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Abstract— We consider nonlinear control systems with en-
coded feedback over delayed data-rate-limited communication
channels. It is assumed that a smooth static state feedback
exists, which renders the closed loop system ISS with respect
to measurement noise, if there is no delay nor any data rate
restriction. For this case we present an encoder/decoder scheme
for which it can be shown that semi-global asymptotic stability
is achieved despite the presence of delay and packet loss.

I. INTRODUCTION

In recent years control applications using data-rate limited
communication channels have attracted considerable atten-
tion. One approach in this area is to consider the feedback
design in a first step. The knowledge of system and conti-
nuous controller is then used to treat the problems arising
from the restrictions due to the communication channel. In
this paper we follow this approach and consider in particular
the effects of delay and packet loss in the channel.
Consider a setup as in Figure 1. If the sensor is not close to
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Fig. 1. The setup

the actuator, the problem of controlling over a communica-
tion channel arises. Typically with a communication channel
effects of quantization, delay, packet loss, noise and out of
order delivery of packets have to be taken into account. Many
contributions dealing with the linear case can be found (e.g.,
[6] and the references therein).
This paper is a contribution to the general topic of nonlinear
control with limited information. A good survey in this area
is [4].
In this paper we address the problems of quantization,
delay and packet loss with the help of what is known as
a dynamic quantizer. The idea of a non-static quantizer was
first introduced within the communication community (c.f.,
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[2]) and was brought to the control community by [1].
We consider systems of the form

ẋ = f(x, u), x ∈ Rn, u ∈ U ⊂ Rm (1)

satisfying standard assumptions and for which it holds addi-
tionally that a smooth stabilizing controller exists.
In [5] an encoding-decoding-scheme was introduced, which
drives the quantization error to0, making it possible to
achieve asymptotic stability under certain input-to-state sta-
bility (ISS) assumptions (see Definition 1) and provided that
the data rate is sufficiently large.
To get an idea how the dynamic quantizer works, consider

Fig. 2. Schematic representation of the dynamic quantizer

the following course of actions (Figure 2). The encoder and
the decoder agree on a hypercube in which the initial state
is known to lie. Initially, this hypercube is centered at the
origin. The length of one of its edges is denoted by`. We
call this hypercube the quantization region. This quantization
region is divided intoNn hypercubes, wheren is the
dimension of the state space. We refer to those hypercubes
as subregions and toN as the number of partitions per
dimension. The sensor determines the actual subregion in
which the state lies and gives the centerx̄ of the subregion
to the encoder. With the help of this information the encoder
constructs a values from a set ofNn different symbols and
sends this information to the decoder. Usings the decoder
reconstructs the center̄x of the subregion in whichx is
known to lie and uses this information to close the loop.
Now both the encoder and the decoder let the centerx̄ of the
subregion follow the closed loop dynamics for some timeτ .
Because of the dynamics the error between the estimatex̄
and the statex can grow by a certain factor. If we let the



subregion grow by the same amount (the augmented region
is the dashed box in Figure 2), we are sure that the state
at time τ is still within the subregion. Then this subregion
becomes the new quantization region. Now we are in the
same situation as we started, namely to know a hypercube
in which the state lies and are able to repeat the same steps.
If the quotient between the growth of the quantization region
and the reduction of the error due toN is smaller than1,
the quantization converges to0.
For this scheme to work properly it is crucial that the encoder
and the decoder agree on how large the quantization region
is, into how many subregions it is divided and where the
center of the quantization region is.
To achieve the last property we need encoder and decoder
close their loops with the same signal. This is easily achie-
ved, if there is no delay in the channel, because the encoded
state is available for encoder and decoder at the same time.
The case of fixed delay has been examined in [8]. In order
to cope with time varying delays we propose to send time
information along with the encoded state. The encoder has
to send the time information so the decoder knows the time
when the state was encoded. As soon as the new encoded
state is available to the decoder, it changes the control action.
This time information has to be known by the encoder to
copy the behavior of the state dynamics of the decoder.
A sketch of the time evolution of the involved trajectories
can be found in Figure 3 wherēx is the state of the encoder
andx̄d is the trajectory which will be used to close the loop.
We proceed as follows. In the ensuing Section II we collect
the necessary notation and definition. The problem statement
is found in Section II.B.
In Section III we give a detailed description of the quantiza-
tion scheme and of the corresponding dynamics of encoder
and decoder. It is important to note that both encoder and
decoder have identical internal models of the system. The
important idea is to ensure that at certain time instances
encoder and decoder are certain to have the same information
about the state of their respective internal models.
In Section IV we prove that with the encoding-decoding-
scheme introduced in Section III it is possible to achieve
asymptotic stability. We conclude our paper with some
remarks in Section V.

