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Abstract— This paper considers networks consisting of functions constructed there are defined as the maximum
integral input-to-state stable (iISS) subsystems and addresses among ISS Lyapunov functions of the subsystems, which
the problem of verifying ilSS property of a given network.  gjrectly yield Lipschitz continuous Lyapunov functions of
First, we focus on construction of continuously differentiable o hanyorks, In contrast, the iISS small-gain theorem de-
Lyapunov functions, and derive a condition ensuring the ilSS of ) . . .
the network comprising n subsystems. Although this approach veloped in [11]_’ [14] is proved by using _the sum of iISS
referred to as the sum-type construction has not yet been Lyapunov functions of the subsystems, which directly results
reduced to an easily computable condition for generaln, in continuously differentiable Lyapunov functions. For such
the n = 2 case recovers the iISS small-gain condition for sum-type Lyapunov functions, no condition for establishing
two subsystems developed recently. Next, in the case af the stability of general networks is known. Although it can
subsystems, using Lipschitz continuous Lyapunov functions, pe mentioned that a sufficient condition and a corresponding

this paper derives a small-gain condition. It is shown that this - . .
second approach referred to as the max-type construction fails sum-type Lyapunov function have been derived for intercon-

to offer a Lyapunov function if there exist subsystems which nection consisting of. ISS subsystems in [10], the result
are not input-to-state stable (ISS). The relation between the two Only deals with networks in a restricted structure defined as
formulations is discussed in the case of two ISS subsystems. cascades of star products.
For the sake of obtaining smooth Lyapunov functions
. INTRODUCTION for the general networks consisting of ISS subsystems, an
. . . attempt has been made in [5] recently. Although smooth
When we gstabhsh stability .O.f an mteyconnected SySt.eni‘_yapunov functions have not been obtained there for the ISS
the notion of input-to-state stability (ISS) is useful for dea“ngnetwork, the study has made an important step which derives

with the subsystems which do not admit a finite linea h :
) e : . e max-type formula of Lyapunov functions from the ISS
gain[19]. For verifying the ISS property of interconnection o roperty o)ﬁhe subsystemsyinpthe dissipative form. Note that

two ISS subsystems, the ISS small-gain theorem is availakjie, max-type construction was originally derived from the
in the literature[16], [22]. Since there are nonlinear SysStemM g in the so-called implication form[15], [6], [8]

which are not finite in the sense of ISS, the notion of integra The purpose of this paper is to deal with subsystems de-
|an|Jt-to-stfate S:]ab'“ty (IISS) has be_en develope_d to fcovpsrcribed by dissipative inequalities covering the iISS property,
a gass 0 Suﬁ SK_sltemsh [2]} Fhor mterconrlllectlpn r? Wanhd to elucidate capabilities, limitations and relations of two
ﬁu sgstems, t ?:Ipd : os?]p y of the ISS small-gain tdforegbnstructions. This paper shows that the max-type construc-
as been exten. ed to the IISS case, [1.1]'. [14]. Nee e,SStFBn provides us with a small-gain condition for general

say, many practical systems such as logistic systems, biolog;,« stems. From the sum-type construction this paper also
ical systefms, corr;]mumcatmnbnetworks gnd powc(jer netl\_'vor!%rives a sufficient condition for the stability of the network.
consist of more than two subsystems. Repeated applicali@iy,oygh the condition has not yet been computationally
of th.e two systems argument to such large network; needSnvenient for generat, it can be reduced to a small-gain
manlpullat|%ns which (ilaus_e uhnnecessr?ry gonservat'vgngééndition in the case of two subsystems. Moreover, this paper
Recently, the ISS small-gain theorem has been extended g onstrates that the max-type construction can only deal

the case of general networks[7], [17]. o with ISS subsystems. while the sum-type construction can
The ISS small-gain theorem was originally given in terms, o nqie i1SS as well as ISS subsystems.

of bognds for trajectories. Having Lyapunov funct|0ns' IS We use the following notation. The symbp} | stands

sometimes advantageous in analysis and design of nonlingg¥ tne Euclidean norm. A continuous functian : R, =

systems. A Lyapunov formulation of the ISS small-gai 0,00) — R, is said to be positive definite and denoted
theorem was given in [15] for the first time, and extended t y w € P if it satisfiesw(0) = 0 and w(s) > 0 holds

the general networks in [6], [8], [17]. The ISS Lyapunovior g s > 0. A function is of classk if it belongs to

