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Abstract—We consider nonlinear control systems with en- [2]) and was brought to the control community by [1].
coded feedback over delayed data-rate-limited communication \Ae consider systems of the form
channels. It is assumed that a smooth static state feedback
exists, which renders the closed loop system ISS with respect = f(z,u), z€R", weUCR™ Q)
to measurement noise, if there is no delay nor any data rate L . L .
restriction. For this case we present an encoder/decoder scheme Satisfying standard assumptions and for which it holds addi-
for which it can be shown that semi-global asymptotic stability tionally that a smooth stabilizing controller exists.

is achieved despite the presence of delay and packet loss. In [5] an encoding-decoding-scheme was introduced, which
drives the quantization error t6, making it possible to
I. INTRODUCTION achieve asymptotic stability under certain input-to-state sta-

In recent years control applications using data-rate limite@lity (ISS) assumptions (see Definition 1) and provided that
communication channels have attracted considerable attdR€ data rate is sufficiently large. _ _
tion. One approach in this area is to consider the feedback® 9€t an idea how the dynamic quantizer works, consider
design in a first step. The knowledge of system and conti-
nuous controller is then used to treat the problems arising ;
from the restrictions due to the communication channel. In W\ --------------
this paper we follow this approach and consider in particular

the effects of delay and packet loss in the channel. ‘p !
Consider a setup as in Figure 1. If the sensor is not close to ; .
.- | ) g
Decoder |- Actuator |-{System |-{ Sensor |- Encoder i(h) i

U(t2)

Fig. 2. Schematic representation of the dynamic quantizer
Fig. 1. The setup

the following course of actions (Figure 2). The encoder and
the actuator, the problem of controlling over a communicathe decoder agree on a hypercube in which the initial state
tion channel arises. Typically with a communication channdf known to lie. Initially, this hypercube is centered at the
effects of quantization, delay, packet loss, noise and out 8figin. The length of one of its edges is denoted (byVe
order delivery of packets have to be taken into account. Marfi@ll this hypercube the quantization region. This quantization
contributions dealing with the linear case can be found (e.g€gion is divided intoN™ hypercubes, where: is the
[6] and the references therein). dimension of the state space. We refer to those hypercubes
This paper is a contribution to the general topic of nonlinea®s subregions and t& as the number of partitions per
control with limited information. A good survey in this areadimension. The sensor determines the actual subregion in
is [4]. which the state lies and gives the centeof the subregion
In this paper we address the problems of quantizatiof? the encoder. With the help of this information the encoder
delay and packet loss with the help of what is known asonstructs a value from a set ofN™ different symbols and
a dynamic quantizer. The idea of a non-static quantizer wg§nds this information to the decoder. Usinghe decoder

first introduced within the communication community (c.f. reconstructs the center of the subregion in whiche is
known to lie and uses this information to close the loop.
This work was supported by the DFG priority programme 1305 “ControNow both the encoder and the decoder let the centfrthe
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subregion grow by the same amount (the augmented region4
is the dashed box in Figure 2), we are sure that the state [T \_ " “~—— ~— ~——"\
at time 7 is still within the subregion. Then this subregion
becomes the new quantization region. Now we are in the . LTS -
same situation as we started, namely to know a hypercube T
in which the state lies and are able to repeat the same steps. . o=
If the quotient between the growth of the quantization region T hid
and the reduction of the error due 16 is smaller thani, —. Coeor )
the quantization converges @ Teae B S Za(t)
For this scheme to work properly it is crucial that the encoder
and the decoder agree on how large the quantization region —_— -
is, into how many subregions it is divided and where the |+t +——t—————
center of the quantization region is. ' ’ ’
To achieve the last property we need encoder and decoder
close their loops with the same signal. This is easily achie- Fig. 3.
ved, if there is no delay in the channel, because the encoded

state is available for encoder and decoder at the same time.

