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Abstract— We study feedback interconnections of two non-
linear systems, that are asymptotically stable at a fixed point.
It is shown that if the subsystems are input-to-state stable and
the corresponding gains satisfy a small gain condition, then
estimates for the domain of attraction of the whole system
may be obtained by calculating robust Lyapunov functions for
the subsystems. The latter task can be solved using available
Zubov techniques. In total this approach makes numerical
computations feasible, as high cost computations only have to
be performed in lower dimensions. This comes at the price,
that in general only lower approximations of the domain of
attraction are obtained and that the system has to be brought
into a form, where a small gain condition holds.

I. INTRODUCTION

In this note we present a method for the estimation of the
domain of attraction of asymptotically stable fixed points
of higher dimensional systems. Our approach is based on
extensions of Zubov’s method that were developed in [1], [2],
[3]. In this approach a first-order partial differential equation
is formulated which has a unique viscosity solution vanishing
in the fixed point. This viscosity solution is a maximal
Lyapunov function on the robust domain of attraction of the
perturbed system. In [1] it has been shown that the resulting
first-order PDE may be regularized in such a manner that on
the one hand the solution still yields a function characterizing
the domain of attraction and so that on the other hand the
solution can be accurately computed using suitable numerical
methods. In principle this approach is riddled by the curse of
dimensionality as the computation of the solution becomes
prohibitively expensive in higher dimensions, where ”high”
actually only means at least starting from dimension 5. To
overcome this problem for larger systems we assume that
the higher dimensional system is given as an interconnection
of lower dimensional ones. To this end it is assumed that
the lower dimensional subsystems satisfy an input-to-state
stability (ISS) property with respect to the influence of the
states of the other subsystems.

We show that ISS Lyapunov functions may be calculated
for the individual subsystems using a Zubov approach. The
method we present here is a direct extension of the methods
and results in [1]. An alternative method for the calculation
of ISS Lyapunov functions has been presented within the

This work was not supported by any organization
F. Camilli is with the Sezione di Matematica per L’Ingegneria Diparti-

mento di Matematica Pura ed Applicata Università degli Studi di L’Aquila,
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framework of input-to-state dynamical stability in [8]. Buil-
ding on recent advances in the understanding of stability
properties of interconnected ISS systems, we show that a
Lyapunov function for the overall system can be obtained
in a straightforward manner from the Lyapunov functions of
the subsystems provided a small gain condition is satisfied.
To this end we assume that a small gain condition is satisfied
for the gains given by the individual ISS Lyapunov functions.
Here we use results obtained in [11], [10], [5], [7], [4], [12].

In this note we restrict our attention to the coupling of
two systems in a feedback interconnection. However, as the
tools from viscosity theory that we require are only needed
in the analysis of individual subsystems and as the theory
of interconnection of ISS systems has been developed in a
general framework, we expect that these methods will extend
in a straightforward manner to more general interconnection
structures. This will be the topic of further articles which are
under preparation.

We proceed as follows. In the ensuing Section II we pre-
sent the problem description and recall the relevant stability
definitions used in the paper. The key in the analysis of
the subsystems is the introduction of an auxiliary system
which we present in Section III. For the auxiliary system
a robust Lyapunov function is constructed using Zubov’s
method in Section IV. These Lyapunov functions serve as
ISS Lyapunov functions for the coupled system. In Section V
we explain how to obtain estimates for the domain of
attraction for the coupled system. An academic example is
presented in VI. In Section VII we briefly explain how a
certain way of preconditioning the system may transform a
given system into a form where the approach of this paper
is applicable.

II. PRELIMINARIES AND PROBLEM STATEMENT

In this paper the Euclidean norm inRn is denoted by‖ ·‖
andB(z, r) := {x∈Rn |‖x−z‖< r} denotes the set of points
with distance less thanr from z. As usual in stability analysis,
we call a functionα of classK∞ if it is a homeomorphism
of [0,∞) (i.e. α is continuous,α(0) = 0 and α is strictly
increasing to infinity). A continuous functionβ : R+ → R+
is of classL if it is strictly decreasing to 0 asr → ∞; and
we call a continuous functionβ with two real nonnegative
arguments of classK L if it is of classK∞ in the first and
of classL in the second argument.