The work is supported in part by Grant-in-Aid for Scientific Researchp and is SmCtIy Increasing, of clask if it is of class

of JSPS under grant 19560446, by German Research Foundation (DFGYas@nd is unbounded. The symbbil denotes the identity
part of the Collaborative Research Center 637, and by Volkswagen-Stiftumgaps. The symbols and A denote logical sum and logical

under grant 1/82683-684. product, respectively. Negation is. For f,g : R, — R,

H. Ito is with the Department of Systems Design and Informatics . et r .
Kyushu Institute of Technology, 680-4 Kawazu, lizuka 820-8502, Japal/€ US€ the simple notatiolim f(s) = lim g(s) to describe

hiroshi@ces.kyutech.ac.jp . {lim f(s) = co A limg(s) = oo} V {oco > lim f(s) =
S. Dashkovskiy is with the Department of Mathematicslim g(s)}. Note that theco case is included. In a similar

and Computer Science, University of Bremen, Germany, : > 1 : —
dsn@math uni.bremen.de . mannerlim f(s) > lim g(s) denotes{lim f(s) = co V oo >

F. Wirth is with the Institute of Mathematics, University of \zburg, 1imf(§) > llimg(s)}. For vectorsa,b € R" the rela.tion
Germanywirth@mathematik.uni-wuerzburg.de . a > bis defined bya; > b; foralli = 1,...,n. The relations



>, <, < for vectors are defined in the same manner. Thalong the trajectories(t) of the network® for somex,; € P
negation ofa > b is denoted bya ? b and this means and ., € K U {0}. The property (3) guarantees that the

that there exists an € {1,...,n} such thata; < b;. For a network ¥ is ilSS with respect to input and statex.
function of timet, a dot over its symbol stands fady/dt. Furthermore, the network is ISS if o € Ko.
Il. PROBLEM STATEMENT . A TRICK

Consider a networkX whose state vectorz(t) =

. 1 . RN .
1 ()T, 22 (8)7, oo, 2 ()7]T € RN is governed byi — ConsiderC* functionsW; : R R, given by

f(x,r) and admits the existence of a positive definite and Vi(w:)
radially unbounded , -valued functionV;(z;) satisfying Wi(zi) = / Ai(r)dr, i=1,2,..,n (4)
0
Vi) < —aii(Vi(@a) + > v (Vi(@)) + i) (1) for continuous functions\; : R, — R_.. We assume that
J#i

along the trajectories;(t) € RVi for eachi = 1,2,...,n. )‘i(o‘zi) >0, Vs €(0,00), i=1,2,..,n ®)
The vectorr(t) € RM denotes an exogenous signal. The / A(si)dsi =00, i=1,2,...n (6)
property (1) is usually called a dissipation inequality of 1
Y. It is assumed thaty; € K, v; € K U {0} and {aii € K\ Koo ANyri € K = limsup \;(s;) < oo}
vri € K U {0} hold. This assumption means that each 100
subsystemy; defined with the state; and the inputsr;, ;o 1=1,2,..,n (7)

j #1, r is integral input-to-state stable (ilSS), and thatis
an ilSS Lyapunov function for the individual subsystéin
for eachi = 1,2,...,n. We borrow the notions of ISS and F(s) = [Ci(s1), C2(52), oons Culsn)] T
iISS properties from the references[19], [21], [2]. Under a

stronger assumptiom; € K., the systenk; is input-to-state where we assume that

stable (ISS), and the functidn is an ISS Lyapunov function. ,

By definition, an ISS system is always iISS. The converse G € Kooy Id—G €K, i=12,..m (8)
does not hold. The original definition of iISS and ISS is giveRro functions); and¢; have yet to be determined.