The case of fixed delay has been examined in [8]. In ordear it B(-,t) € K for each fixedt > 0 and 3(r,t) decreases
to cope with time varying delays we propose to send timg ( ast — oo for each fixedr > 0.

information along with the encoded state. The encoder haSDeﬁnition 1: System (1) is Ca”ednput to state stable

to send the time information so the decoder knows the tim@ss) if there exist3 € K£ and vy € K. such that for
when the state was encoded. As soon as the new encodg@ry essentially bounded and measurable inpand any

state is available to the decoder, it changes the control actignjtial statex(0) the solution exists for all > 0 and satisfies
This time information has to be known by the encoder to

copy the behavior of the state dynamics of the decoder. lz()] < B(lz(0)], ) +v([[ulle), VE>0. 2

A sketch of the time evolution of the involved trajectoriesThe concept of ISS was introduced by Sontag [10] in the
can be found in Figure 3 wheteis the state of the encoder late 80s and has been adopted by the control community as a
andz, is the trajectory which will be used to close the |00p_beneficial tool in analyzing control systems with disturbances
We proceed as follows. In the ensuing Section 1l we colledthe interested reader is referred to [11]).

the necessary notation and definition. The problem statemdAtthe next section we formulate the problem precisely.

is foun(_j in SeC“OF' Il.B. . e .__B. Problem statement

In Section Il we give a detailed description of the quantiza- .

tion scheme and of the corresponding dynamics of encoder The control system is of the form (1) whege: R" x

and decoder. It is important to note that both encoder afd”” — R" is continuous and Lipschitz in the first compo-
decoder have identical internal models of the system. THENL i.e., for ally > 0 there exists arL.(n) € R such that
important idea is to ensure that at certain time .|nstanc¢?f(x’u)_f(y’u)‘ < L())|z—y|, Yo,y € R™, |u[ < 7. (3)
encoder and decoder are certain to have the same information

about the state of their respective internal models. The results of this paper can be extended to the case of
In Section IV we prove that with the encoding-decodingdocal Lipschitz continuity off in z. To ease presentation we
scheme introduced in Section Il it is possible to achievassume a global condition. This is no major restriction.
asymptotic stability. We conclude our paper with some Assumption 1:There exists a smooth: R” — R™, z —
remarks in Section V. k(x) with k(0) = 0 such that

Sketch of the time evolution of the trajectories involved

II. PRELIMINARIES AND PROBLEM STATEMENT & = f(z,k(z + ed)) )

is ISS with respect to the measurement eergt). Note that
this is equivalent to the existence of functiofiss L and

We use the following definitions. The symbat| = ~ e £, so that the solutions of (4) satisfies
max{|z;||]1 <4 < n} denotes the maximum norm dR".

The floor function|-| : R® — R™, 1z +— |z| is component- -~
wise the biggest iLtheger smaller or equgl Jtt’r@nl <i<n. 2@ < Bllwlto)l, ¢ =to) + (sesﬁf),t] |ed(8)|> vt = to.
Similarly the ceiling function[-] : R* — R", z — [z] (5)

is componentwise the smallest integer bigger or equal than

z;, 1 <4 < n. We introducer(t~) := lim; ~- r(t), if the Note that under Assumption 1 the unperturbed & 0)

limit exists. If a continuous functiomy : [0,00) — [0,00)  system (4) has an asymptotically stable equilibrium= 0.

is strictly increasing and(0) = 0 then it is said to be of = Now we want to introduce the communication channel and
classk. If « is also unbounded, we say it is of class,. A its properties. In our approach we consider TCP like packet
function 8 : [0, 00) x [0,00) — [0, 00) is said to be of class based transmissions over a noiseless, errorfree channel with

A. Preliminaries



delay and packet loss. The delay of packets from encoder tioe next quantized time step(= v(t,%,_1)) before they
decoder is denoted by and from decoder to encoder By send a new packet or take any action. We have the encoder
Assumption 2:For the communication channel the follo-and the decoder agree on these time instances. To achieve

wing should hold: this we make the following assumption.
1) The delaysr, 7 are bounded (i.e3dh € R,p € N s.t. Assumption 3:Clocks of encoder and decoder are syn-
h =: Tmin <7, 7 < Trnaz := ph) chronized and the timé = 0 when the encoder sends the
2) The number of consecutive packet loséés bounded first packet is known by the encoder and the decoder.
(i.e., maz St.6 < dmax) Remark 5: Assumption 3 is necessary in order to be able
3) Only packets sent from the encoder to the decoder agg transmit durations as opposed to time instances.
lost Assumption 4:Both the encoder and the decoder know the

