On a small gain theorem for ISS networks in dissipative Lyapunov form
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Abstract—In this paper we consider several interconnected the dissipative inequality was obtained in [8]. It is worth
ISS systems supplied with ISS Lyapunov functions defined in noting that this definition has the advantage that it unifies
the dissipative form. Our aim is to construct an ISS Lyapunov  pe gefinition of ISS and integral ISS (iISS) systems. The
function for the interconnection. We provide a condition of a latter set of systems is larger and contains the ISS systems
small gain type under which this construction is possible and 4 i
describe a method of an explicit construction of such an ISS as a subset. The small gain theorem for two iISS systems
Lyapunov function. was proved in [9], [11]. Moreover the construction of the

corresponding Lyapunov function is given in a smooth way
l. INTRODUCTION in contrast to the constructions given in [12] and [6], [5].

Interconnections of nonlinear systems appear in many app-In this note, we considen 1SS systems with given ISS-
lications such as logistic problems, biologic systems, powéiyapunov functions defined by dissipative inequalities. It is
networks and others. Stability analysis of these systems a§ interest 1) to obtain a corresponding small gain theorem
an important issue for their performance and control. Sudh the dissipation formulation and 2) to construct an I1SS-
interconnections can be studied in different frameworks sudtyapunov function. Here we will make an essential step
as passivity, dissipativity [21], [7], [15], [17], input-to-statein this direction. Namely, for general ISS systems, this
stability (ISS) [18] and others. Since we consider systemsaper achieves 1) by constructing Lipschitz continuous ISS-
with inputs we will use the notion of ISS for our purposesLyapunov function for the interconnection ef systems. A
There are several equivalent ways to define this propertymooth construction is shown under stronger assumptions.
Originally [18] it was defined in terms of a bound for For a special class of dissipation inequalities, the construc-
the trajectories of a system, where the bound depends tian is given under essentially weaker assumptions.
the initial condition and the input function. This property The paper is organized as follows. The ensuing section
can be equivalently stated in terms of an ISS-Lyapunowtroduces the necessary notations and gives a precise state-
function. The latter formulation can again be defined in twenent of the problem. Section Il explains the main idea of our
essentially equivalent ways: in the so-called implication fornapproach in the simpler case of linear supply rate functions.
and with the help of a dissipation inequality and a supplyn this case the result follows from an application of the
rate, see [19] for details and discussions of the different ISSerron-Frobenius theorem. The idea for the proof of the main
formulations. In this paper we concentrate on the dissipativesults follows a similar pattern. Their discussion are given
ISS formulation it is our aim to derive a small gain resulin Section IV for the nonlinear case. We draw conclusions
for general interconnected systems in this framework. Thisnd outline directions of future work in Section V.
complements recent results in [4], [6], where small gain
results have been achieved in the trajectory formulation Il. PROBLEM STATEMENT
as well as for the implication form of the ISS Lyapunov
formulation. We use the following notatior{: )7 denotes the transposi-

Considering the ISS property of the interconnections dfon of a vector. For any vectos b € R™ the relationa > b
two ISS systems, the pioneering papers used the definitiéh defined bya; > b; for all i = 1,...,n. The relations
in terms of trajectories [13] and Lyapunov functions with™>: <, < for vectors are defined in the same manner. That is,
the definition in the implication form [12]. These resultswWe are using the partial order @ induced by the positive
were recently extended to the case of interconnections 8fthantR’. The negation ofz > b is denoted bya 2 b
n systems, see [4], [6], [14], [5]. A small gain theoremand this means that there existsia® {1,...,n} such that
for two systems with ISS-Lyapunov functions satisfying®: < bi- By a-b we denote the scalar product of two vectors

and by A o B we denote the composition of operatotsaand
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subsystem is given by Lipschitz continuous, then it is sufficient to let (3) hold
] almost everywhere to characterize input-to-state stability.