II. PRELIMINARIES AND PROBLEM STATEMENT

A. Preliminaries

We use the following definitions. The symbol|x| =
max{|xi||1 ≤ i ≤ n} denotes the maximum norm onRn.
The floor functionb·c : Rn → Rn, x 7→ bxc is component-
wise the biggest integer smaller or equal thanxi, 1 ≤ i ≤ n.
Similarly the ceiling functiond·e : Rn → Rn, x 7→ dxe
is componentwise the smallest integer bigger or equal than
xi, 1 ≤ i ≤ n. We introducer(t−) := limt↗t− r(t), if the
limit exists. If a continuous functionα : [0,∞) → [0,∞)
is strictly increasing andα(0) = 0 then it is said to be of
classK. If α is also unbounded, we say it is of classK∞. A
function β : [0,∞)× [0,∞) → [0,∞) is said to be of class
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Fig. 3. Sketch of the time evolution of the trajectories involved

KL if β(·, t) ∈ K for each fixedt ≥ 0 andβ(r, t) decreases
to 0 as t →∞ for each fixedr ≥ 0.

Definition 1: System (1) is calledinput to state stable
(ISS) if there existβ ∈ KL and γ ∈ K∞ such that for
every essentially bounded and measurable inputu and any
initial statex(0) the solution exists for allt > 0 and satisfies

|x(t)| ≤ β(|x(0)|, t) + γ(‖u‖∞), ∀t > 0. (2)
The concept of ISS was introduced by Sontag [10] in the
late 80s and has been adopted by the control community as a
beneficial tool in analyzing control systems with disturbances
(the interested reader is referred to [11]).
In the next section we formulate the problem precisely.

B. Problem statement

The control system is of the form (1) wheref : Rn ×
Rm → Rn is continuous and Lipschitz in the first compo-
nent, i.e., for allη > 0 there exists anL(η) ∈ R such that

|f(x, u)−f(y, u)| ≤ L(η)|x−y|, ∀x, y ∈ Rn , |u| ≤ η . (3)

The results of this paper can be extended to the case of
local Lipschitz continuity off in x. To ease presentation we
assume a global condition. This is no major restriction.

Assumption 1:There exists a smoothk : Rn → Rm, x 7→
k(x) with k(0) = 0 such that

ẋ = f(x, k(x + ed)) (4)

is ISS with respect to the measurement errored(t). Note that
this is equivalent to the existence of functionsβ ∈ KL and
γ ∈ K∞ so that the solutions of (4) satisfies

|x(t)| ≤ β(|x(t0)|, t− t0) + γ

(
sup

s∈[t0,t]

|ed(s)|

)
∀t ≥ t0.

(5)

Note that under Assumption 1 the unperturbed (ed ≡ 0)
system (4) has an asymptotically stable equilibriumx∗ = 0.

Now we want to introduce the communication channel and
its properties. In our approach we consider TCP like packet
based transmissions over a noiseless, errorfree channel with



delay and packet loss. The delay of packets from encoder to
decoder is denoted bȳτ and from decoder to encoder bỹτ .

