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Abstract—We study feedback interconnections of two non- framework of input-to-state dynamical stability in [8]. Buil-
linear systems, that are asymptotically stable at a fixed point. ding on recent advances in the understanding of stability
It is shown that if the subsystems are input-to-state stable and properties of interconnected ISS systems, we show that a

the corresponding gains satisfy a small gain condition, then . .
estimates for the domain of attraction of the whole system Lyapunov function for the overall system can be obtained

may be obtained by calculating robust Lyapunov functions for  in a straightforward manner from the Lyapunov functions of
the subsystems. The latter task can be solved using available the subsystems provided a small gain condition is satisfied.
Zubov techniques. In total this approach makes numerical To this end we assume that a small gain condition is satisfied
computations feasible, as high cost computations only have to for the gains given by the individual ISS Lyapunov functions.

be performed in lower dimensions. This comes at the price, . .
that in general only lower approximations of the domain of Here we use results obtained in [11], [10], [5], [7], [4], [12].

attraction are obtained and that the system has to be brought  In this note we restrict our attention to the coupling of
into a form, where a small gain condition holds. two systems in a feedback interconnection. However, as the
tools from viscosity theory that we require are only needed
l. INTRODUCTION in the analysis of individual subsystems and as the theory
In this note we present a method for the estimation of thef interconnection of ISS systems has been developed in a
domain of attraction of asymptotically stable fixed pointgyeneral framework, we expect that these methods will extend
of higher dimensional systems. Our approach is based @ma straightforward manner to more general interconnection
extensions of Zubov’s method that were developed in [1], [2ktructures. This will be the topic of further articles which are
[3]. In this approach a first-order partial differential equatiorunder preparation.
is formulated which has a unique viscosity solution vanishing We proceed as follows. In the ensuing Section Il we pre-
in the fixed point. This viscosity solution is a maximalsent the problem description and recall the relevant stability
Lyapunov function on the robust domain of attraction of thelefinitions used in the paper. The key in the analysis of
perturbed system. In [1] it has been shown that the resultinge subsystems is the introduction of an auxiliary system
first-order PDE may be regularized in such a manner that ahich we present in Section Ill. For the auxiliary system
the one hand the solution still yields a function characterizing robust Lyapunov function is constructed using Zubov’'s
the domain of attraction and so that on the other hand thaethod in Section IV. These Lyapunov functions serve as
solution can be accurately computed using suitable numeriag®s Lyapunov functions for the coupled system. In Section V
methods. In principle this approach is riddled by the curse afe explain how to obtain estimates for the domain of
dimensionality as the computation of the solution becomesttraction for the coupled system. An academic example is
prohibitively expensive in higher dimensions, where "high’presented in VI. In Section VII we briefly explain how a
actually only means at least starting from dimension 5. Teertain way of preconditioning the system may transform a
overcome this problem for larger systems we assume thgiven system into a form where the approach of this paper
the higher dimensional system is given as an interconnecti¢g applicable.
of lower dimensional ones. To this end it is assumed that
the lower dimensional subsystems satisfy an input-to-statg  pPRELIMINARIES AND PROBLEM STATEMENT
stability (ISS) property with respect to the influence of the
states of the other subsystems. In this paper the Euclidean norm R is denoted by - ||
We show that ISS Lyapunov functions may be calculate@ndB(z,r) := {x€ R"||x—Z|| <r} denotes the set of points
for the individual subsystems using a Zubov approach. Thaith distance less thanfrom z. As usual in stability analysis,
method we present here is a direct extension of the metho@€ call a functiona of class. if it is a homeomorphism
and results in [1]. An alternative method for the calculatio®f [0,%0) (i.e. « is continuous,a(0) =0 and a is strictly
of ISS Lyapunov functions has been presented within th@creasing to infinity). A continuous functiofi : R, — R
is of class.Z if it is strictly decreasing to 0 as— ; and
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system x2. We are interested in thdomain of attractiorof the fixed
x= f(x,u). (I.1)  point, that is in the set

wherex € R" is the state andi € R™ is the control input. 2 ={XLecRN: x(t,xX%) -0 fort— o}, (1.8)
We assume that is regular enough such that for each initial
condition X2 € R" and each control inpui € L® a unique
solution exists for alt > 0. System (II.1) is calledhput-to-
state stablgISS), if there is a gairy € %, and a§ € #.¥ f1(0,0) =0, f2(0,0) =0 (1.9)
such that