Ni @i = filwn, o, ), @) Note that if in (3) we only require that; is an element

wherez € RN, w € RM, f, : RV+M _, RN:, For of the larger set of positive definite functions, then the

eachi we assume unique existence of solutions and forwaf§ SyStem is integral input-to-state stable (ilSS) [20]. The
completeness ¥, in the following sense. If we interpret the set of iISS systems is essentially larger than the set of ISS

variablesz;, j # i, andu as unrestricted inputs, then systemsyStemS' In particular in the iISS framework results of a small
jl 1 1 . . .

(1) is assumed to have a unique solution definedopnc) 92N type a_nd a corresponding Lyapunov construction were
for any given initial conditionz;(0) € RN and anyLce- developedin [9], [11]. _ o

inputs z; : [0,00) — RN, j # 4, andw : [0,00) — RM The aim of this paper is to find conditions on the data

J 9 9 ) . 9 " . A - H

This can be guaranteed for instance by suitable Lipschifd the dissipation formulation that guarantee 1SS of the
conditions on thef;. It will be no restriction to assume that INtérconnected system (2) and to provide a construction of an
all systems have the same (augmented) external inpTitis ISS-Lyapunov function for the interconnection under these

interconnection can be depicted as a network or a graph, seditions. We will also discuss how ilSS-results may be
Figure 1. obtained in this way for a special class of systems.

1. THE LINEAR CASE

— PE— We begin by studying the linear case, because here the

— 3 = . conditions are much easier to analyze and it gives an idea
1 6

T e how the general procedure should work, even though for
practical applications the linearity assumption is very often
T much too restrictive.
We assume that the ISS-Lyapunov formulation is given
A— in a linear form. Here linear means, that tkg, -functions

— —L PR iy Yiu € Koo @andvy;j € Koo U{0} 4,5 = 1,...,n are linear.

— a— Thus leta; > 0,7;; € [0,00) be positive resp. nonnegative

- B 27 numbers which represent the corresponding linear functions.
- | W Define the matrices

A=diag (a1, ...,om), =)z 0 (4)

and the vectors

Fig. 1. An interconnectiort Vvec(lf) — (Vl (1) ... Vn(%))T, (5)
T
We write the interconnection of the subsystems (1) as Viee(@) := (Vi(z1) .. Va(za)) .
S:odi=flz,u), f:RVtM RN 2) Then the inequalities (3) can be compactly written as
wherez = (z7,...,27)T is the state of the overall system Viee(®) < (= A+ T)Voee(@) + 7u([lul])
andf = (ff,..., fI)7T is defined correspondingly.

. ... with the obvious definition ofy,. In the previous equation
We assume that each of the subsystems in (1) satisfies ANis to be interpreted componentwise as defined in the
ISS condition in the dissipative formulation, i.e., there ar%_reliminaries

Lyapunov functiond/; : RY: — R, and functionsx;, 4., €

We note that(—A + I') is a Metzler matrix, thus a
Ke andwv;; € Ko U{0}, 4,5 =1,...,n such that ( + )

matrix for which Perron-Frobenius type results are available.

: An overall Lyapunov function may be defined using the
Vi(z;) < —a; (Vi a5 (V (2 i 3 i
(1) < ~au(Vila ))+§#;w( (23) +allul) - @) o ot

for all z; € RN i =1,...,n and allu € RM. Lemma lIl.1 Consider the matriced andI" defined in(4).
The I’Ight hand side in (3) Consisting of the functionsrhere exists a vectqr € R, >0 such that

a4, viw @nd~y,; is called the supply rate of the dissipation

inequality. In the sequel we will always assume that= 0. p"(=A+T) <0 (6)

