lim sup - log sup |®acy(t+s,8)| =
t—oo U A()eM(),seN

1 A
limsup —log sup [|®4.,(¢0)[| =6(M).
tmoo b A)ext

~ ~

It therefore remains to show that sup ;. v logr(A) > &(M).

Consider any /i() € MY and zy = (Z0,i)ien € Xs. Let \ = A0, z9)
(where without loss of generality we set to = 0). If A = —oo there is nothing
to show, as then clearly (M (-)) > . Assume X € R and fix ¢ > 0, then
for every M € N there exists a tp; € N such that

1 4, (b2, 0)zoll > M= [z
Note that by uniform boundedness of M(-) we have tyr — oo for M — oo.
If we denote A(t) =: (A4;(t))ien, where A;(t) € M(i) this implies that for
some index i € N

I Aitens—1(tar — 1) Aigagg—2(tar — 2) - ... - A;(0)]| > MeA—2)tm

Let ipr denote the smallest index for which the preceding inequality is
satisfied. If the set J = {ips ; M € N} is bounded there exists an index

18
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j € J such that j = ips for infinitely many M € N. This implies that the
operator sequence

A() = (*,. .. ,*,Aj(O),Aj+1(].),Aj+2(2),. .. ,Aj+k(k),.. )

satisfies B(A(-)) > (A — 2¢), where * indicates that an arbitrary A(s) €
M(s) may be chosen for s =0,...,5 —1.

If J is not bounded we can construct an operator sequence B(-) with the
desired property as follows: For s = 0,... ,4; —1 choose B(s) € M(s) arbi-
trarily. For s = 41,...,41 +t1 — 1 let B(s) = As(s —41). Now choose
M(2) such that ime) > i1+t — 1. For s = iy +t1,... ,ipe) — 1
choose B(s) € M(s) arbitrarily. For s = ipg(2),-.. ,inm(2) + tmqzy) — 1
let B(s) = A,;(s —ium(2)). Continue this procedure inductively. For the
operator sequence constructed in this way it holds that 8(B(:)) > A — 2¢.

In all this shows B(M(-)) > &(M). O

Corollary 5.2 Let X be a reflexive Banach space and let M(-) be uni-
formly bounded. Assume furthermore that for each t € N the set M(t) is
weakly compact, then for every ¢ > 0 there exists a constant cpq(.),. such
that

1@ ac)(t+ 8, 8)]| < cpag.), e PMONTN,
for all A(-) € M(-) andt>seN.
Proof: This follows from the definition of §(M(-)). O
Note that an equivalent statement to Corollary 4.7 is false, as M(t) =

{0} may occur for infinitely many ¢ while a positive uniform exponential
growth rate exists.

Corollary 5.3 Let X be a reflexive Banach space and let M(-) be uni-
formly bounded. Assume furthermore that for each t € N the set M(t) is
weakly compact. Then for the time-varying discrete inclusion N(-) given
by

N(t) = w — clbco M(t),
it holds that
BN () = BM()).

Proof: This may be shown in a similar fashion to Corollaries 4.8 and 4.9
after noting that ' = w — cl bco M. O
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