In this paper we will study stability properties of coupled
systems. To this end we need the concept of input-to-state
stability, which was first defined in [13]. We consider a



system
ẋ = f (x,u) . (II.1)

wherex ∈ Rn is the state andu ∈ Rm is the control input.
We assume thatf is regular enough such that for each initial
condition x0 ∈ Rn and each control inputu ∈ L∞ a unique
solution exists for allt ≥ 0. System (II.1) is calledinput-to-
state stable(ISS), if there is a gainγ ∈K∞ and aβ ∈K L
such that

‖x(t,x0,u)‖ ≤ β (‖x0‖, t)+ γ(‖u‖∞) , (II.2)

for all initial conditions x0 ∈ Rn, t ≥ 0 and essentially
bounded, measurable inputsu(·) ∈ L∞(R+,Rm).

In this paper we will use the equivalent Lyapunov cha-
racterization of input-to-state stability in what is called the
implication form.

Definition 1 A smooth function V is called an ISS-Lyapunov
function of (II.1) if there existψ1,ψ2 ∈ K∞ and χ,α ∈ K
with

ψ1(‖x‖)≤V(x)≤ ψ2(‖x‖),x∈ Rn, (II.3)

V(x)≥ χ(‖u‖)⇒ ∇V(x) f (x,u)≤−α(V(x)). (II.4)

The functionχ is then called Lyapunov-gain.

It is known that the ISS property of (II.1) is equivalent to the
existence of an ISS-Lyapunov function for (II.1), see [15].
But note that the gain in (II.2) and the Lyapunov-gain in
(II.4) are generally different functions.

Also note that because of (II.3) the implication (II.4) is
implied by

‖x‖ ≥ ψ
−1
2 ◦χ(‖u‖)⇒ ∇V(x) f (x,u)≤−α(V(x)). (II.5)

In the following constructions we will arrive at inequalities
of the form (II.5). We also will only arrive at local stability
results, so we note that local versions of ISS or its Lyapunov
versions are simply defined by requiring (II.2) respectively
(II.4) to hold for all x0 in a neighborhood ofx∗ = 0 and all
u∈ L∞ with a norm bound.

We consider a system of two interconnected systems
without control (or perturbation). In the followingn1,n2 ∈N
denote the dimension of the two subsystems and we let
N := n1 +n2. Given fi : RN → Rni , i = 1,2, we consider the
system 

ẋ1 = f1(x1,x2)
ẋ2 = f2(x2,x1)
x1(0) = x0

1, x2(0) = x0
2

(II.6)

We let f = ( f1, f2) : RN → RN, x = (x1,x2), x0 = (x0
1,x

0
2) so

that we may equivalently write the system as{
ẋ = f (x)
x(0) = x0 (II.7)

It is assumed thatf is locally Lipschitz continuous onRn,
has a fixed point inx∗ = 0 and that the fixed point is locally
exponentially stable. Furtherx(t,x0) denotes the solution of
(II.7) at time t corresponding to the initial conditionx(0) =

x0. We are interested in thedomain of attractionof the fixed
point, that is in the set

D = {x0 ∈ RN : x(t,x0)→ 0 for t → ∞} . (II.8)

In the following approach the coupling structure into
account explicitly. The assumptions so far imply that

f1(0,0) = 0, f2(0,0) = 0 (II.9)

but they do not imply that the individual subsystems if they
are uncoupled are exponentially stable. That is, we have no
stability property for the systems

ẋi = fi(xi ,0) . (II.10)

This may be seen even in the linear case by considering the
system

ẋ =
(

1 −1
4 −3

)
x, x∈ R2 . (II.11)

The matrix has a double eigenvalue at−1, so that the system
is exponentially stable, however, the first subsystem is not
exponentially stable. For nonlinear systems it is not too hard
to construct systems which are asymptotically stable atx∗ = 0
and so that both of the uncoupled subsystems are not stable at
x∗i = 0. We will discuss in Section VII that if this is the case,
then it is always possible to transform the system into an
equivalent system in which the subsystems have the stability
properties we need in the following arguments.

For the moment we introduce the extra assumption that
each of the subsystem has nice stability properties, which
means in our context that they satisfy an ISS property. In
the following i ∈ {1,2} and i 6= j ∈ {1,2} we will be the
complementary index.