We will also assume that the Lyapunov functidrisas well

as the functionsy; are continuously differentiable, which if and only if the following spectral radius condition holds

poses no real restriction. r(A7'T) < 1. @
As in one of our constructions we end up with a locally
Lipschitz continuous Lyapunov function for the whole sy- Proof: Note thatA = AT as it is of diagonal form

stem (2), we note that in case that thig are only locally and A is invertible, because in (3) the functions € K, ,



i=1,...,n. Definen := Apu, so thaty” = nT A~1. Then IV. MAIN RESULTS

p"(=A+T) <0 is equivalent to Unfortunately, there is no immediate extension of the
previous construction to the nonlinear case. For example
the matricesA and I' contain nonlinear functions instead
= ) of numbers and the notions of eigenvalue and spectral radius

If r(A~"T) < 1, then by the Perron-Frobenius theoremy, o 1\, |onger available. The construction problem of an ISS-
there exists a vectay > 0 such that Lyapunov function becomes essentially more difficult. Here
we will provide a nonsmooth construction for the nonlinear
case. In some applications smoothness of a Lyapunov func-
tion can be important in implementation. We will also show
a smooth construction for a special case.

We consider the interconnected system (2) and assume that
the subsystems (1) are ISS with the ISS-Lyapunov functions

0>nTA Y (=A+T) =nT (-1 + A7'T).

n (A7) <"

or equivalentlyn” (—I + A~1T") < 0, as desired.
Conversely, ifr(A=!T") > 1 then there exists a vector
z >0,z # 0 such that

(AT — 1)z > 2. Vi s_atisfying (3) where the supply rate functions can be
nonlinear.
We now fix such a vectot. So for anyn > 0 we have First let us note that the cond.mon (7) can be equivalently
formulated as"(TA~1) < 1 or written as
T —1 T
AT T - Dz > > - n
m( 22220 TA™'s #s, VseR™\{0}.
so that it cannot hold thaj” (-1 + A~'T) < 0. B The last condition makes sense also for nonlinear operators

We now assume that(A~'T') < 1 and choose a vector defined below.
i € R?, 1> 0 such that (6) holds. Consider the following The data we are working with is defined in (3). We assume
candidate for an ISS-Lyapunov function from now on that the matrix

I = ()i jr,m € (Koo U0

is irreducible and similarly to the linear case we define the

V(z) = MTVveC(x) = Zﬂz‘/z(xz) 8)
= following map onR’

Then we have

n n T
. . I'(s) = Y15(85)s s Y Tmi(s5)) . s€ERT (9)
V(r) = NTVUGC(x) < UT(_A + ) Vaee(w) + NT'YU(HU”) <; 7 ; 7 ) *
and definingd > L := uT(~A + T') we obtain and a diagonal operator acting ere R’} by
T
y A(s) = n(Sn . 1
V(@) < DVieelw) + 1 (el < =1V (@) + a7l (8) = (oalor) - en(su) 10

With this notation inequalities (3) can be written in a vector

for a positive number defined By = — max ,LT .Note thatif fgrm
T is irreducible, then: > 0 may be chosen as an eigenvector Viee < (—A4+T)(Viee(x)) + v (||u]]) (11)

of (—A+T") corresponding to the largest eigenvalue and in . . . .
this casdl is this largest eigenvalue. with -, defined in the obvious way. o

Of course, the last equation is the desired dissipative We now reformulate the small gain condm'ons that were
ISS condition and in (8) we have obtained a smooth Isé[ltroduced in [4], [6], [16]. to make them surgable fo_r_our_
Lyapunov function for the interconnection. We have thus 25€- The nonrobust version of the small gain condition is

proved the following resuilt. given by
FoA™'(s) #s, VseR}\{0}. (12)

Proposition I11.2 Consider a network of the forr{l), (2) It has been shown, that this condition is not quite sufficient
where each of the subsystems satisfies an ISS conditiont@fobtain the desired stability result. Thus the condition we

the form(3) where all the functions occurring in the right now want to impose is thebust small gain conditiomhich
hand side are linear. If for the matriced, I" defined in(4)  requires that for somé = diag (id + B1,...,id + Bn),

we have 8; € Koo we have
-1
r(A7T) <1, DoToAM(s)#s, ¥seR"\{0}.  (13)
then the interconnected systd®) is ISS with a dissipative To compare this with the linear case, note that in the linear
ISS Lyapunov function given K§g). case both (12) and (13) are equivalenttfA—1) < 1 which

is in turn equivalent to the condition(A~'T) < 1. In this
In the next section we will see how this idea can be used sense this is a natural generalization of the linear small gain
the general nonlinear case. condition.