in terms of trajectories, which is equivalent to the existence Using these functions. we define the vectors

of C* iISS and ISS Lyapunov functions, respectively[2], [21]. ’

hold. We consider the operatét : R’} — R’} defined as

Remark 1:The functionV; satisfying (1) is said to be an W(z) = [Wi(z1), Walza), ..., Walz,)]"
iISS Lyapunov function even when;; € P [2]. Neverthe- Wiz) = [T W W T
less, to allow for feedback loops in the netwatkthis paper (@) = [Wilan), Walwz), - Walzn)]
assumesy;; € I which is a strict subset dP. It is stressed along the trajectories;(¢) and the matrices
that a feedback loop of iISS systems defined with dissipation
inequalities (1) is ilSS only ifv; € K [12]. MVa(e) 0 e 0
The objective of this paper is to derive conditions under H(V(2)) = 0 A2(Va(ze)) :
which the networkd in total is iISS with respect to input B : 0
and stater. We want to cover ISS as a special case. To this 0 0 Mn(Vilzn))
end, we define operator$,I': s € R +— z € R} by m(r) 0 0
|
z = A(s) = [a11(s1), « s,...,annsnT :
(8) = [a11(s1), aa(s2) (5n)] . G(lr)) = O 772.(.|r\) )
z=1I(s) = |:Z'Ylj(5j)a Z'Y2j(5j)a -~-7Z%,j(5j)} 0 0 7 ((|)7’|)
j#1 #2 j#n "
The operatol’,: 7 € Ry — z € R is defined by where the non-decreasing continuous functighs R, —
T Ry, i=1,2,..,n, are given by
Z = FT(T) = [A/r,l(’r)v 7T,2(T)7 ey P)/r,n('r)} B

The following vectors are also defined: Ai(7) = 1}2[%?2] Ai(w) ©)

V(z) = [Vi(z1), Valza), ..., Valza)]" Xioag! OC;llo'Vr.,i(T)

Vi) = (Vi) Vo), - s Valea) )" @ =¢ oWl Geau(w)>1n(T) 10)
whereV, = dV;/dt for the trajectoriesr;(t) € RY:. Then, wlgréo Ai(w) , otherwise
the dissipation inequalities (1) can be compactly written aote that the assumption (7) renders the functjpnR, —

V(z) < (—A4+T)oV(z)+T.(r]) . (20 R4 given by (10) well-defined. With the help of these

Recall that the relatior for vectors used in (2) is interpreted gﬁg?tﬁ;‘i;ﬁ?%gng t}?ﬁﬁf}’ﬁiﬁéﬁ%@(gg iﬁgt) (>2)%i7im(|7lﬁi|gs
componentwise. The goal of this paper is to find a function” ~ >* """\ =i b b
Vo : RV — R, satisfying the dissipation inequality W(z) < H(V(2)){—(1d - F)o A+ T }(V(z))

Va(z) < —aa(V(2)) +7a(lr)) ©) +G(r)T(Ir]) (12)



Alternatively, the inequality (11) can be expressed as Pick ¢; € K satisfyingd; — (; € K. Then, from

W) <H\V(2)){-(Id+E)" o A+T}(V(z)) (Id+e) ' —(Td+6)" =6, ¢ (21)
+G([rDL(I7)) (12)  we obtain
where E is defined by Va(z) < =30 M(Vi(@a)[(0: — &) 0 i (Vi(w:))]
(Id+ E)(s) = [s1+e1(s1), 524 €2(52), v, Sp+ €n(sn)]T + > Ara(lr))
= (Id - F)"*(s) (13)  Sinceay; € K implies (6; —¢;)oy; € K, we have

Note thate; € K, holds since

(Id + &) o (si — Gi(5i)) — si
— —Cisi) +ei 0 (si— Gi(si)) = 0 for somed; € P, i = 1,2,..,n, so that we can arrive at (3).

4 . . ' . .. The properties (5) and (6) ensure that the functitiisare
EQ?WC&I&- e%Ce ’g;od ;—hee ,édat'?g (;3)5123?’38 a bijection positive definite and radially unbounded. Thi, is an iISS

The technique applied to the iISS network in this section i%yapunov function of the network. If (18) and (19) hold

: : : ditionally, we obtain(0; — (;) o ay; € Koo andé; € Koo,
essentially the same as the technique of changing ISS supply. , ~. " AN v > ! >
rates proposed in [20]. ich implies thatV,; is an ISS Lyapunov function. =

Remark 2:The choice of(;(s) = 0, ei(s) = 0 and In the case ofn = 2, we can obtain a solutior(s)
n:(s) = 0 is also valid whey,.;(s) = 0. Iﬁgllllcglllgz)v?lliln;he requirements in Theorem 1 as explained in
IV. SUM-TYPE CONSTRUCTION Theorem 2:Let n = 2. Suppose that

This sections presents a condition under which the networl{a“. €EK\Koo = 730i € K\Ko U{0}}, i =1,2 (22)
Y. is guaranteed to be iISS. For this purpose, we seek