We assume that fori = 1,2 the there existγi j ∈ K∞ and
βi ∈K L such that

‖xi(t,x0
i ,x j(·))‖ ≤ βi(‖x0

i ‖, t)+ γi j (‖x j‖∞) , (II.12)

for all x0
i ∈ Rni , t ≥ 0, x j(·) ∈ L∞(R+,Rn j ). Note that we

treat x j here as an independent measurable input. That is,
we neglect that in the formulation of the original problemx j

is also given as the solution of a differential equation.
Given two coupled ISS systems of the form (II.6) with the

assumption (II.12) it is not possible to conclude asymptotic
stability of (II.7) at x∗ = 0. However, in this context small
gain results are available, by which it is possible to conclude
stability.

III. THE AUXILIARY SYSTEM

We now assume two as givenK∞-functions γ1,γ2 ∈ K∞
that are each locally Lipschitz continuous on(0,∞) . Asso-
ciated to the systems (II.6) and the defining right hand sides
fi we consider the auxiliary functions fori = 1,2

f̃i,γ : Rni ×B(0,1)→ Rni

(xi ,u) 7→ f (xi ,γi(‖xi‖)u)

Here B(0,1) denotes the unit ball inRn j . (To avoid cum-
bersome notation we do not refer to the dimensionn j when
writing this ball.)



The auxiliary system is now the control system given by

ẋi = fi(xi ,γi(‖xi‖)u) := f̃i,γ(xi ,u) . (III.1)

wherex0
i ∈ Rni , u∈ B1(0)⊂ Rn j .

To explain the significance of the auxiliary system assume
for the moment that we have arobust Lyapunov function
Vi for (III.1), that is, a Lyapunov function such that for all
u∈ B(0,1) we have

∇Vi(xi) fi(xi ,u)≤−αi(‖xi‖) , (III.2)

for some positive definite functionαi . Then we have the
following implication for all xi ∈ Rni ,v∈ Rn j .

γi(‖xi‖)≥ ‖v‖⇒ ṽ :=
1

γi(‖xi‖)
v∈ B(0,1)

⇒ ∇Vi(xi) fi(xi ,γi(‖xi‖)ṽ)≤−αi(‖xi‖)

or equivalently

‖xi‖ ≥ γ
−1
i (‖v‖)⇒ ∇Vi(xi) fi(xi ,v)≤−αi(‖xi‖) . (III.3)

Thus we obtain the following result.

Lemma 2 Let γ ∈K∞ be locally Lipschitz on(0,∞). Con-
sider a subsystem in(II.6) and the auxiliary system(III.1)
corresponding toγ. Then if V is a robust Lyapunov function
for (III.1) it is an ISS Lyapunov function for the subsystem
of (II.6) with Lyapunov gainγ−1.

It is clear that this result extends in a straightforward
manner to local Lyapunov and ISS Lyapunov functions. As
we have seen the problem of computing an ISS Lyapunov
function can be reduced to computing a robust Lyapunov
function. We thus now study this problem.

IV. T HE DOMAIN OF ATTRACTION OF THE AUXILIARY

SYSTEM

In this section we study the properties of one of the sub-
systems in (III.1). Thus we consider a Lipschitz continuous
map f : Rn×Rm→ Rn, which serves as a representative of
one of the mapsfi defining the subsystems in (II.6). We now
consider the perturbed system

ẋ = fγ(x,u) := f (x,γ(‖x‖)u) (IV.1)

wherex∈Rn, u∈ B(0,1)⊂Rm andγ ∈K∞∪{0} is locally
Lipschitz continuous on(0,∞). Under these assumptions
local Lipschitz continuity of fγ is guaranteed onRn \ {0},
which is sufficient as we assume uniform asymptotic stability
in x∗ = 0. . We denote byU := {u∈ L∞(R,Rm) | ‖u‖∞ ≤ 1}.
The solutions of (IV.1) are denoted byϕγ(·,x0,u).

We assume thatx∗ = 0 is uniformly locally asymptotically
stable for system (IV.1), i.e.

(H1)

there exists a constantr > 0
and a functionβ of classK L such that
‖ϕγ(t,x0,u)‖ ≤ β (‖x0‖, t) for
any x0 ∈ B(0, r), any u∈U , and allt ≥ 0.

By Sontag’sK L lemma (see [14]) for anyβ ∈K L there
exist two functionsα1,α2 ∈K ∞ such that

β (r, t)≤ α2(α1(r)e−t). (IV.2)

In the sequel we will work primarily with the functions
α1,α2 ∈K ∞.