Assumption 2:For the communication channel the follo-
wing should hold:

1) The delays̄τ , τ̃ are bounded (i.e.,∃h ∈ R, ρ ∈ N s.t.
h =: τmin ≤ τ̄ , τ̃ ≤ τmax := ρh)

2) The number of consecutive packet lossesδ is bounded
(i.e., ∃δmax s.t. δ ≤ δmax)

3) Only packets sent from the encoder to the decoder are
lost

4) The channel is able to transmit packets containing a
value from a set ofNn

max (Nmax odd) discrete values
and a single positive integer not greater thanjmax ∈ N

Remark 1:The time a packet travels through the channel
can be greater thanτmax. If this is the case it is considered
lost to ease the analysis. In this senseτmax may be regarded
as a design parameter for the trade-off between delay and
packet loss.

Remark 2:The assumption of reliable transmission bet-
ween decoder and encoder is quite strong. However the ack’s
are much smaller than the packets travelling from the encoder
to the decoder. Therefore the decoder could send many ack’s
to ensure the encoder receives one of them withinτmax units
of time.

Remark 3:For simplicity we requireNmax and in general
all values ofN to be odd. This ensures that the center of the
quantization region is in the interior of one of the subregions.

Remark 4: If binary encoding is used, item 4 of Assump-
tion 2 states that the communication channel must be able to
transmitlog2(Nn

max + jmax) bits within τmax units of time.

III. QUANTIZATION AND ENCODING

As sketched in the introduction we have to send time
information along with the encoded state. It is not reasonable
to assume that it is possible to transmit one part of the
information quantized and the other not. Therefore we have
to quantize the timeline as well. The encoder or the decoder
use the last time instance both agree upon to encode the time
elapsed since then. Hence the quantizer we propose for the
timeline takes the following form:

ν(t, t0) :=
⌈

t− t0
h

⌉
︸ ︷︷ ︸

:=˜̄jk

h + t0. (6)

Here h is the coarseness of the quantizer, as defined in
Assumption 2.1, and̄jk and j̃k are the values which will be
transmitted over the communication channel from encoder
to decoder or back. Note thatk is a counter, which is
increased by one each time the encoder sends information to
the decoder. The values ofj̄k and j̃k are used to reconstruct
the corresponding time instances. Lett̄k be the time instances
when the encoder sends thekth packet and̄τk is the delay
of the kth packet. On the other hand̃tk is the time when
the decoder sends an ack andτ̃k is the delay of thekth ack.
It is important to note that if the encoder or the decoder
receive a packet (e.g., att = t̃k−1 + τ̃k−1), they wait until

the next quantized time step (t̄k = ν(t, t̃k−1)) before they
send a new packet or take any action. We have the encoder
and the decoder agree on these time instances. To achieve
this we make the following assumption.

Assumption 3:Clocks of encoder and decoder are syn-
chronized and the timēt1 = 0 when the encoder sends the
first packet is known by the encoder and the decoder.

Remark 5:Assumption 3 is necessary in order to be able
to transmit durations as opposed to time instances.

Assumption 4:Both the encoder and the decoder know the
same bound of the initial state of the system (i.e., encoder
and decoder know the sameX ∈ R s.t. |x(0)| ≤ X).

By Assumptions 1 and 4 there is a bounded region in
which the trajectory remains for all positive times. Ask is
continuous the input is bounded as well. Hence the Lipschitz
constant from (3) may be chosen asL := L(η) with η =
max|x|≤E(|k(x)|) with E as defined in Section IV
The table below illustrates when encoder or decoder send
respectively receive information.