One of the central results of [6], [16], [5] is that in From assumption (15) we have for all£ 0
the case thafl’ is irreducible and (13) holds there exists T . -
a continuously differentiable path : R, — R such that ~ 71(A(Veee))" T'o A7 0 A(Viee) <n(A(Veee))” A(Voec)
o(0) = 0, o is strictly increasing and unbounded in every.nd thus
component and so that

Dol oA Yo(r)) <a(r), V7>0. (14) “AVoee) " AViee) + AViee) T (Viee) < 0.

The existence of such a path is central in one of th&his term can be bounded from above by (V') for some
constructions for a Lyapunov function we will present. positive definite functiorv. Further recall that the functions
A further condition that will lead to another class of7; are assumed to be bounded. Hengei = 1,...,nis also
Lyapunov functions is the assumption that there are boukounded and there exists some positive constarguch that
ded positive definite functions;,i = 1,...,n, such that Yu(||ul]) - A\(Voee) < M~(||ul|) for somey € Ko . From

IS mi(r)dr = oo and so that fom = (n1,...,n,)" we (19) it follows that
have

dV (z)
< —
n(s)'To A7 (s) <n(s)’s, VseRL\{0}. (15) dt  — (V@) +(lful) (20)
Again a robust version of this condition is that there exist@nd the iISS property of the interconnection follows.
a diagonalD as before such that (i) In case the stronger assumption (16) holds, then in the
T 1 T . argument abover can be taken of clask. . Thus in case
n(s)" Dol o A7 (s) <n(s)"s, VseRL\{0}. (16) (16) the overall system is ISS. [ ]

As we will see, both these conditions allow for the construc-

tion of interesting Lyapunov functions. Remark IV.2 This theorem reduces the problem of a con-
In the linear case the statemetitd~'T') < 1 is equivalent  struction of a Lyapunov function to a geometrical problem of
to (14) as well as to (16). The latter equivalence has begRe construction of a continuous curveltf parameterized
shown in Lemma IIl.1. Interestingly, one equivalence isy 5, and satisfying (15) or respectively (16) condition.
obtained by studying right eigenvectors, while the other us@gowever the existence and construction of such auxiliary

left eigenvectors. We conjecture that (13) does not only impljunctions»; may be a nontrivial problem. We hope that the
(14) but also (16). The proof of the known result that (13small gain condition

implies the existence of the path described in (14) uses the
Knaster-Kuratowski-Mazurkiewicz theorem. We suspect that DoloA ! (s)#s, VseRL\{0}

using complementary arguments (16) can be shown. _ . . . .
9 P y arg (16) implies the existence. An explicit construction gfis a

Theorem IV.1 Consider the interconnected systefigand Matter of our future research. A similar method was used
assume that each subsystem has a dissipative 1SS-Lyapuliby3] and [6], where a construction of a corresponding
function as in(3). Then parameterized curve was performed on the base of the
(i) If the weak small gain conditiofl5) is satisfied and if corresponding small gain condition.

for eachi € {1,...,n} and A\;(7) := n;(au (7)), 7 € Ry we

have The functionV in (18) is smooth which is in general

o0 a desirable property. In the following we provide a nons-
/O Ai(r)dr = o0, (A7) mooth construction of an ISS-Lyapunov function for the

then the interconnection (2) is iISS with an iISS—Lyapuno\'/qtergonnecﬁ'o.tr: @) whtereta dcorrespondmg auxiliary function
function defined by can be explicitly constructed.