Ve(z) < — Z ai(Vi(wi)) + Z%-,i(\?“l)

Lyapunov functions in the form of holds. If there exisp3;, B2 € K satisfying
n Dol(s) # A(s), VseR%\ {0} (23)
Va(w) = 2_: Wilz:) (14 there exists a solution (s) fulfilling all the requirements in
=t _ _ Theorem 1.
In order to select functions\; with which the sum-type Proof: It can be verified that the condition (23) is

Lyapunov function establishes the stability of the networkgquivalent to the logical sum of
we define mappings from € R} to R’} by .
(Id + B1) o M2 0 gy 0 (Id + B2) 0 v21(7) < 1 (7),

A(s) = [Ma(s1), Aa(s2), -0 Anlsn)]” (15) Vr € (0, 00) (24)
D(s) = [s14+B1(51), 524 02(52), - - ., 8p+ B (50)] 7 (16)

and obtain the following theorem. 1
Theorem 1:Suppose that there exist continuous functions (Id + B2) 0 y21 0 ey 0 (Id + B1) 0 m2(7) < aza(7),
N iRy >Ry, i=1,2,...,n, such that (5), (6) (7) and V7 € (0,00) (25)

A(s)TD(s) < A(s)TD Vo A(s), VseR? (17) Note that (24) ((25)) implicitly requireSim,_ o, oo (7) >
o lim, 00 Y21 (7) (imy— oo 11 (7) > lim, o v12(7), respec-
are satisfied for somey, 3z, ..., 3, € K. Then the network tively). The existence off;, 3. € K+ achieving the above

and

¥ is iISS with respect to input and stater. If logical sum is the same as the existencedof 3, € Koo
- . achieving< for s € R, instead of< for s € Ry \ {0} in the
i € Kooy 1=1,2,0000m (18) logical sum of (24) and (25). Indeed, the substitutigin=

lgﬂgf Ai(si) >0, i=12,...m (19) 3,;/2 allows us to change< into <. Hence, the condition

(23) is equivalent to the iISS small-gain condition presented
in [14]. The functionV,; in (14) is identical with the one
employed in [11], [14], and the corresponding inequality (17)
is the same as the one solved in [11], [14]. Moreover, the
property (22) implies that one of the properties

(A1) Tlingo a1n(r) =00 A Tlirrolo gz (T) = o0,

are satisfied additionally, the netwoXkis ISS. Furthermore,
an ilISS (ISS) Lyapunov function is given by (14).
Proof: Substituting (17) for (12), we obtain

Va(z) <=A(V)T[(Id+E) "' =D~ )0 A(V)] +Z%i(lrl)

A2) li = A li
where#, ; := n;v,; € KU {0}. Let §; be defined with (A2) e an(r) = o0 s %2ET)

< o0

A lim 91 (7) < 00,
T—00

< 0

) (A3) lim aga(7) =00
Id - 6; = (Id + )~ (20) (Ad) lim 712(7) <oco A lim v91(7)
The propertyd; € K, follows from g; € K, and is satisfied. It is also verified that
(Id — ;) o (Id + 3;)(s;) — s; 2HN (AN -(AL) = (A4)

= Bi(s;) —0; 0 (Id + Bi(s;)) =0 (25N (A A =(AL) = (A4)



hold. Hence, the non-decreasing functiongs;) and2(s2)  holds for some = p € {1,2,...,n}. Let

derived in [14] achieve all the requirements in Theorem 1 o N -1 1 .
for n=2. If v; ;(s;)=0 holds for some #j, we can always My = {z € RT 2y~ (Vp(2y)) > 957 (Vi(x3)), Vi # p}

use sufficiently small; ; € £ when we invoke [14]. ] . N . e .
In the n = 2 case, Jthe components; (s1) and Az (s2) Ly = {x R Z%J(VJ(%)) > Tlggo app(T)}
of A(s) are derived explicitly in [11], [14]. Fon > 3, no i#p
formula for solutionsA(s) to the problem posed in Theorem Since they; s are of classK.., the setM,, is unbounded
1 has yet been known. in all directions, i.e.,M,, contains a sequende”* € RV},

Remark 3:When we only consider 0-GAS (i.e., global; = 1.2, ..., such that%(:cf’k) — oo forali=1,2..,n
asymptotic stability ofz = 0 for r(t) = 0 or I'.(s) = 0),  whenk — co. This fact and (31) ensute/,NL, # . Property
The functionsg; in Theorem 1 are only required to satisfy (1) with r(¢)=0 yields V() < &(x) for z € M,, where
B; € PandId + 8; € Ky for i = 1,2,...,n. Note that
using < in (17) with D = Id cannot always ensure 0-GAS &(z) 1= A, (Vy () { —app (Vo () + vaj(vj(xj))}
since it cannot exclude the no-gap case, [1]. It is known j#p
that in the no-gap case information en, and v;; is not B . . . .