In the following approach the coupling structure into
account explicitly. The assumptions so far imply that

but they do not imply that the individual subsystems if they
[x(t, 3%, u) | < BRI+ ¥([lulle) (I.2)  are uncoupled are exponentially stable. That is, we have no

for all initial conditions x> € R", t > 0 and essentially stability property for the systems

bounded, measurable inpui§) € L*(R, ,R™). % = fi(x,0). (1.10)
In this paper we will use the equivalent Lyapunov cha-_ ) ) o
racterization of input-to-state stability in what is called thel NiS May be seen even in the linear case by considering the
implication form. system 11
X = (4 :3> X, xeR?. (1.11)
Definition 1 A smooth function V is called an ISS-Lyapunov
function of (I.1) if there existyn, y» € %5, and x,o € #  The matrix has a double eigenvalue-dt, so that the system
with is exponentially stable, however, the first subsystem is not
exponentially stable. For nonlinear systems it is not too hard
vi(|IX|) <V (X) < wa(|[x]]),x € R, (1.3)  to construct systems which are asymptotically stabl at0
and so that both of the uncoupled subsystems are not stable at
V() 2 z(llul) = V) f(x,u) < —a(V(X)). (11.4) X = 0. We will discuss in Section VII that if this is the case,
The functiony is then called Lyapunov-gain. then it is always possible to transform the system into an
equivalent system in which the subsystems have the stability
It is known that the ISS property of (”1) is equivalent to th%roperties we need in the fo”owing arguments_
existence of an ISS-Lyapunov function for (Il.1), see [15]. For the moment we introduce the extra assumption that
But note that the gain in (I1.2) and the Lyapunov-gain ineach of the subsystem has nice stability properties, which

(1.4) are generally different functions. ~ means in our context that they satisfy an ISS property. In
_ Al_so note that because of (I1.3) the implication (11.4) isthe following i € {1,2} andi # j € {1,2} we will be the
implied by complementary index.

12 vz o x(ul) = VO f () < —ov (). 1) WE SRR (e Tor=1,2 fhe fhere exisk; € % and
In the following constructions we will arrive at inequalities
of the form (I1.5). We also will only arrive at local stability 1% (656 %5 (D)< B0+ 25 (1 o) (1.12)
results, so we note that local versions of ISS or its Lyapunopgr all X e R, t >0, xj(-) € L*(R.,R"). Note that we
versions are simply defined by requiring (I1.2) respectivelyreat x; here as an independent measurable input. That is,
(11.4) to hold for allx° in a neighborhood ok = 0 and all  we neglect that in the formulation of the original problesm
u€ L* with a norm bound. is also given as the solution of a differential equation.

We consider a system of two interconnected systems Given two coupled ISS systems of the form (I1.6) with the
without control (or perturbation). In the followingi,n, € N assumption (11.12) it is not possible to conclude asymptotic
denote the dimension of the two subsystems and we letapility of (I1.7) atx* = 0. However, in this context small

N:=n;+ny. Given fi : RN — R™, i = 1,2, we consider the gain results are available, by which it is possible to conclude
system _ stability.

X1 = f1(xq,%2)

%o = f2(%0.%1) (11.6) IIl. THE AUXILIARY SYSTEM

x1(0) =9, x2(0) =3 We now assume two as give#fe,-functions y1, v € s

that are each locally Lipschitz continuous (o) . Asso-
ciated to the systems (I1.6) and the defining right hand sides
fi we consider the auxiliary functions fore= 1,2

{ i(E) f=(x>z° (1.7) fi, :RMxB(0,1) —R"

It is assumed thaf is locally Lipschitz continuous ofR", O6,u) = 106 w(xlw)

has a fixed point in<* =0 and that the fixed point is locally Here B(0,1) denotes the unit ball ifR". (To avoid cum-
exponentially stable. Furthex(t,x°) denotes the solution of bersome notation we do not refer to the dimensipnvhen
(1.7) at timet corresponding to the initial conditiox(0) =  writing this ball.)