Time Encoder Decoder
sends receives sends receives

t̄k s, j̄k

t̄k + τ̄k s, j̄k

t̃k ack, j̃k

t̃k + τ̃k ack, j̃k

Where the symbols carries the state information from time
t̄k, ack is the acknowledgment andj̄k and j̃k carry the time
information. Let us now summarize the variables we need
for the encoder and the decoder.

x̂ center of the quantization region
x̄ center of the subregion in which the state of the

system lies
x̄d trajectory which is used to close the loop
` length of the quantization region
N number of partitions per dimension
λ design parameter which controls the speed of con-

vergence of the quantization error (0 < λ < 1)
ϕd, ϕe functions describing the quantization (see (35) re-

spectively (34))
µ function that assigns values toN (see (37))
t∗k last time the encoder successfully transmitted in-

formation to the decoder
δ number of consecutive packets lost since the last

successful transmission

The initial states for the encoder and the decoder are:

k = 1, τ̃0 = t̃0 = 0, t̄0 = 0, t̄1 = 0 and t∗1 = 0
δ(0) = 0 x̄(0−) = 0, `(0−) = 2X and x̄d(0) = 0.

In the following equations for the encoder we have to distin-
guish between three different cases. A detailed description
of the meaning of the particular equations is found later on.



(i) If the encoder receives an ack (i.e.,t = t̃k−1 + τ̃k−1):

t̃k−1 = t̄k−1 + j̃k−1h (7)

t̄k = ν(t, t̃k−1) (8)

`(t̄−k ) = `(t̄k−1)eL(t̄k−t̄k−1) (9)

`(t̄k) = λ`(t̄k−1) (10)

N(t̄k) = µ(t̄k, t̄k−1, λ) (11)

x̄(t̄−k ) = x̄(t̄k−1)+∫ t̃k−1

t̄k−1

f(x̄(s), k(x̂(s)))ds+ (12)∫ t̄k

t̃k−1

f(x̄(s), k(x̄(s)))ds

x̄(t̄k) = ϕe(x̄(t̄−k ), x(t̄k), `(t̄−k ), N(t̄k)) (13)

x̂(t̄k) = x̄(t̄−k ) (14)

t∗k = t̄k−1 , t̃∗k = t̃k−1 (15)

δ(t̄k) = 0 (16)

If the encoder receives an ack (case (i)), it reconstructs
the time the decoder sent the ack (7), calculates the next
quantized time (8) and updatesx̄(t̄−k ) accordingly (12). Both
integrals are needed because the control action changes
betweent̄k−1 and t̄k. The valuex̄(t̄−k ) becomes the new
center of the quantization region (14). As the estimation
error grows, the length̀ of the quantization region has to
be augmented (9). The quantization region is then divided
into Nn subregions. The jump from the center of the whole
quantization region to the center of the subregion where the
state lies is described by (13) respectively (34). Equation (11)
ensures thatN is large enough so that the new quantization
region is by a factor ofλ smaller than the old (10). The value
t∗k introduced in (15) is always the quantized time instant
after the encoder received an ack. Equation (16) setsδ to
zero to indicate that no packet loss occurred.
(ii) If packet loss occurred (i.e.,t = t∗k + 2(δ(t) + 1)τmax):

t̄k = t̄k−1 + 2τmax (17)

`(t̄−k ) = `(t̄k) = `(t̄k−1)eL(t̄k−t̄k−1) (18)

N(t̄k) = µ(t̄k, t∗k, λ) (19)

x̄(t̄−k ) = x̂(t̄−k ) (20)

x̄(t̄k) = ϕe(x̄(t̄−k ), x(t̄k), `(t̄−k ), N(t̄k)) (21)

t∗k = t∗k−1 , t̃∗k = t̃∗k−1 (22)

δ(t̄k) = δ(t̄−k ) + 1 (23)

If 2τmax units of time elapse without receiving an ack (case
(ii)), the encoder updates the length of the quantization
region, the numberN and the center of the quantization
region but it cancels the jump made by the encoder the last
time step by using the old value (20) to encode the state. The
counter of packet losses is increased by one due to (23).
In both cases (i) and (ii) the encoder sends the quantization
informations and the time information̄jk =

⌈
(t− t̃∗k−1)/h

⌉
.

(iii) Otherwise:

˙̂x(t) = f(x̂(t), k(x̂(t))) (24)

Equation (24) makes sure that the value the decoder uses to
close the loop on the interval[t̄k, t̃k) is also known by the
encoder.