- . .. By assumption, in the sed/,, the function§(x) is the
B e b S homs oA eamallet upper bound o) coverng all sectores
i - N i i initi impli
Likewise, inequality (23) withD = Id cannot guarantee the o(t) € R defined with (1). The definition of,, implies
0-GAS. In order to avoid the no-gap case, we need to add &(x) >0, VYeeM,NL, (32)

an assumption as in [14].
P [14] Although V., defined in (27) is only locally Lipschitz, it

V. MAX-TYPE CONSTRUCTION is differentiable onM, N L,. Since the Clarke generalized
Define a locally Lipschitz functio,; : RN — R, by derivative agrees with the directional derivative Bf; at
differentiable points. the property (32) contradicts (29
Va(z) = ,_nax Wi(:) (26)  The property (30) means that each subsysEnis 1SS

with respect to input;, j # ¢ and statex; [21]. Theorem

Alternatively, we can write the above, as 3 can be interpreted as follows: In the construction of

Va(z) = max ;' (Vi(z)) (27) a Lyapunov function of the form (27), the function; '
=12,..,m needs to ensure that if the maximum of (27) is attained
where); € K is given by for the i-th subsystem, then the decay of the particular
s; subsystem appears as the decrease of the funigijofhus,
Vit (ss) =/ Ai(T)dT (28) the max-type construction requires that each subsystem be
0

) ) ~ contractive when its state is large. However, this property is
Note that the rlght hand side of the above equation Igot guaranteed when a Subsystem is ilSS.
guaranteed to be of clags,, by (5) and (6). An apparent |f we restrict our attention to networks of ISS subsystems.
feature of the max-tye Lyapunov function (26) is its Lipschitaye can derive stability based on the max-type Lyapunov

continuity, while the sum-type Lyapunov function (14) isfunction. Using the mapping fro, — R” defined by
continuously differentiable.

For interconnected ISS systems, some studies derive Lya- U(7) = [1(7), ba(T), -.oy Ua(1)]" (33)

punov functions of the form (27), e.g., [15], [6], [18]. The he followina demonstrates this fact
following theorem demonstrates that the max-type LyapunoR/ Th 94_5 that th " " i funct
function is not useful if at least one subsystem is only iISS)\‘ ) ReorimR ' .uEplosze a 53::?1 %; (cso)n Eg;*'?%salr’:gc 'ons
Theorem 3:Let V,; be defined by (27), and I8¢5 (z; &) "t 8= s T :
denote the Clarke generalized derivativecanh the direction DoT(¥(7)) < A(¥(1)), VreR, (34)
of . If there exist continuously differentiablg; € K., i = .
1,2...,n, such that all differentiable trajectorfes(t) € RN ~ are satisfied for somg, s, ..., B, € Koo. Then, the network
fulfilling (1) with a; € K, yi; € KU{0} for r(t) = 0 satisfy ¥ is iISS with respect to input and stater. If (18) and (19)
are satisfied additionally, the netwo¥kis ISS. Furthermore,
Vi(z;d) <0, VzeRY, (29)  an iISS (ISS) Lyapunov function is given by (26).
Proof: Suppose that); € K, ¢ = 1,2,...,n fulfil
all the requirements in Theorem 4. Assume for the moment
D lim (7)) < lim aui(r), i=1,2,..,n  (30) that, forz # 0, the maximum in (26) is attained uniquely
i T o by thei = p € {1,2,...,n}, i.e.,
Proof: To prove the claim by contradiction, suppose that
. . 7/’;1(‘/10(9%)) > 7»/17_1(‘/3(173))» Vj#Dp (35)
Z lim ;;(7) > lim a;(7)
T T Let [I'(s)], denote thep-th component of the vectdr(s).

