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Abstract— This paper considers networks consisting of
integral input-to-state stable (iISS) subsystems and addresses
the problem of verifying iISS property of a given network.
First, we focus on construction of continuously differentiable
Lyapunov functions, and derive a condition ensuring the iISS of
the network comprising n subsystems. Although this approach
referred to as the sum-type construction has not yet been
reduced to an easily computable condition for generaln,
the n = 2 case recovers the iISS small-gain condition for
two subsystems developed recently. Next, in the case ofn
subsystems, using Lipschitz continuous Lyapunov functions,
this paper derives a small-gain condition. It is shown that this
second approach referred to as the max-type construction fails
to offer a Lyapunov function if there exist subsystems which
are not input-to-state stable (ISS). The relation between the two
formulations is discussed in the case of two ISS subsystems.

I. I NTRODUCTION

When we establish stability of an interconnected system,
the notion of input-to-state stability (ISS) is useful for dealing
with the subsystems which do not admit a finite linear
gain[19]. For verifying the ISS property of interconnection of
two ISS subsystems, the ISS small-gain theorem is available
in the literature[16], [22]. Since there are nonlinear systems
which are not finite in the sense of ISS, the notion of integral
input-to-state stability (iISS) has been developed to cover
a class of such systems, [2]. For interconnection of two
subsystems, the philosophy of the ISS small-gain theorem
has been extended to the iISS case, [11], [14]. Needless to
say, many practical systems such as logistic systems, biolog-
ical systems, communication networks and power networks
consist of more than two subsystems. Repeated application
of the two systems argument to such large networks needs
manipulations which cause unnecessary conservativeness.
Recently, the ISS small-gain theorem has been extended to
the case of general networks[7], [17].

The ISS small-gain theorem was originally given in terms
of bounds for trajectories. Having Lyapunov functions is
sometimes advantageous in analysis and design of nonlinear
systems. A Lyapunov formulation of the ISS small-gain
theorem was given in [15] for the first time, and extended to
the general networks in [6], [8], [17]. The ISS Lyapunov
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functions constructed there are defined as the maximum
among ISS Lyapunov functions of the subsystems, which
directly yield Lipschitz continuous Lyapunov functions of
the networks. In contrast, the iISS small-gain theorem de-
veloped in [11], [14] is proved by using the sum of iISS
Lyapunov functions of the subsystems, which directly results
in continuously differentiable Lyapunov functions. For such
sum-type Lyapunov functions, no condition for establishing
the stability of general networks is known. Although it can
be mentioned that a sufficient condition and a corresponding
sum-type Lyapunov function have been derived for intercon-
nection consisting ofn ISS subsystems in [10], the result
only deals with networks in a restricted structure defined as
cascades of star products.

For the sake of obtaining smooth Lyapunov functions
for the general networks consisting of ISS subsystems, an
attempt has been made in [5] recently. Although smooth
Lyapunov functions have not been obtained there for the ISS
network, the study has made an important step which derives
the max-type formula of Lyapunov functions from the ISS
property of the subsystems in the dissipative form. Note that
the max-type construction was originally derived from the
ISS in the so-called implication form[15], [6], [8].

The purpose of this paper is to deal with subsystems de-
scribed by dissipative inequalities covering the iISS property,
and to elucidate capabilities, limitations and relations of two
constructions. This paper shows that the max-type construc-
tion provides us with a small-gain condition for generaln
subsystems. From the sum-type construction this paper also
derives a sufficient condition for the stability of the network.
Although the condition has not yet been computationally
convenient for generaln, it can be reduced to a small-gain
condition in the case of two subsystems. Moreover, this paper
demonstrates that the max-type construction can only deal
with ISS subsystems. while the sum-type construction can
handle iISS as well as ISS subsystems.

We use the following notation. The symbol| · | stands
for the Euclidean norm. A continuous functionω : R+ :=
[0,∞) → R+ is said to be positive definite and denoted
by ω ∈ P if it satisfies ω(0) = 0 and ω(s) > 0 holds
for all s > 0. A function is of classK if it belongs to
P and is strictly increasing; of classK∞ if it is of class
K and is unbounded. The symbolId denotes the identity
maps. The symbols∨ and∧ denote logical sum and logical
product, respectively. Negation is¬. For f, g : R+ → R+,
we use the simple notationlim f(s) = lim g(s) to describe
{lim f(s) = ∞ ∧ lim g(s) = ∞} ∨ {∞ > lim f(s) =
lim g(s)}. Note that the∞ case is included. In a similar
manner,lim f(s) ≥ lim g(s) denotes{lim f(s) = ∞ ∨ ∞ >
lim f(s) ≥ lim g(s)}. For vectorsa, b ∈ Rn the relation
a ≥ b is defined byai ≥ bi for all i = 1, . . . , n. The relations



>,≤, < for vectors are defined in the same manner. The
negation ofa ≥ b is denoted bya 6≥ b and this means
that there exists ani ∈ {1, . . . , n} such thatai < bi. For a
function of timet, a dot over its symbol stands ford/dt.