Remark 6:Note that the above equations are valid fork ≥
2. The very first time (k = 1) the encoder sends information
only the equations (11),(13),(14), (15) and (16) are used. If
the packet sent at timēt1 is not lost, the decoder does not
use equation (27) and (28) until it receives the next packet.
The equations for the decoder are:

(i) If the decoder received a packet (i.e.t = t̄k + τ̄k):

t̄k = t̃k−1 + j̄kh (25)

t̃k = ν(t, t̄k) (26)

`(t̄−k ) = `(t∗k)eL(t̄k−t∗k) (27)

`(t̄k) = λ`(t̄∗k) (28)

N(t̄k) = µ(t̄k, t∗k, λ) (29)

x̄(t̄−k ) = x̄d(t̃k−1) +
∫ t̄k

t̃k−1

f(x̄(s), k(x̄(s)))ds

(30)

x̄(t̄k) = ϕd(x̄(t̄−k ), s, `(t̄−k ), N(t̄k)) (31)

x̄d(t̃k) = x̄(t̄k) +
∫ t̃k

t̄k

f(x̄(s), k(x̄d(s)))ds (32)

(ii) Otherwise
˙̄xd(t) = f(x̄d(t), k(x̄d(t))) (33)

Equations (27)-(31) ensure that encoder and decoder agree
on the value ofx̄(t̄k) at time t̃k while (32) calculates the
trajectory forward in time to compensate the delay between
encoder and decoder. By Assumption 2.3 no ack’s are lost.
Hence encoder and decoder agree on the value oft∗k.
The functionϕ describes the quantization

ϕe(x̄, x, N, `) = x̄ +
⌊

N

`
(x− x̄) +

1
2

⌋
︸ ︷︷ ︸

=s

`

N
(34)

and

ϕd(x̄, s,N, `) = x̄ + s
`

N
. (35)

Remark 7: If at time t̄k the state lies within the quanti-
zation region, the error between the state and the estimate
shrinks byN because of the jump from the center of the
region to the center of a subregion. Hence

|x(t̄k)− x̄(t̄−k )| ≤ `

2
⇒ |x(t̄k)− x̄(t̄k)| ≤ `

2N
(36)

holds, which can be seen from (34) and (13).
The functionµ takes the following form

µ(t̄k, t̄k−1, λ) := 2
⌈

eL(t̄k−t̄k−1)

2λ

⌉
+ 1. (37)

The reason for this particular choice ofµ is that we need
N (11) to be an integer large enough to compensate for the
growth of ` (9). The valueN has to be odd otherwise the



quantizer (34) would take a different form.
The evolution of the closed loop system is thus given by

ẋ(t) = f(x(t), k(x̄d(t))) . (38)

We now give conditions under which this scheme results in
stabilization.

IV. MAIN RESULT

Here we show that with the encoder/decoder scheme
introduced in the previous section, asymptotic stability can be
achieved if Assumptions 1-4 hold and a bandwidth condition
is satisfied.

Theorem 1:Consider system (1) with encoder/decoder
scheme described in (7)-(33) and let Assumptions 1-4 hold.
If

Nmax > e2Lτmaxδmax + 1 (39)

and
jmaxh ≥ 2τmaxδmax , (40)

thenu = k(x̄d), wherex̄d is generated by the decoder (33),
asymptotically stabilizes the equilibriumx∗ = 0 of (1).

Remark 8:Condition (40) states how small the coarseness
h can be chosen without violating the bandwidth constraints
due tojmax. Although (40) can be satisfied by choosingh
large, a small value ofh can possibly save bandwidth.
It follows readily from (6) and Assumption 2 thatj̄k, j̃k ≤
jmax ,∀k ∈ N whenever (40) holds.
We prove Theorem 1 as follows: By Lemma 1 all systems
close their loop using the same signal. This is used to bound
the error between state and encoder estimate in Lemma 2.
As an easy consequence a bound on the error on the decoder
side can be obtained (Corollary 1).
The evolution ofx̄(t) is governed by the following equation.