V(z) = Z /Vl(m)\i(T)dT‘ (18) Theorem IV.3 Let the systems given in (1) be ISS in the
— Jo sense of(3) and assume that their supply rate functions are
such that the operatorsl and I defined above satisfy the
(i) If the robust small gain condition(16) is satisfied small gain condition (13). Assume further that tar. . . . , o,,
and (17) holds then the interconnection (2) is ISS with &jjyen in(14) there are constants < ¢ < C such that
Lyapunov functiord/(x) again defined by18).

d
Proof: First note that (17) guarantees that the function 0<e< o toai(r) <C, forall 7> 0.
V defined in (18) is a proper function.
(i) Consider the derivative of along the trajectories of the
system (2). Defining\(Vyee) := (A1 (V1),..., A\ (V) and

Then the interconnection (2) is ISS. An ISS-Lyapunov func-
tion is given by

using (11) we obtain V(z):= max o ooy (Vi(y)) . (21)
dl B )\(V )TV 1=1,...,n
at - Tvees e (19) Proof: Let us assume for the moment that for a given

<A Viee) T(=A(Viee) + T (Viee) + vu(|[ul])) x # 0 we have that the maximum in (21) is uniquely attained



in the first component = 1, i.e., V(z) = o; *oa;(Vi(z1)). where conv M denotes the convex hull of the sét/.

Denote byI'; the first row of". We obtain As we have the dissipation inequality presented above as
. d , . V < —a(V(x)) + v(||lul|) for each of the extremal points
Viz) = T oy foar(Vi(z1)) = (o7  oar) (Vi(z1))Va(z1)  of eV (z), the dissipation inequality holds in terms of
the Clarke generalized derivative for ea¢hin the Clarke
and subgradient.) [
Vi(z1) < [—o1(Vi(z1)) +T1 (Voee(®)) + Y1a(|ul])] _Thus we have obtained two different ways of constructing
dissipative ISS Lyapunov functions. To compare the two
We now denotez; = a;(Vi(xi)),z == (21,...,2,)" and  constructions, we briefly return to the linear case as detailed
obtain the following estimate in Section IIl. Recall that for the matrices in (4) the necessary

condition isr(A~'T") < 1. The construction explained in

— —_ -1
a1 (Vi(@1)) + T1(Voee()) atlied () Section Il uses a left vector such thaf' (-4 + T') <

= —0100; H(z1)+T10A Y o100 (21),. .., 0000, (2,)) 0 and setsV(z) := p’Viec(z). In the construction of
. o Theorem V.3 we choose a right vecter € R’} such
and as_Py the as_slumptlon Qf this first part of the proof We ot TA-1s < s. For u = A-ls this is equivalent to
haveo; " (z1) > o; " (2;) for j =2,...,n, we obtain (—A+T)p < 0. We then letV/ (z) := max;_y...., 115 Vi(:)
< —croo7 (1) +T1 oA oa(or (21)) (22) and by Theorem IV.3 this is'an ISS Lyapunov function. In
the context of convex analysis maximization and summation
Now for 7 := o '(21) we have by (14) are dual operations. In this sense the two construction are

DoTod oo(r) < o) dual to one another.

A. Linearly Scaled Gains
FoA oo(r) < D~ oo(r) In_ this subsection we specialize the re_sults we hz_;\ve
obtained so far to the case, where the gains are obtained
and so (recall that; is defined before (13)) we have from by linearly scaling gain functions associated with each of
(22) for the first component that the subsystems.
_ 1 To be precise, we assume that there exist functigns
.01(7) +_F11 Of4 °o(7) Ke anda;,c;j € Ry, a; >0,4,j=1,...,n such that the
<((id +p1)" —id)ooi(r)  (23) gain functions in (3) are given by