II. PROBLEM STATEMENT

Consider a networkΣ whose state vectorx(t) =
[x1(t)T , x2(t)T , ..., xn(t)T ]T ∈ RN is governed byẋ =
f(x, r) and admits the existence of a positive definite and
radially unboundedR+-valued functionVi(xi) satisfying

V̇i(xi) ≤ −αii(Vi(xi)) +
∑

j 6=i

γij(Vj(xj)) + γr,i(|r|) (1)

along the trajectoriesxi(t) ∈ RNi for eachi = 1, 2, ..., n.
The vectorr(t) ∈ RM denotes an exogenous signal. The
property (1) is usually called a dissipation inequality of
Σi. It is assumed thatαii ∈ K, γij ∈ K ∪ {0} and
γr,i ∈ K ∪ {0} hold. This assumption means that each
subsystemΣi defined with the statexi and the inputsxj ,
j 6= i, r is integral input-to-state stable (iISS), and thatVi is
an iISS Lyapunov function for the individual subsystemΣi

for eachi = 1, 2, ..., n. We borrow the notions of ISS and
iISS properties from the references[19], [21], [2]. Under a
stronger assumptionαi ∈ K∞, the systemΣi is input-to-state
stable (ISS), and the functionVi is an ISS Lyapunov function.
By definition, an ISS system is always iISS. The converse
does not hold. The original definition of iISS and ISS is given
in terms of trajectories, which is equivalent to the existence
of C1 iISS and ISS Lyapunov functions, respectively[2], [21].

Remark 1:The functionVi satisfying (1) is said to be an
iISS Lyapunov function even whenαii ∈ P [2]. Neverthe-
less, to allow for feedback loops in the networkΣ, this paper
assumesαii ∈ K which is a strict subset ofP. It is stressed
that a feedback loop of iISS systems defined with dissipation
inequalities (1) is iISS only ifαii ∈ K [12].

The objective of this paper is to derive conditions under
which the networkΣ in total is iISS with respect to inputr
and statex. We want to cover ISS as a special case. To this
end, we define operatorsA,Γ: s ∈ Rn

+ 7→ z ∈ Rn
+ by

z = A(s) = [α11(s1), α22(s2), . . . , αnn(sn)]T

z = Γ(s) =
[ ∑

j 6=1

γ1j(sj),
∑

j 6=2

γ2j(sj), . . . ,
∑

j 6=n

γn,j(sj)
]T

The operatorΓr: τ ∈ R+ 7→ z ∈ Rn
+ is defined by

z = Γr(τ) = [γr,1(τ), γr,2(τ), . . . , γr,n(τ)]T

The following vectors are also defined:

V (x) = [ V1(x1), V2(x2), . . . , Vn(xn) ]T

V̇ (x) = [ V̇1(x1), V̇2(x2), . . . , V̇n(xn) ]T

where V̇i = dVi/dt for the trajectoriesxi(t) ∈ RNi . Then,
the dissipation inequalities (1) can be compactly written as

V̇ (x) ≤ (−A + Γ) ◦ V (x) + Γr(|r|) . (2)

Recall that the relation≤ for vectors used in (2) is interpreted
componentwise. The goal of this paper is to find a function
Vcl : RN → R+ satisfying the dissipation inequality

V̇cl(x) ≤ −αcl(V (x)) + γcl(|r|) (3)

along the trajectoriesx(t) of the networkΣ for someαcl ∈ P
and γcl ∈ K ∪ {0}. The property (3) guarantees that the
network Σ is iISS with respect to inputr and statex.
Furthermore, the networkΣ is ISS if αcl ∈ K∞.

III. A T RICK

ConsiderC1 functionsWi : RNi → R+ given by

Wi(xi) =
∫ Vi(xi)

0

λi(τ)dτ, i = 1, 2, ..., n (4)

for continuous functionsλi : R+ → R+. We assume that

λi(si) > 0, ∀si ∈ (0,∞), i = 1, 2, ..., n (5)∫ ∞

1

λi(si)dsi = ∞, i = 1, 2, ..., n (6)

{αii ∈ K \ K∞ ∧ γr,i ∈ K ⇒ lim sup
si→∞

λi(si) < ∞}
, i = 1, 2, ..., n (7)

hold. We consider the operatorF : Rn
+ → Rn

+ defined as

F (s) = [ζ1(s1), ζ2(s2), ..., ζn(sn)]T

where we assume that

ζi ∈ K∞, Id− ζi ∈ K∞, i = 1, 2, ..., n (8)

The functionsλi andζi have yet to be determined.
Using these functions, we define the vectors

W (x) = [ W1(x1), W2(x2), . . . , Wn(xn) ]T

Ẇ (x) = [ Ẇ1(x1), Ẇ2(x2), . . . , Ẇn(xn) ]T

along the trajectoriesxi(t) and the matrices

H(V (x)) =




λ1(V1(x1)) 0 · · · 0
0 λ2(V2(x2))

. . .
...