˙̄x(t) =

{
f(x̄(t), k(x̂(t))) t ∈ [t̄k, t̃k)
f(x̄(t), k(x̄(t))) t ∈ [t̃k, t̄k+1)

. (41)

The next lemma shows on which time intervals certain
signals coincide.

Lemma 1:Consider encoder/decoder scheme described in
(7)-(33). If Assumptions 1-4 hold, then for allt ∈ [t̄k, t̃k)

x̄d(t) = x̂(t)

and for all t ∈ [t̃k, t̄k+1) we havex̄d(t) = x̄(t).
Proof: We first treat the case of no packet loss. Because

of the initial condition of the encoder and the decoder and
(14) it holds thatx̄d(0) = x̂(0) = 0. Using t̄1 = 0 and
equations (24) and (33) we obtain

x̄d(t) = x̂(t) ∀t ∈ [t̄1, t̃1). (42)

At time t̃1 the value of x̄(t̄1) becomes available to the
decoder (31). By (32), (41) and (42) we have

x̄d(t̃1) = x̄(t̃1).

Since both trajectories follow the same dynamics on the
interval [t̃k, t̄k+1) by (33) and (41) we get

x̄d(t) = x̄(t) , ∀t ∈ [t̃1, t̄2).

Due to the continuity of̄xd at t̄k and (14)

x̄d(t̄2) = x̂(t̄2)

holds and we can repeat the arguments inductively to con-
clude.

If a packet loss occurred (δ(t̄k) > 0), then

x̄d(t̄k) = x̄(t̄k) = x̂(t̄k)

holds since (20) cancels the last jump made by the encoder.
As all three trajectories follow the same dynamics we have

x̄d(t) = x̄(t) = x̂(t) ∀t ∈ [t̄k, t̄k+1).

Hence the proof for the case of packet loss is similar to the
previous arguments.
The introduction ofδmax in (39) guarantees that the number
Nmax is still big enough to cope with the larger time interval
over which the length of the quantization region can grow.
By Assumption 2 the time between two successful transmis-
sions from the encoder to the decoder is always smaller than
2τmaxδmax. Before we proceed with the next lemma, note
that it follows from (37) and (11) respectively (29), (19) that

λ >
eL(t̄k−t̄k−1)

N(t̄k)
. (43)

Now define ee(t) := x̄(t) − x(t) as the error between
the estimated state and the state of the encoder system.
To understand the ensuing lemma it is helpful to consider
Figure 2 again. Note that at timētk the value ofN ((37)
respectively (11)) compensates the growth of the erroree(t)
on the interval[t̄k−1, t̄k).

Lemma 2:Consider system (1) with encoder/decoder
scheme described in (7)-(33). If Assumptions 1-4 hold, the
error on the encoder side is bounded by

|ee(t̄k)| ≤ λkX , ∀ k ∈ N .
Proof: Because of Assumption 4 and initialization of

the encoder, the initial statex(t̄1) is within the quantization
region.

|0− x(t̄1)| = |ee(t̄−1 )| ≤ X =
`(t̄−1 )

2
.

Hence we can use (36) to obtain

|ee(t̄1)| ≤
`(t̄−1 )

2N(t̄1)
≤ λX,

where the last conclusion follows from (43) and the fact that
t̄1 = t̄0.
Let a∨ b := max{a, b} anda∧ b := min{a, b}. The encoder
error ee satisfies fort ∈ [t̄k−1, t̄k) according to (41) and
(38):

|ee(t)| = |x̄(t)− x(t)| = |x̄(t̄k−1)

+
∫ t̃k−1∧t

t̄k−1

f(x̄(s), k(x̂(s)))ds+
∫ t∨t̃k−1

t̃k−1

f(x̄(s), k(x̄(s)))ds

−x(t̄k−1)−
∫ t

t̄k−1

f(x(s), k(x̄d(s)))ds|.