o _ _ o Then, forV,;(x) defined in (26), the inequality (12) yields
IHere, the trajectories are not necessarily associated with differential
equations of the forni: = f(x,r). Using the technique developed in [13], V. < M (Vo(z. —(Id+¢ ) ! \Va

we can also address the existence of a corresponding differential equation (@) < Ap( p(l‘p)){ (Id + &)™ gy (V3)

in Theorem 3. —+ [F(V)]p} + 77p(|7“|)'7r7p(|7"|) (36)

then



Since the definition of* and (35) ensure existence, which is a consequence of the results developed

_ B in [8], [18].
LV = L ([re v " (Vi@), s o (Valen))Dls Theorem 5:Assume thakv;, i = 1,2, ...,n, are of class
<O o9, (Vo(ap))lp 5 K+ andC?, and thafl" is irreducible, [8]. Suppose that there
we obtain eXiSt/Bl,ﬂg, ceey On € Koo SatiSfying
Ve () < X (Vo) { = (d-t2) ™ o (10 4 (Vi () Dol(s) 2 Als), Vs € RN {0} 39
+[T(® 0 gy (Vo (zp)p } + mp (7)) p(I7]) Then, there exist continuously differentiable functiafise
from the definition ofA. Now, letd, € K. be computed ™' " :;’2"“’” such that (34) and
with (20). Pick(, € K satisfyingd, — ¢, € K. From the a 1.9 40
p-th row of (34),v, € Ko and (21) it follows that g Vi) >0, VT e 0,00), i=1,2,...n (40)
. . d ,
Va(@) < =Ap(Vp(2p)[(0p = Cp) 0 app (Vo ()] + Arp(I7]) hinj’ip 57/’2(7) <oo, i1=12..,n (41)
holds for+,.,, := n,7v-, € K U {0}. Therefore, there exists zre satisfied.
&; € P such that Proof: By virtue of a;; € K, (39) is equivalent to
Va(z) < _é‘p(vp(xp)) + '?r,p(er (37) Dol o Ail(s) ?s, Vse Ri \ {0} (42)

is satisfied. The function®,, — () o o, andé,, are of class
K if (18) and (19) hold. Repeating (37) fore {1,2,...,n}
and usingVe(z) = ¢, '(V,(x,)) implied by (35), we have

The results in [8], [18], [9] with smoothing guarantees the
existence o' functionsy; € Ko, 7 = 1,2, ..., n satisfying

Dol oA™Y (U(7)) < ¥(r), Vre(0,00) (43)

iqﬁi(f) >0, Vre(0,0), i=1,2,..,n (44)
for all z € RY where the maximization in (26) is uniquely dr d

defined. The set of such points is an open and den&"in lim sup —;(7) < 00, i =1,2,....,n (45)
For the rest of the proof, we can employ the arguments in [4], T—oo AT

[3], [8]. Since the locally Lipschitz continuous functiéf; is  \yhere & — [1&1712)2’ - &n]T. Note that if (45) is not

the maximization o€ functionsV;, the Clarke subgradient gasisfied by a particulal, we can always find a continuously
of Vi in 2z € R" can be computed by the set differentiable p € Ko such that replacingl by ¥(p)

dc1Vi(z) = conv { v (0;1 oa; o V;) (x;) : achiev_es (43), (44), and (45). Settiig7) = A—'1 o \I/("T),”
o o ai(Vi(@:)) = V() we arrive at (34). The property (44) and the differentiability

g IR ¢ ’ of a;; ensure (40). The property (41) follows from (45m
where conv {-} denotes the convex hull. As we have (38) Note that the properties; € Ko, i = 1,2,...,n, and (40)
for each of the extremal points &%,V (z), the dissipation imply (5) and (6). The property (41) ensures (19). Hence,
inequality (38) holds in terms of the Clarke generalizedhe above theorem guarantees the existence of solutions
derivative for each( in the Clarke subgradient. Thus, the{\;} to the problem posed by Theorem 4 in the case of
function V., given in (26) is a Lipschitz continuous ilSS a1, ..., npn € Koo. Jiang et al.[15] proved Theorem 5 in the
(ISS) Lyapunov function for the network. m case where the networX consists of two ISS subsystems.