4) The channel is able to transmit packets containing &ame bound of the initial state of the system (i.e., encoder

value from a set ofVyy, ., (Nimao 0dd) discrete values ;.4 qecoder know the samié € R s.t. 12(0)] < X).
and a single positive integer not greater than., € N -

Remark 1:The time a packet travels through the channe\?\/{]kﬁlsts#énf;g%ﬁorl ?gn(iaid;ustr;g:eallls c?sig\c/);r:idrﬁ(ejs r;g;gn n
can be greater than,,,... If this is the case it is considered J y P )

lost to ease the analysis. In this sensg,, may be regarded continuous the input is bounded as well. Hence the Lipschitz

. i canstant from (3) may be chosen &s:= L(n) with n =
;Zciec:elcs);gsn parameter for the trade-off between delay aprlaaX\m|§E(|k($)\) with £ as defined in Section IV

Remark 2: The assumption of reliable transmission bet-The table below illustrates when encoder or decoder send

ween decoder and encoder is quite strong. However the ackesspectlvely receive information.

are much smaller than the packets travelling from the encoder  Time Encoder Decoder

to the decoder. Therefore the decoder could s_en_d many ack’s sends receivet sends  receives

to ensure the encoder receives one of them withjp, units - ~

of time. b Sy Jk B
Remark 3:For simplicity we requireV,,,,, and in general tk + Tk ~ 8, Jk

all values ofN to be odd. This ensures that the center of the tk _ | ack, ik

guantization region is in the interior of one of the subregions. tre + Tk ack, ji

Remark 4:If binary encoding is used, item 4 of Assump-
tion 2 states that the communication channel must be able
transmitlogy (N7 ... + jmaz) bits within 7,,,,. units of time.

max

Where the symbok carries the state information from time
%O, ack is the acknowledgment ang and j; carry the time
information. Let us now summarize the variables we need

I11. QUANTIZATION AND ENCODING for the encoder and the decoder.

As sketched in the introduction we have to send time & center of the quantization region
information along with the encoded state. It is not reasonable = center of the subregion in which the state of the
to assume that it is possible to transmit one part of the system lies
information quantized and the other not. Therefore we have Z;  trajectory which is used to close the loop
to quantize the timeline as well. The encoder or the decoder? length of the quantization region
use the last time instance both agree upon to encode the timgV ~ number of partitions per dimension
elapsed since then. Hence the quantizer we propose for the\ design parameter which controls the speed of con-
timeline takes the following form: vergence of the quantization errdr € A < 1)
bt w4, e functions describing the quantization (see (35) re-
v(t, to) := { 0] h + tg. (6) spectively (34))
1 funct|.on that assigns values 9 (see (37)) . .
=3 ty last time the encoder successfully transmitted in-
. ) i ] formation to the decoder
Here / is the coarseness of the quantizer, as defined in ; number of consecutive packets lost since the last
Assumption 2.1, ang andj, are the values which will be successful transmission

transmitted over the communication channel from encoder

to decoder or back. Note thdt is a counter, which is The initial states for the encoder and the decoder are:

increased by one each time the encoder sends information to

:Ee decoder. '(rjhe \/tglueg g);tt and j garte) u;shedt.to rgcotnstruct k=1, 7o=1i=0, fh=0, £ =0andt =0
e corresponding time instances. e the time instances B _ B L _ B

when the encoder sends thth packet and is the delay ~ 0(0) =0 (07) =0, £(07) =2X andz4(0) = 0.

of the kth packet. On the other hang is the time when

the decoder sends an ack andis the delay of thé:th ack. In the following equations for the encoder we have to distin-

It is important to note that if the encoder or the decodeguish between three different cases. A detailed description

receive a packet (e.g., at= t,_1 + 7x_1), they wait until of the meaning of the particular equations is found later on.