Under the assumption of uniform asymptotical stability of
the origin x∗ = 0 for (IV.1)γ , we define the corresponding
robust domain of attraction as follows.

Definition 3 We define the(uniform) robust domain of at-
tractionas

Dγ =

x0 ∈ Rn :

there exists
η ∈L such that
‖ϕγ(t,x0,u)‖ ≤ η(t)
for all t > 0, u∈U

 .

The following properties ofDγ are shown in [2].

Proposition 4 Consider system (IV.1) and assume (H1), then

(i) Dγ is an open, connected, invariant set with
clB(0, r)⊂Dγ .

(ii) supu∈U {t(x,u)} →+∞ for x→ x0 ∈ ∂Dγ or ‖x‖ →
∞, where t(x,u) = inf{t > 0 : ϕγ(t,x,u) ∈ B(0, r)}.

(iii) clDγ is an invariant set which is contractible to0.
(iv) If for some u0 ∈U fγ(·,u0) is of class C1, thenDγ

is C1-diffeomorphic toRn.

It is shown in [1], [2], [3] how a Zubov type equation may
be formulated that allows for the computation of a maximal
Lyapunov function on the domain of attraction. In this paper
we use the formulation of [3], which is a slight generalization
of [2]. To this end an optimal control problem is defined
using a running costg, which is chosen in such a manner
that the functiong : Rn×U → R is continuous and satisfies

(H2)

(i) For all u∈U , g(x,u)≤Cα
−1
2 (‖x‖)

for all x∈ Rn, α2 from (IV.2) and some
C > 0, andg(x,u) > 0 for x 6= 0.

(ii) There exists a constantg0 > 0 such that
inf{g(x,u) | x 6∈ B(0, r), u∈U} ≥ g0.

(iii ) For eachR> 0 there existsLR > 0 such
that ‖g(x,u)−g(y,u)‖ ≤ LR‖x−y‖
for all ‖x‖, ‖y‖ ≤ R, and allu∈U .

We now introduce the value function of a suitable optimal
control problem related to (IV.1). Consider the following
nonnegative, extended value functionalJ : Rn×U → R∪
{+∞}

Jγ(x,u) :=
∫ +∞

0
g(ϕγ(t),u(t))dt ,

and the optimal value function

vγ(x) := sup
u∈U

1−e−Jγ (x,u). (IV.3)



Since g is nonnegative it is immediate thatv(x) ∈ [0,1]
for all x∈ Rn. Furthermore, standard techniques from opti-
mal control imply thatvγ satisfies a dynamic programming
principle, i.e. for eacht > 0 we have

vγ(x) = sup
u∈U

{
(1−G(x, t,u))+G(x, t,u)vγ(x(t,x,u))

}
(IV.4)

with

G(t,x,u) := exp

(
−

∫ t

0
g(x(τ,x,u),u(τ))dτ

)
. (IV.5)

A simple application of the chain rule shows(1 −
G(x, t,u)) =

∫ t
0 G(x,τ,u)g(x(τ,x,u),u(τ))dτ implying

vγ(x) = sup
u∈U

{∫ t

0
G(x,τ,u)g(x(τ,x,u),u(τ))dτ

+ G(x, t,u)v(x(t,x,u))
}

. (IV.6)

The next proposition shows the relation betweenDγ and
vγ , and the continuity ofvγ .

Proposition 5 Assume (H1), (H2). Then

(i) vγ(x) < 1 if and only if x∈Dγ .

(ii) vγ(x) = 0 if and only if x= 0.

(iii) v γ is continuous onRn.

(iv) vγ(x)→ 1 for x→ x0 ∈ ∂Dγ and for |x| → ∞.

Finally, it follows thatv can be characterized as the unique
viscosity solution of the Zubov equation

sup
‖u‖≤1

{
Dv(x) fγ(x,u)+(1−v(x))g(x,u)

}
= 0 (IV.7)

Theorem 6 Consider the system(IV.1) and a function g:
Rn×A → R such that (H1) and (H2) are satisfied. Then
(IV.7) has a unique bounded and continuous viscosity solu-
tion v onRn satisfying v(x) = 0 for x = 0.
This function coincides with vγ from (IV.3). In particular the
characterizationDγ = {x∈ Rn |vγ(x) < 1} holds.