We let f = (f1, f2) : RN — RN, x = (x1,%2), X = (x0,x3) so
that we may equivalently write the system as



The auxiliary system is now the control system given byBy Sontag's.?".¢ lemma (see [14]) for an§ € .7 .% there
) - exist two functionsay, ox € % such that
% = i, w([xl)u) == fiy(x,u). (n.1)

rt) < ao(og(r)e™). V.2
wherex? € R", u e By(0) C R". Ant) < az(on(r)e) (V.2
To explain the significance of the auxiliary system assumia the sequel we will work primarily with the functions

for the moment that we have @mbust Lyapunov function az,op € 2.
V; for (lll.1), that is, a Lyapunov function such that for all Under the assumption of uniform asymptotical stability of

ue B(0,1) we have the originx* = 0 for (IV.1),, we define the corresponding
robust domain of attraction as follows.
OVi () fi (%, u) < —ai([[xil]) (111.2)
for some positive definite functiom;. Then we have the Definition 3 We define thguniform) robust domain of at-
following implication for all x; € R",v e R". tractionas
(%) > IVl = 9= — - _veB(0,1) e
X||) > |Vl > Vi=——xVE \
" %%l 7= x0crn: T e;fxést?h t<hat(t
= OV (%) i O, % (1% DY) < — e ([|%]]) [y (t, X%, u)[| < n(t)

forallt >0,ue%
or equivalently

] > % LIV = DVE(x) fi (%, v) < —a(xi]l) . (111.3) The following properties of7, are shown in [2].

Thus we obtain the following result. . )
Proposition 4 Consider system (IV.1) and assume (H1), then

Lemma 2 Let y € % be locally Lipschitz on(0,). Con- (i) 2, is an open, connected, invariant set with
sider a subsystem i¢ll.6) and the auxiliary systen(ill.1) cIB(O,r) C Zy.
corresponding tay. Then if V is a robust Lyapunov function (i) SURe {t(x, U)}_—> +oo for x — x° € 97y or |[X|| —
for (Ill.1) it is an ISS Lyapunov function for the subsystem  ®» Where {x,u) =inf{t > 0: ¢,(t,x,u) € B(O,r)}.
of (11.6) with Lyapunov gainy 1. (i) cl2, is an invariant set which is contractible @
(iv) If for some g €U f,(-,up) is of class &, then 2,
It is clear that this result extends in a straightforward is C!-diffeomorphic toR".
manner to local Lyapunov and ISS Lyapunov functions. As
we have seen the problem of computing an ISS Lyapunov It is shown in [1], [2], [3] how a Zubov type equation may
function can be reduced to computing a robust Lyapunode formulated that allows for the computation of a maximal

function. We thus now study this problem. Lyapunov function on the domain of attraction. In this paper
we use the formulation of [3], which is a slight generalization

IV. THE DOMAIN OF ATTRACTION OF THE AUXILIARY of [2]. To this end an optimal control problem is defined
SYSTEM using a running cosg, which is chosen in such a manner

2 : . g
In this section we study the properties of one of the su fhat the functiong : R" x U — R is continuous and satisfies

systems in (lll.1). Thus we consider a Lipschitz continuous (i) ForallueU, g(x,u) < Ca51(||x||)
map f : R"x R™ — R", which serves as a representative of for all xe R, o from (IV.2) and some
one of the mapd; defining the subsystems in (I.6). We now C >0, andg(x,u) > 0 for x # 0.

consider the perturbed system

(H2) (i) There exists a constagp > 0 such that
X = fy(x.u) = F(x, 7(x])u) (V1) Inf{g(x,u) |x#B(0,r),ucU} = do.
. " ) (i) For eachR> 0O there existd.r > 0 such
w.here>.< €R" ue B(0,1) c R™andy € %, U{0} is Iocall_y that ||g(x, u) — g(y, u)|| < Lr[x—VY]|
Lipschitz continuous on(0,«). Under these assumptions for all |||, |ly| <R and allue U.