It is stressed that since;’s are classC., functions, the The condition (39) is identical to (23) fon = 2.
condition (34) implies (30). This fact is consistent withAccording to Theorem 3, the gap between (39) and (34)
Theorem 3. Theorem 4 does not require thgs to be of requiringy; € K is larger than the one between (39) and
class K, which are assumed in [15], [8], [18]. Although (17) when the subsystems are only ilSS.
both Theorem 4 and the results in [15], [8], [18] deal In the case of linead, I', D, both the problems posed in
with ISS subsystems, Theorem 4 allows us to get rid ofheorem 1 and Theorem 4 can be solved by theorems of the
transformation intay;; € K, which gives rise to unnecessary Perron-Frobenius type. A necessary and sufficient condition
conservativeness in practice. In contrast to Theorem 4 of tifier the solvability isp(TA=!) < 1, wherep(-) denotes the
max type, the sum-type construction presented in Secti@pectral radius[5]. The functions and ¥ are obtained as a
IV can deal with iISS subsystems which are not ISS. Theuitable lefteigenvector and a right eigenvector, respectively.
limiting value of (17) does not result in a restriction like Remark 4:When we only consider 0-GAS, the condition
(30) since the parametér(s) is “multiplied” on both sides (34) can be replaced BY(¥ (7)) < A(¥ (7)), V7 € R;\{0}.
of (17). In fact, in the case of =2, the inequality (24) can
be satisfied even ifi15(c0) > a;;(c0) as long asys; (o0o) < VI. TWO 1SS SUBSYSTEMSCASE
apo(00). In the same way, the inequality (25) can be satisfied In (14) and (26) two different ways for the construc-
even if v91(00) > aga(00) as long asy;a(oo) < aji(co).  tion of Lyapunov functions forX are presented. Because
Note that, to obtain iISS o, some of the subsysten}s; of the difference in the construction we cannot expect to
is necessarily ISS but not all, which is proved in [13]. have simple relations between conditions under which the

Now, we address the existence of solutiobisto (34). composed function¥,; computed by (14) and (26) serve as
The following theorem presents a condition guaranteeing thESS/ISS Lyapunov functions of the network. Nevertheless, if

Va(z) < - max &; o i (Ve (w)) +maxyri([r]) - (38)



we restrict our attention to networks of two ISS subsystemsyith the broader class of systems. However, the relationship

some relations between the sum and the max formulatiobgtween the solutions in the sum-type construction and the

can be obtained. The following is a direct consequence ofiax-type construction had not yet been known even in the

Theorems 2 and 5. case of ISS systems. This paper has shown several relations
Proposition 1: Let n = 2. Assumeay; € Ko NC! for by unifying the solvability conditions and deriving a new

1 = 1,2. Suppose that there exigh, 82 € K, satisfying solution to the sum-type construction from the solution to

(23). Then, the following hold: the max-type one the = 2 case.

(i) There exist continuous functions;, Ao : Ry, — R,
such that (5), (6) (17) and (19) are satisfied.

(i) There exist continuous functiong,, ¥, € K. such [1] D. Angeliand’A. Astolfi, “A tight small gain theorem for not necessarily
that (34) and (19) are satisfied ISS systems,Syst. Control Lett.Vol. 56, pp. 87-91, 2007. _

) oo .[2] D. Angeli, E.D. Sontag and Y. Wang, “A characterization of integral

Thus, under the unified condition (23), we can obtain ' input-to-state stability,JEEE Trans. Autom. Controlol. 45, pp. 1082-

ISS Lyapunov functions for the network based on the 1097, 2000.

; ; [3] F.H. Clarke, “Nonsmooth analysis in control theory: a surv&yto-
two approaches. The extension of this fact to the general pean J. Contr.Vol. 7, pp.63-78, 2001.

subsystems case has not yet been accpmplished. _PrODOSiﬂQn F.H. Clarke, Yu.S. Ledyaev, R.J. Stern, and P.R. Wolenski, Nonsmooth
1 has been first demonstrated for the linear case in [5]. analysis and control theory, Springer-Verlag, Berlin, 1998.

In the rest of this section. we relate the solutidnin [5] S. Dashkovskiy, H. Ito and F. Wirth, “On a small-gain theorem for ISS

- P networks in dissipative Lyapunov form10th European Contr. Conf.
the max-type construction to the soluti@nin the sum-type 2009, to appear.

construction in thex = 2 case. For simplicity, we consider [6] S. Dashkovskiy, B. Rffer, and F. Wirth, “An ISS Lyapunov function
for networks of ISS systemsProc. 17th Int. Symp. Math. Theory of
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