Proposition 7 Assume (H1) and (H2) and consider the
unique viscosity solution vγ of (IV.7) with vγ(0) = 0. Then
the function vγ is a robust Lyapunov function for the system
(IV.1) on Dγ . More precisely we have

vγ(x(t,x0,u))−vγ(x0)

≤
[
1−e−

∫ t
0 g(x(τ),u(τ))dτ

]
(vγ(x(t,x0,u))−1) < 0

for all x0 ∈Dγ \{0} and all functions u∈U .

Now we turn to the Lipschitz property.

Proposition 8 Assume (H1) and (H2) and consider the
unique viscosity solution vγ of (IV.7) with vγ(x) = 0 for all
x∈ D.

If fγ(·,u) and g(·,u) are uniformly Lipschitz continuous
in Dγ , with constants Lf , Lg > 0 uniformly in u∈U, and if

there exists an open neighborhood N of0 such that for all
x, y∈ N the inequality

|g(x,u)−g(y,u)|
≤ Kα

−1
2 (max{‖x‖, ‖y‖})s‖x−y‖

holds for some K> 0, s> L f and α2 from (IV.2), then the
function vγ is Lipschitz continuous inRn for all g with g0 > 0
from (H2) sufficiently large.

Finally, we note that the Lyapunov functionvγ may be
interpreted as a local ISS-Lyapunov function on the setDγ

for the system
ẋ = f (x,u) . (IV.8)

.

Proposition 9 Consider system(IV.8). The function vγ de-
fined as the unique viscosity solution of(IV.7) is a local
ISS-Lyapunov function onDγ in the sense that if x∈ Dγ

then

‖x‖ ≥ γ
−1(‖u‖) ⇒

vγ is a viscosity subsolution of (IV.9)

∇vγ fγ(x,u)≤−(1−vγ(x))g(x,u) .

Proof: This may be seen as in the proof of Lemma 2.
The treatment in the framework of viscosity solutions poses
no extra difficulty.

The formulation in (IV.9) is a viscosity formulation of the
implication form for ISS Lyapunov functions. The important
point here, is that it implies the desired decay properties as
in (II.4).

We also note that the following properties ofDγ in
dependence ofγ. Note thatD0 corresponds to the choice
γ ≡ 0.

Proposition 10 Let γ1 ≤ γ2 ∈ K∞ be locally Lipschitz on
(0,∞), thenDγ1 ⊃Dγ2. In particular,Dγ ⊂D0 for all γ ∈K∞.

Proof: This follows immediately from
f (x,γ1(‖x‖)B(0,1)) ⊂ f (x,γ2(‖x‖)B(0,1)) for all x ∈ Rn if
γ1 ≤ γ2.

In particular, the previous result shows a drawback of
our approach. For our coupled system the best we can
hope for as an estimate for the domain of attraction of the
coupled system will be the setDγ,1×Dγ,2 because outside
of these sets we have no information about the decay of the
subsystems.

V. COUPLED SYSTEMS

We now want to choose two gain functionsγ
−1
1 ,γ−1

2 for the
individual subsystems system, so that a Lyapunov function
can be obtained for the coupled system. To this end we
need the following small gain result. Given the Lyapunov
functionsv1,v2 with gainsγ

−1
12 ,γ−1

21 we consider the matrix

Γ :=
(

0 γ
−1
12

γ
−1
21 0

)
.



The matrix Γ may be interpreted as an operator on the
positive orthantR2

+ which acts throughs= (s1,s2) 7→Γ(s) :=
(γ−1

12 (s2),γ−1
21 (s1)). We also define a diagonal operatorE :

R2
+ → R2

+ which is defined through twoK∞ functions
η1,η2 and defined byE(s) := ((id+η1)(s1),(id+η2)(s2)).
The following result is a special case of the general small
gain theorem obtained in [4], [7], [12]. In this form it is
quite similar to the result from [10] which is obtained for a
different formulation of the ISS condition.