local Lipschitz continuity off, is guaranteed oiR" \ {0}, _ _ _ _
which is sufficient as we assume uniform asymptotic stability We now introduce the value function of a suitable optimal
in x* =0. . We denote by := {ue L*(R,R™ | ||u]|o < 1}. control problem related to (IV.1). Consider the following

The solutions of (IV.1) are denoted (-, x°,u). nonnegative, extended value functiodal R" x % — RU
We assume that* = 0 is uniformly locally asymptotically {+}
. 400
stable for system (IV.1), i.e. 3,(x,u) = i g(@,(t), u(t))dt,
there exists a constant> 0 ) .
and a functiong of class.#.# such that and the optimal value function
T gyt 0,0)) < () for ;
LA SRR ’ Vy(X) := supl—e~ (W), (IV.3)

anyx? € B(0,r), anyuc %, and allt > 0. e



Since g is nonnegative it is immediate thatx) € [0,1]

there exists an open neighborhood NGo§uch that for all

for all x € R". Furthermore, standard techniques from optix, ye N the inequality

mal control imply thatv, satisfies a dynamic programming

principle, i.e. for each > 0 we have
Vy(X) = sup{(1—G(x,t,u)) + G(x,t, u)vy(X(t,x,u)) }
ne (IV.4)
with
t
G(t,x,u) := exp(—/0 g(x(7,X, u),u(r))dr) . (IV.5)

A simple application of the chain rule showsl —
G(x,t,u)) = o G(x, 7,u)g(x(7,x,u), u(t))d implying

sup{/OtG(x,r,u)g(x(r,x, u),u(r))dt

uev

Vy(X) =

+ G(X,t,u)v(x(t, X, u))}. (IV.6)

The next proposition shows the relation betwegnand
vy, and the continuity of,.
Proposition 5 Assume (H1), (H2). Then
(i) vy(x) < 1if and only if xe Z,.
(i) vy(x) =0 if and only if x=0.

l9(x,u) —g(y,u)|
< Ko H(max{[[X]|, Iyl})*lIx— v

holds for some K> 0, s> L; and o, from (IV.2), then the
function v, is Lipschitz continuous ii" for all g with go >0
from (H2) sufficiently large.

Finally, we note that the Lyapunov function, may be
interpreted as a local ISS-Lyapunov function on the Bgt
for the system

x= f(xu). (IV.8)

Proposition 9 Consider systen(lV.8). The function y de-
fined as the unique viscosity solution @#.7) is a local
ISS-Lyapunov function oty in the sense that if x 2,
then

K>yl =
vy is a viscosity subsolution of
Ovy £y (%, u) < —(1=vy(x))g(X, ) .

(IV.9)

(iii) vy is continuous orR". Proof: This may be seen as in the proof of Lemma 2.
The treatment in the framework of viscosity solutions poses
no extra difficulty. ]

Finally, it follows thatv can be characterized as the unique The formulation in (IV.9) is a viscosity formulation of the
viscosity solution of the Zubov equation implication form for ISS Lyapunov functions. The important
point here, is that it implies the desired decay properties as
in (11.4).

We also note that the following properties &, in
dependence of. Note that%, corresponds to the choice
Y=0.

(iv) vy(x) — 1 for x — x% € 92, and for |x| — oo,

sup {DVv(x) fy(x,u) + (1 —v(x))g(x,u) } =0

fluj<1

(IV.7)

Theorem 6 Consider the systeriv.1) and a function g
R" x A — R such that (H1) and (H2) are satisfied. Then
(IV.7) has a unique bounded and continuous viscosity solgroposition 10 Let 13 < 1» € % be locally Lipschitz on

tion v onR" satisfying y¥x) =0 for x=0. (0,»), thenZy, O Zy,. In particular, 7, C Zq for all y € .
This function coincides with,\Mfrom (IV.3). In particular the

characterizationZ, = {x € R"|v,(x) < 1} holds. Proof: This  follows immediately  from
FOn(lIXI)B(0, 1)) < f(x, %2(/[x[)B(0,1)) for all x € R if
Proposition 7 Assume (H1) and (H2) and consider then < 72 u