We can split the last integral and collect the corresponding
terms to get:

|ee(t)| = |x̄(t̄k−1)− x(t̄k−1)+∫ t̃k−1∧t

t̄k−1

(f(x̄(s), k(x̂(s)))− f(x(s), k(x̄d(s))))ds

+
∫ t∨t̃k−1

t̃k−1

(f(x̄(s), k(x̄(s)))− f(x(s), k(x̄d(s))))ds|.

Now we can use (3) and Lemma 1 to arrive at:

|ee(t)| ≤ |ee(t̄k−1)|+ L

∫ t

t̄k−1

|ee(s)|ds.

Because of the continuity ofee(t) on the interval t ∈
[t̄k−1, t̄k) the Gronwall-lemma yields

|ee(t̄−k )| ≤ |ee(t̄k−1)|eL(t̄k−t̄k−1).

If we assume that|ee(t̄k−1)| ≤ λk−1X we conclude:

|ee(t̄−k )| ≤ λk−1XeL(t̄k−t̄k−1).

Hence we can use (9), (10), (36) and (43) to deduce:

|ee(t̄k)| ≤
`(t̄−k )

2N(t̄k)
≤ λkX,

which completes the proof.
Now that we have established a bound on the error on the
encoder side, we have to achieve a similar goal on the
decoder side. To this end define the error on the decoder
sideed(t) := x̄d(t)− x(t) and a constantW := XeLτmax .

Corollary 1: Consider system (1) with encoder/decoder
scheme described in (7)-(33). Let Assumptions 1-4 hold, then
the error on the decoder side is bounded by

|ed(t̃k)| ≤ λkW , ∀k ∈ N .
Proof: Using Lemma 1 we are able to conclude

|ed(t̃k)| = |ee(t̃k)|.

Using the Gronwall Lemma as in the proof of Lemma 2, the
error evolves according to:

|ed(t̃k)| = |ee(t̃k)| ≤ |ee(t̄k)|eLτ̄k .

Using Lemma 2 completes the proof because we obtain

|ed(t̃k)| ≤ λkXeLτ̄k ≤ λkW.

With the previous results we may prove Theorem 1.
Proof: (of Theorem 1) From (39) there existsλ > 0 with

1 > λ ≥ e2Lτmaxδmax

Nmax − 1
> 0.

It is easy to see from (37) and, (11), (19), (29) that this
choice ofλ guarantees that

N(t̄k) ≤ Nmax ∀k ∈ N,

asNmax is odd. Using Corollary 1 and the fact thatλ < 1
it follows that

|ed(t̃k)| →
k→∞

0.

From the bound of the initial valueX and the maximal error
on the decoder sideW we obtain using (5) that

|x(t)| ≤ β(X, 0) + γ(W ) =: E ∀t ≥ 0.

Using (5) again we get

|x(t)| ≤ β(E, t− t0) + γ

(
sup

s∈[t0,t]

|ed(s)|

)
∀t ≥ t0.

As t0 goes to infinity the right hand side converges to zero
which shows the attractivity ofx∗ = 0. On the other hand
we can interpret (5) as:

|x(t)| ≤ β(|x(0)|, 0) + γ(|x̄d(0)− x(0)|e2Lτmax).

Hence the right hand side is aK∞ function depending only
on x(0) which together with the attractivity concludes the
proof.

V. CONCLUSION

The design of an encoder/decoder scheme has been pre-
sented, which despite quantization, delay and packet loss is
able to achieve semi-global asymptotic stability if the closed
loop system is ISS with respect to measurement errors and
a bandwidth condition is satisfied. The construction is semi-
global as we start with a bound for the initial state. In [5]
an idea called “zooming-out” is presented to deal with this
limitation. In [9], [7] the ISS assumption may be weakened.
We expect that similar techniques can be used here. The
scheme outlined in this work is sensitive to errors between
the encoder state and the decoder state. Ideas to bound the
mismatch between encoder and decoder initialization for a
similar scheme can be found in [3].
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