I Sht



(i) If the encoder receives an ack (i.e.5= tx_1 + T_1): Equation (24) makes sure that the value the decoder uses to
close the loop on the intervady, ¢;) is also known by the

Ekil = t_szl:‘" Jr—1h (7) encoder.
te=v(t,ty—1) (8)  Remark 6:Note that the above equations are validior
lt,) = é(fk_l)eL(tk*tk—l) (9) 2. The very first time £ = 1) the encoder sends information
0(E) = M(E—1) (10) only the equations (_11_),(_13),(14), (15) and (16) are used. If
NE) — u(fe. T \ 11 the packet sent at timg is not lost, the decoder does not
(_f) - '“(_"” k=1,2) 1D yse equation (27) and (28) until it receives the next packet.
z(ty ) = Z(tk—1)+ The equations for the decoder are:
Tt . . . _ _ .
. If the decod d ket (ite=t :
[ F(E(s), k(i (s)))ds+ (12) 0] e decoder received a packet (i &+ Tk)
tli;l ty = tp—1 + jrh (25)
o f(@(s), k(2(s)))ds ty = v(t,tx) (26)
th_1 I—\ #\  L(tk—t})
. L _ _ _ Lt ) = L(t))e k (27)
() = pel@li7) (i), (), N@) (19 RS o
() = () (14) , "
O N(tr) = p(tr, t5, A (29)
U =tk—1, tp=1p1 (15) (E) (fk: 15, ) £
5(tr) =0 (16) z(t,) = Talte—1) +  f(®2(s), k(2(s)))ds
th—1
If the encoder receives an ack (case (i), it reconstructs (30)
the time the decoder sent the ack (7), calculates the next (T i — T
: . g . ) = s, 0(E), N(E 31
quantized time (8) and update$t, ) accordingly (12). Both o) = pal@(ty) j (t ) N (8:)) (31)
integrals are needed because the control action changes 5 (1) = 2(F Mo k(7 ds (32
betweent,_; andt,. The valuez(t, ) becomes the new Taltr) = 2(be) + 7 F(@(s), k(za(5))ds (32)

center of the quantization region (14). As the estimation .. .
error grows, the lengtlf of the quantization region has to (i) Otherwise .

be augmented (9). The quantization region is then divided z4(t) = f(Za(t), k(Za(t))) (33)

Into Nn s_ubreg|(_)ns. Thﬁ Jump frorr; tEe cegter .Of thehWhOIGEquations (27)-(31) ensure that encoder and decoder agree
qtuatlntll_zat[ondreglc_)g E;)bt elc3enter 0 ; elsugzaggn wt.ere i’gn the value ofz(#;) at time ¢, while (32) calculates the
stale fies IS describe y (13) respectively (34). Equa !on_( ajectory forward in time to compensate the delay between
ensures thalV is large enough so that the new quantization

S encoder and decoder. By Assumption 2.3 no ack’s are lost.
rfg'lon 's by afgctor 01\. smaller than the old'(10). The yalue Hence encoder and decoder agree on the valug.of
t; introduced in (15) is always the quantized time insta

after the encoder received an ack. Equation (16) &eis n“'he function, describes the quantization

zero to indicate that no packet loss occurred. s 2 N0 — 3 N _ 1| 7/ 34
(ii) If packet loss occurred (i.et,= t; + 2(5(t) + 1)Timaz): pe(T, 2, NO) =2+ | e —2)+ 51 (34)
T T —
E=1th—1+ 2Tmaz (17) =s
0E;) = U(Ex) = L(Fgp—r)eF Bt (18) and ,
N(tr) = p(te, ti, A) (19) (T, 5, N.O) =7 + 5. (35)
7l = 20 (20) Remark 7:If at time ¢ the state lies within the quanti
TN (miT=\ T — 7 : k l
I(tkz B ie(m(t’“ );x(tlfz’f(tk ) Ntw)) (21) zation region, the error between the state and the estimate
ty =tp—1, T =1tk (22)  shrinks by N because of the jump from the center of the
§(tk) =0(t;) +1 (23) region to the center of a subregion. Hence

If 27,4, UNits of time elapse without receiving an ack (case ; (5| < / ; S(E)] < l 36
(ii)), the encoder updates the length of the quantization Jo(te) — 2(t),)| < 3= lo(te) —2(te)l < 5 (36)

— 2N
region, the numberV and the center of the quantizationhoIdS which can be seen from (34) and (13)

region but it cancels the jump made by the encoder the | . .
time step by using the old value (20) to encode the state. Tarﬁ]e functiony. takes the following form

counter of packet losses is increased by one due to (23). o LTk —tr—1)

In both cases (i) and (ii) the encoder sends the quantization plths b1, A) = 2 {2)\-‘ + 1. (37)
informations and the time information, = [(t — ¢;_,)/h].