unique viscosity solutionyvof (IV.7) with v,(0) = 0. Then In particular, the previous result shows a drawback of
the function y is a robust Lyapunov function for the systemour approach. For our coupled system the best we can
(IV.1) on Z,. More precisely we have hope for as an estimate for the domain of attraction of the
0 0 coupled system will be the s&t,; x Z,» because outside
Vy(X(E, X7, 1)) = vy (X7) of these sets we have no information about the decay of the
< [1- e foax(@)u(x)de (v (Xt x°,u)—1) < 0 subsystems.
for all xX° € 2,\ {0} and all functions « % . V. COUPLED SYSTEMS
We now want to choose two gain functiopgst, y, * for the
individual subsystems system, so that a Lyapunov function
can be obtained for the coupled system. To this end we
need the following small gain result. Given the Lyapunov
functionsvy, v2 with gainsy;,, v5;* we consider the matrix

0 }/1)
r=1{ - 12
<7’211 0

Now we turn to the Lipschitz property.

Proposition 8 Assume (H1) and (H2) and consider the
unique viscosity solution,vof (IV.7) with v(x) = 0 for all
xeD.

If fy(-,u) and g-,u) are uniformly Lipschitz continuous
in 2y, with constants k, Lg > 0 uniformly in uc U, and if



The matrix T may be interpreted as an operator on the Since we only have local version of the Lyapunov func-

positive orthaan2 which acts througls= (s1,s) —I'(s):= tions we need a local version suitable for our case. The
yzlz 7’21 (sl)) We also define a diagonal operater. procedure we now propose is the following:

— R3 which is defined through two’ functions (i) For each of the subsystenis= 1,2 choosey € %,
1717772 and defined byE(s) := ((id+n1)(s1), (id+12)(s2))- and compute the maximal Lyapunov functigron Dy

The following result is a special case of the general small  py solving the corresponding Zubov equation (IV.7).

gain theorem obtained in [4], [7], [12]. In this form it is  (ji) For eachvy; compute a functiony;; such that the

quite similar to the result from [10] which is obtained for a left hand side of (V.1) is satisfied.

different formulation of the ISS condition. (i) The gain for each of the Lyapunov functions is then
For the small gain result we need a deviation from the for-  py (11.5) given by

mulation in (I11.4). Namely, we assume that each subsystem . 4

i =1,2 has an ISS Lyapunov function satisfying fot 1,2 N =20 "oy ;. (V.6)

that there exisiy, y2, € #e andy, o € K with (iv) Check that the two gaingi, 7»1 satisfy the small

gain condition (V.4).
vLi(lIXID) Vi) < i (v) If this is the case choose the pathalong which

W06) 2 2 (V306)) = DM fi0x) < ~as((x)). (v2) B 1 decreasing as in (V5).

),x€ R, (V.1)

Also note that because of (V.1) the implication (V.2) is
valid for i — 1,2, if for i 2 | We(hav)e P V2 V(xa, %) -=max{o; *(va(x1)), 03 (Va(x2))},  (V.7)

and letp := min{o{l(l),ogl(l)}.

We claim that provided all steps in the construction can be
completed successfully then with this choice\bfwe have
Thus the natural gains we have to consider after constructitigatV —*([0,p)) is a subset of the domain of attraction of the
a Lyapunov function which has a gaiyirl as in (IV.9) is coupled system. This is the gist of the following theorem.
given by % := yoioy oy .

Using the formulation in (V 2) we can state the stabilityTheorem 12 Consider the coupled syste(i.6). Assume
result for the feedback interconnection. In the statement wier each of the subsystems a solution of the Zubov
use the order omi given bya<b:sa <bj,i=1,2. Thus equation(lV.7) is available. Assume furthermore, that the
the negatiora £ b means that; > b; for somei. gains defined inV.6) satisfy the small gain conditiofV.4).