= Prolid + ﬂl)_l °ar(Vi(z1)) <0. %‘j(s) = Cijgj(s)v Vi, ai(s) = aigi(s), Vi. (24)

Hence under the assumption tHatz) = ;' o ay (Vi (1)) We now letd = diag (ay, ..., a,) andC = (c;;)
is uniquely given we obtain and we denote fos € R o "

V(@) < —cBro(id + f1) " o or(V(2)) + Cya(lful]) -

The argument can be repeated for the indices2,...,n
in the same manner and so setting

a(s):= min cBio(id + B) " ooy(s)

hence

1,7=1,...,n

T
9(s) == (91(51), -, gn(sn))
Note that with respect to our previous notation we have
A(s) = Ag(s), T(s)=Cy(s).

=Ln Note also that from (3) we obtain ISS of the subsystems if
and we haveg; € K , i =1,...,n. On the other hand if the;
~(s) := Inax Ci(Jul]) are only positive definite, then we merely have integral ISS

for the subsystems
we obtain that
. - Theorem IV.4 Consider the interconnected systefhyand
V() < =a(V(2)) +(lul) - assume that each subsystem has a dissipative 1SS-Lyapunov

for all pointsz € RY where the maximizing argument in function as in(3) where the gain functions satisf{24).
(21) is uniquely defined. As the set of such points is afssumer(A~'C) < 1 and lety > 0 be a vector such that
open and dense subsetR®Y and as the functiof is locally p"(=A+C) <0.
Lipschitz continuous, this proves that it is a Lipschitz 1Si) If the functionsg;,i = 1,..., n are positive definite, then
Lyapunov function for the interconnestion. the interconnected system is integral ISS with an integral ISS
(In this case this can also be seen directly in an eadyapunov function given by
manlner, [2_],[1], [6]; AsV is obtained by the maX|m|_zat|on V(@) = 1 Vyeo () (25)
of C* functionsV;, i = 1,2, ..., n, the Clarke subgradient of
V in z € R™ can be computed by the set
. (i) If the functionsg; € K ,i = 1,...,n, then the

dciV(w) =conv{ v (07 oa;oV;) ()| interconnected system is ISS with an ISS Lyapunov function

o7t oa;(Vi(zy)) = V(z)}, given by(25).

K2



Proof: First note, that the choice @fin the formulation  [3]
of the theorem is possible by Lemma Ill.1. We have for
V(x) := ut'Vyee(x) that
) . - [4]
V(z) = HTVveC(x) < /LT(_A‘FC)Q(VveC(x))+NT7u(HUH)
and definingd > L := u”(—A + C) we obtain (5]
V(@) < Lg(Voee(@)) 1" vu(llull) < =1V (@) +pTvu(lul), g
where we define

1(s) := min{—=Lg(Vyee(2)) | 1" Viyee(x) = 5} . (7]
(8l

It is clear thatl is positive definite if theg; are and that
l € K Iif the g; are. This proves the assertion. [ |
It is worth mentioning that the spectral radius condition
implicitly requires some subsystems in the overall systen{gl
to be ISS in the case (i) of the above theorem. For instance,
in the two subsystems case; < cio implies as > co;  [10]
which indicates that at least one subsystem needs to be ISS
although the subsystem is defined by a dissipation inequalify;
only with positive definite functions of the integral ISS type.
This fact is consistent with the result in [10].
[12]
V. CONCLUSIONS

In this paper we have introduced an approach of @3
construction of Lyapunov functions for interconnected ISS
systems. This method provides an explicit construction fqm
a general interconnection of any number of ISS systems.
Our construction is based on the existence of some auxili-
ary function that can be found explicitly for a nonsmoot 15]
construction. We have also shown how they can be found
for a smooth construction in a special case of supply raiés
functions. Their construction for general supply rates is a
matter of our future investigations. We also hope to relax

the technical assumptiof < ¢ < (0; o o;)'(7) < C in  [17]
Theorem IV.3.
[18]
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