(iii) Otherwise: The reason for this particular choice pfis that we need

. A . N (11) to be an integer large enough to compensate for the
2(t) = f(2(), k(2(1))) (24) " growth of ¢ (9). The valueN has to be odd otherwise the



quantizer (34) would take a different form. Due to the continuity ofz, at ;, and (14)
The evolution of the closed loop system is thus given by o s
Id(tg) = I(tg)

o(t) = f(x(t), k(Za(t))) .- (38) : .
holds and we can repeat the arguments inductively to con-
We now give conditions under which this scheme results igjude.
stabilization. If a packet loss occurred(f;) > 0), then
IV. MAIN RESULT Za(t) = T(ty) = ()

Here we show that with the encoder/decoder schenhe Ids si 20 Is the last i de by th d
introduced in the previous section, asymptotic stability can b olds since (20) cancels the last jump made by the encoder.

achieved if Assumptions 1-4 hold and a bandwidth conditioh's all three trajectories follow the same dynamics we have

is satisfied. _ _ Za(t) = T(t) = &(t) V€ [T, Err)-
Theorem 1:Consider system (1) with encoder/decoder S
scheme described in (7)-(33) and let Assumptions 1-4 holélence the proof for the case of packet loss is similar to the

If previous arguments. [ |
Nypaw > €2LTmazdmaz 4 q (39) The introduction 0%, in (39) guarantees that the number
N,.qz is still big enough to cope with the larger time interval
and ) over which the length of the quantization region can grow.
Jmazl 2 2TmazOmaz » (40) By Assumption 2 the time between two successful transmis-
thenu = k(z4), wherez, is generated by the decoder (33),sions from the encoder to the decoder is always smaller than
asymptotically stabilizes the equilibriumt = 0 of (1). 2TmazOmaz- Before we proceed with the next lemma, note
Remark 8:Condition (40) states how small the coarsenesdiat it follows from (37) and (11) respectively (29), (19) that
h can be chosen without violating the bandwidth constraints oLt —tk—1)
due t0j,qe. Although (40) can be satisfied by choosihg A> NG (43)
large, a small value of can possibly save bandwidth. §
It follows readily from (6) and Assumption 2 that, j, < Now definee.(t) := z(t) — z(t) as the error between
Jmaz , Yk € N whenever (40) holds. the estimated state and the state of the encoder system.

We prove Theorem 1 as follows: By Lemma 1 all systemd0 understand the ensuing lemma it is helpful to consider
close their loop using the same signal. This is used to bouridgure 2 again. Note that at timg the value of N ((37)

the error between state and encoder estimate in Lemmargspectively (11)) compensates the growth of the err¢t)

As an easy consequence a bound on the error on the deco@derthe intervallt,_1,1;).

side can be obtained (Corollary 1). Lemma 2:Consider system (1) with encoder/decoder
The evolution ofz(t) is governed by the following equation. scheme described in (7)-(33). If Assumptions 1-4 hold, the

F(@(1), k(2(1))) e, ) error on the encoder side is bounded by
7 T(t), k(2(t)) t € [t
x(t):{ (41) (i) <AFX . VEEN.

z(t), k(z(t t € [y, try1) _ o
@), k(@) _ [_k k_H) _ Proof: Because of Assumption 4 and initialization of
The next lemma shows on which time intervals certaifhe encoder, the initial state(?,) is within the quantization

signals coincide. region.
Lemma 1:Consider encoder/decoder scheme described in _
(7)-(33). If Assumptions 1-4 hold, then for alle [t;, ;) 10— 2(f1)] = |ec(f7)] < X = E(Ql ).
za(t) = (1) Hence we can use (36) to obtain
and for allt € [ty, 1) we havez,(t) = z(t). ) ()
Proof: We first treat the case of no packet loss. Because lee(t1)] < T(lt_l) <AX,

of the initial condition of the encoder and the decoder and
(14) it holds thatz,(0) = #(0) = 0. Using#; = 0 and Where the last conclusion follows from (43) and the fact that
equations (24) and (33) we obtain t1 = to.