Then for the function V defined {v.7) is a local viscosity
Theorem 11 Consider the coupled systgfth6) and assume Lyapunov function for the coupled system and we have
that for each of the subsystems there exists an ISS Lyapuriév ==V *([0,p) C Z from (11.8).
func‘uon V, i=1,2in the sense ofV.2) with Lyapunov gain
,J‘ , I,j =1,2)i # j. If there exists a diagonal operator E
such that the small gain condition

1% [l > waito xiowa (Il ) = (V.3)
OVi (%) fi (%, X)) < —ai(Vi(%)).

Proof: Without loss of generality we may assume
that p = 1, because we can always rescale the patiWe
first note, that the choice op ensures, thaV (x;.x2) <
ol (s) #s,Vs€ R2\ {0}, (V.4) p =1 implies thatx, € Dy; and x; € Dy, because of

Proposition 5 (i).
is satisfied, then there exists a continuously differentiable | ot y ¢ , \ {0}. We assume first that for a given—

path ¢ : [0,0) — R?, such thato’ is bounded and so that (x1,X2) we haveV(xy,x) = G_l(Vl(Xl)) > 051 (Va(%0)).
Eol(o(1)) < o(t), Vre (0,0). (v5) Then it_ fqllows that_vl(_xl) > 0100, Y(va(x2)) and by
the definition of o this implies vi(x1) > 712(v2(X2)). As
A Lyapunov function for the coupled system is then given kyy e Py1 this implies thatV (xq,X2) = Ovi(x1) < —(1—
) 1 1 v1(X1))g(X1,X%2) in the viscosity sense. The same argument
V(x1, %) i=max{o; ~(Vi(x1)), 05 ~(Va(X2))} . ap(pli()—:‘)s S/ice v)ersa ¥ (x1,%2) = 05 1(V2(%2)) > 6 (va(x1))-
In this formulationo; denotes thé-th component function This shows that the decay condition holds almost everywhere
of the patho. Also note that in the case of two systems iP" Zv. This implies the assertion. u
feedback interconnection (V.4) is equivalent to the existence VI. EXAMPLE

of n1,7n2 such that _ ) ) )
_ _ In this section we present a very simple example which
(id+n1) 0 yp5 o (id+m2) 0 oy (1) < T, VT >0. explains the steps that have to be undertaken in the construc-

A local version of this result has been obtained in [6]. tion. Consider the coupled system

For each of these gain functions we can compgjeand X| = —X1+C1oXo
vy, by solving the corresponding Zubov equation (IV.7). We
now use these functions to obtain an estimate for the domain
of attraction of the coupled system. 1This can be done numerically in a simple manner, see [12].

X2 = —Xo+CrX1.



Each of the subsystems is globally ISS with ISS-LyapunoVhis shows that the state transformatior- PL/2x results
function V;(x) = |x|. With this choice we obtain for any in the JacobiarA = PY2AP~1/2 which has the identity as a

€>0 andi# j,i,j € {1,2} the implication condition Lyapunov function. This shows that for the original nonlinear
) € systems at least locally the subsystems satisfy the desired ISS
I%i| > (cij +&)|xj| = Vi(x) < “ote || conditions as well as the small gain condition, because this is
N true for their linearizations. Hence after this transformation
Hence for anye > 0 the gain can be chosen to g := the approach of this paper may be applied.

(Gij +¢€). The Lyapunov function that would be constructed
by Zubov's method is of the form(x) := 1—e V¥ and it VIII.- CONCLUSIONS
can be readily checked, that the same implication condition In this paper we have outlined a way for the estimation
is valid in this case. of domains of attractions of coupled systems that satisfy
By the small gain conditon we have to require tha@n ISS condition and additionally a small gain condition.
71271 < 1. By choosinge > 0 small enough this is possible For each of the subsystems a robust Lyapunov function is
wheneverci»cy1 < 1 and it is easy to see that in this simplecalculated which serves as an ISS Lyapunov function. To
case, this is indeed necessary and sufficient for stability #tis end Zubov's method can be applied. As yet, we have
the coupled system. no systematic way of choosing the gains that are needed in
Now to construct the overall Lyapunov function we needtep one of this construction. This is the topic of ongoing
to construct the patls and in our case it is easy to see, thafesearch.
for o it (2, (114 ¥5)t) we have
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