For the small gain result we need a deviation from the for-
mulation in (II.4). Namely, we assume that each subsystem
i = 1,2 has an ISS Lyapunov function satisfying fori = 1,2
that there existψ1,i ,ψ2,i ∈K∞ and χ,α ∈K with

ψ1,i(‖x‖)≤Vi(x)≤ ψ2,i(‖x‖),x∈ Rn, (V.1)

Vi(xi)≥ χi j (Vj(x j))⇒∇Vi(x) fi(xi ,x j)≤−αi(Vi(xi)). (V.2)

Also note that because of (V.1) the implication (V.2) is
valid for i = 1,2, if for i 6= j we have

‖xi‖ ≥ ψ
−1
2,i ◦χi ◦ψ1, j(‖x j‖)⇒ (V.3)

∇Vi(x) fi(xi ,x j)≤−αi(Vi(xi)).

Thus the natural gains we have to consider after constructing
a Lyapunov function which has a gainγ−1

i as in (IV.9) is
given by γ̃i := ψ2,i ◦ γ

−1
i ◦ψ

−1
1, j .

Using the formulation in (V.2) we can state the stability
result for the feedback interconnection. In the statement we
use the order onR2

+ given bya≤ b :⇔ ai ≤ bi , i = 1,2. Thus
the negationa 6≤ b means thatai > bi for somei.

Theorem 11 Consider the coupled system(II.6) and assume
that for each of the subsystems there exists an ISS Lyapunov
function Vi , i = 1,2 in the sense of(V.2) with Lyapunov gain
γ
−1
i j , i, j = 1,2, i 6= j. If there exists a diagonal operator E

such that the small gain condition

E ◦Γ(s) 6≥ s,∀s∈ R2
+ \{0} , (V.4)

is satisfied, then there exists a continuously differentiable
path σ : [0,∞)→ R2, such thatσ ′ is bounded and so that

E ◦Γ(σ(τ)) < σ(τ) , ∀τ ∈ (0,∞) . (V.5)

A Lyapunov function for the coupled system is then given by

V(x1,x2) := max{σ
−1
1 (V1(x1)),σ−1

2 (V2(x2))} .

In this formulationσi denotes thei-th component function
of the pathσ . Also note that in the case of two systems in
feedback interconnection (V.4) is equivalent to the existence
of η1,η2 such that

(id+η1)◦ γ
−1
12 ◦ (id+η2)◦ γ

−1
21 (τ) < τ , ∀τ > 0.

A local version of this result has been obtained in [6].
For each of these gain functions we can computeDγi and

vγi by solving the corresponding Zubov equation (IV.7). We
now use these functions to obtain an estimate for the domain
of attraction of the coupled system.

Since we only have local version of the Lyapunov func-
tions we need a local version suitable for our case. The
procedure we now propose is the following:

(i) For each of the subsystemsi = 1,2 chooseγi ∈ K∞
and compute the maximal Lyapunov functionvi on Dγ,i

by solving the corresponding Zubov equation (IV.7).
(ii) For eachvγ,i compute a functionψi,1 such that the
left hand side of (V.1) is satisfied.

(iii) The gain for each of the Lyapunov functions is then
by (II.5) given by

γ̃i j := ψ2,i ◦ γ
−1
i ◦ψ

−1
1, j . (V.6)

(iv) Check that the two gains̃γ12, γ̃21 satisfy the small
gain condition (V.4).

(v) If this is the case choose the pathσ along which
E ◦Γ is decreasing as in (V.5).1

(vi) Define

V(x1,x2) := max{σ
−1
1 (v1(x1)),σ−1

2 (v2(x2))} , (V.7)

and letρ := min{σ
−1
1 (1),σ−1

2 (1)}.
We claim that provided all steps in the construction can be

completed successfully then with this choice ofV we have
thatV−1([0,ρ)) is a subset of the domain of attraction of the
coupled system. This is the gist of the following theorem.

Theorem 12 Consider the coupled system(II.6). Assume
for each of the subsystems a solution vi of the Zubov
equation (IV.7) is available. Assume furthermore, that the
gains defined in(V.6) satisfy the small gain condition(V.4).
Then for the function V defined in(V.7) is a local viscosity
Lyapunov function for the coupled system and we have
DV := V−1([0,ρ)⊂D from (II.8).

Proof: Without loss of generality we may assume
that ρ = 1, because we can always rescale the pathσ . We
first note, that the choice ofρ ensures, thatV(x1.x2) <
ρ = 1 implies that x1 ∈ Dγ,1 and x2 ∈ Dγ,2, because of
Proposition 5 (i).