Leta Vb := max{a,b} anda Ab := min{a, b}. The encoder

Ta(t) = 2(t) Vte€ [t h). (42) error e, satisfies fort € [tx_1,%;) according to (41) and
At time 7, the value ofz(f;) becomes available to the (38): )
decoder (31). By (32), (41) and (42) we have lec(t)] = [2(t) — 2(t)| = [2(tx-1)
Za(ty) = Z(t1). Te_1At tVig_1
Falh) =(h) [ kst [ )k )ds

Since both trajectories follow the same dynamics on the .- fh—1
interval [, f,+1) by (33) and (41) we get

B0 = (0. Ve . “elli) — [ fa(s), kals))ds|

k



We can split the last integral and collect the correspondingrom the bound of the initial valu& and the maximal error

terms to get:
lee(t)] = 12(th-1) — 2(tk—1)+

[ o) b)) = Flals) baa(s))ds

tr—1

[ ) ka6~ £als) K(aa(s))dsl

th—1

Now we can use (3) and Lemma 1 to arrive at:

lee ()] < lee(Er1)| + L/ leo(5)]ds.

tr—1

Because of the continuity oé.(¢) on the intervalt €
[tk—1,tx) the Gronwall-lemma yields

|€e(£l;)| < ‘ee(tfkfl)‘eL(Ekifkflx
If we assume thae. (fx_1)| < A\*~1X we conclude:
leo (F7)] < AP~ xeEtr—tr-1),

Hence we can use (9), (10), (36) and (43) to deduce:

_ 14
eeB)] < gk

which completes the proof.

[ ]
Now that we have established a bound on the error on th
encoder side, we have to achieve a similar goal on trge

on the decoder sidd&” we obtain using (5) that
[z(t)] < B(X,0) +y(W) = E Vt=0.
Using (5) again we get

lz(t)| < B(E, T —to) + ( sup |€d(8)|> vt > to.

Se[to,t]

As ty goes to infinity the right hand side converges to zero
which shows the attractivity of* = 0. On the other hand
we can interpret (5) as:

lz(t)] < B(|z(0)],0) + v(|Z4(0) — z(0)]e*FTma=).

Hence the right hand side iska,, function depending only
on z(0) which together with the attractivity concludes the
proof. ]

V. CONCLUSION

The design of an encoder/decoder scheme has been pre-
sented, which despite quantization, delay and packet loss is
able to achieve semi-global asymptotic stability if the closed
loop system is ISS with respect to measurement errors and
a bandwidth condition is satisfied. The construction is semi-
global as we start with a bound for the initial state. In [5]
an idea called “zooming-out” is presented to deal with this
limitation. In [9], [7] the ISS assumption may be weakened.

e expect that similar techniques can be used here. The
cheme outlined in this work is sensitive to errors between

decoder side. To this end define the error on the deCOdﬁ‘]re encoder state and the decoder state. ldeas to bound the

sideey(t) := z4(t) — z(t) and a constantl := Xel7mas,

Corollary 1: Consider system (1) with encoder/decode
scheme described in (7)-(33). Let Assumptions 1-4 hold, then

the error on the decoder side is bounded by

lea(tx)] < AW, VEeN.
Proof: Using Lemma 1 we are able to conclude

lea(i)] = lee(E)I-

Using the Gronwall Lemma as in the proof of Lemma 2, the

error evolves according to:
lea(ti)| = lee(tr)| < lec(r)|e"™.
Using Lemma 2 completes the proof because we obtain
lea(tr)] < A Xel™ < AFW.

With the previous results we may prove Theorem 1.[7]

Proof: (of Theorem 1) From (39) there exisks> 0 with

2LTmazOmaz
1>A> > 0.

maw_l

It is easy to see from (37) and, (11), (19), (29) that this[o]

choice of A\ guarantees that

N(#) < Nmaz Yk €N,

as N,,q. is 0dd. Using Corollary 1 and the fact that< 1
it follows that }
\ed(tk)| — 0

k—oo

Fnismatch between encoder and decoder initialization for a
similar scheme can be found in [3].
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