Let x ∈ DV \ {0}. We assume first that for a givenx =
(x1,x2) we have V(x1,x2) = σ−1(v1(x1)) > σ

−1
2 (v2(x2)).

Then it follows that v1(x1) > σ1 ◦ σ
−1
2 (v2(x2)) and by

the definition of σ this implies v1(x1) > γ̃12(v2(x2)). As
x1 ∈ Dγ,1 this implies that∇V(x1,x2) = ∇vi(x1) < −(1−
v1(x1))g(x1,x2) in the viscosity sense. The same argument
applies vice versa ifV(x1,x2) = σ

−1
2 (v2(x2)) > σ−1(v1(x1)).

This shows that the decay condition holds almost everywhere
on DV . This implies the assertion.

VI. EXAMPLE

In this section we present a very simple example which
explains the steps that have to be undertaken in the construc-
tion. Consider the coupled system

ẋ1 = −x1 +c12x2

ẋ2 = −x2 +c21x1 .

1This can be done numerically in a simple manner, see [12].



Each of the subsystems is globally ISS with ISS-Lyapunov
function Vi(xi) = |xi |. With this choice we obtain for any
ε > 0 and i 6= j, i, j ∈ {1,2} the implication condition

|xi |> (ci j + ε)|x j | ⇒ V̇i(xi)≤− ε

ci j + ε
|xi |

Hence for anyε > 0 the gain can be chosen to beγi j :=
(ci j + ε). The Lyapunov function that would be constructed
by Zubov’s method is of the formv(x) := 1−e−Vi(x) and it
can be readily checked, that the same implication condition
is valid in this case.

By the small gain condition we have to require that
γ12γ21 < 1. By choosingε > 0 small enough this is possible
wheneverc12c21 < 1 and it is easy to see that in this simple
case, this is indeed necessary and sufficient for stability of
the coupled system.

Now to construct the overall Lyapunov function we need
to construct the pathσ and in our case it is easy to see, that
for σ : t 7→ (2t,(γ21+ γ

−1
12 )t) we have[

0 γ12

γ21 0

]
σ(t) =

[
(1+ γ12γ21)t

2γ21t

]
< σ(t) .

The existence of the diagonal operatorE is automatic in this
case, because of the linearity of the gains. Hence an overall
Lyapunov function is obtained by setting

V(x1,x2) := max{1
2

v(x1),
1

(γ21+ γ
−1
12 )

v(x2)} .

As expected the method underestimates the actual domain of
attraction of the coupled system.

VII. STATE TRANSFORMATION

In many coupled systems it is not the case, that each
of the subsystems is ISS with respect to the inputs from
the other subsystems even though the overall system has an
asymptotically stable fixed point atx∗ = 0. In this section
we want to explain briefly what can be done to make the
approach of this paper applicable. In a general framework it
is possible to apply the ideas from [9], but a discussion of
this approach is beyond the scope of this paper.

We assume we are given a system of the form (II.6), which
is continuously differentiable atx∗ = 0. Denote the Jacobian
at 0 by

A :=
(

A11 A12

A21 A22

)
,

where the blocks correspond to the partitioningx = (x1,x2).
We assume thatA is Hurwitz, so that we have exponential
stability atx∗ = 0 for (II.6). In case the small gain condition
cannot be satisfied, consider the Lyapunov equation

ATP+PA=−I ,

which has a unique positive definite solutionP. If we apply
the congruence transformationP−1/2 to this equation we
obtain

P−1/2ATP1/2 +P1/2AP−1/2 =−P.

This shows that the state transformation ˆx = P1/2x results
in the Jacobian̂A = P1/2AP−1/2 which has the identity as a
Lyapunov function. This shows that for the original nonlinear
systems at least locally the subsystems satisfy the desired ISS
conditions as well as the small gain condition, because this is
true for their linearizations. Hence after this transformation
the approach of this paper may be applied.

VIII. C ONCLUSIONS

In this paper we have outlined a way for the estimation
of domains of attractions of coupled systems that satisfy
an ISS condition and additionally a small gain condition.
For each of the subsystems a robust Lyapunov function is
calculated which serves as an ISS Lyapunov function. To
this end Zubov’s method can be applied. As yet, we have
no systematic way of choosing the gains that are needed in
step one of this construction. This is the topic of ongoing
research.
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