...
.. .

. . . 0
0 · · · 0 λn(Vn(xn))




G(|r|) =




η1(|r|) 0 · · · 0
0 η2(|r|) . . .

...
...

.. .
. . . 0

0 · · · 0 ηn(|r|)




where the non-decreasing continuous functionsηi : R+ →
R+, i = 1, 2, ..., n, are given by

λ̄i(τ) = max
w∈[0,τ ]

λi(w) (9)

ηi(τ) =





λ̄i ◦ α−1
ii ◦ ζ−1

i ◦ γr,i(τ)
, if lim

w→∞
ζi◦αii(w)>γr,i(τ)

lim
w→∞

λ̄i(w) , otherwise
(10)

Note that the assumption (7) renders the functionηi : R+ →
R+ given by (10) well-defined. With the help of these
definitions, combining the two casesζi◦αii(Vi(xi))>γr,i(|r|)
andζi◦αii(Vi(xi))≤γr,i(|r|) in (2) proves that (2) implies

Ẇ (x) ≤ H(V (x))
{−(Id− F ) ◦A + Γ

}
(V (x))

+ G(|r|)Γr(|r|) (11)



Alternatively, the inequality (11) can be expressed as

Ẇ (x) ≤ H(V (x))
{−(Id + E)−1 ◦A + Γ

}
(V (x))

+ G(|r|)Γr(|r|) (12)

whereE is defined by

(Id + E)(s) = [s1+ ε1(s1), s2+ ε2(s2), ..., sn+ εn(sn)]T

= (Id− F )−1(s) (13)

Note thatεi ∈ K∞ holds since

(Id + εi) ◦ (si − ζi(si))− si

= −ζi(si) + εi ◦ (si − ζi(si)) = 0

and ζi, Id − ζi ∈ K∞. The relation (13) defines a bijection
betweenζi ∈ K∞ andεi ∈ K∞ , i.e., F andE.

The technique applied to the iISS network in this section is
essentially the same as the technique of changing ISS supply
rates proposed in [20].

Remark 2:The choice ofζi(s) ≡ 0, εi(s) ≡ 0 and
ηi(s) ≡ 0 is also valid whenγr,i(s) ≡ 0.

IV. SUM-TYPE CONSTRUCTION

This sections presents a condition under which the network
Σ is guaranteed to be iISS. For this purpose, we seek
Lyapunov functions in the form of

Vcl(x) =
n∑

i=1

Wi(xi) (14)

In order to select functionsλi with which the sum-type
Lyapunov function establishes the stability of the network,
we define mappings froms ∈ Rn

+ to Rn
+ by

Λ(s) = [ λ1(s1), λ2(s2), . . . , λn(sn) ]T (15)

D(s) = [s1+β1(s1), s2+β2(s2), . . . , sn+βn(sn)]T (16)

and obtain the following theorem.
Theorem 1:Suppose that there exist continuous functions

λi : R+ → R+, i = 1, 2, ..., n, such that (5), (6) (7) and

Λ(s)T Γ(s) ≤ Λ(s)T D−1 ◦A(s), ∀s ∈ Rn
+ (17)

are satisfied for someβ1, β2, ... ,βn ∈ K∞. Then the network
Σ is iISS with respect to inputr and statex. If

αii ∈ K∞, i = 1, 2, ..., n (18)

lim inf
si→∞

λi(si) > 0, i = 1, 2, ..., n (19)

are satisfied additionally, the networkΣ is ISS. Furthermore,
an iISS (ISS) Lyapunov function is given by (14).

Proof: Substituting (17) for (12), we obtain

V̇cl(x)≤−Λ(V )T [((Id+E)−1−D−1)◦A(V )]+
n∑

i=1

γ̂r,i(|r|)

whereγ̂r,i := ηiγr,i ∈ K ∪ {0}. Let θi be defined with

Id− θi = (Id + βi)−1 (20)

The propertyθi ∈ K∞ follows from βi ∈ K∞ and

(Id− θi) ◦ (Id + βi)(si)− si

= βi(si)− θi ◦ (Id + βi(si)) = 0

Pick ζi ∈ K∞ satisfyingθi − ζi ∈ K∞. Then, from

(Id + εi)−1 − (Id + βi)−1 = θi − ζi (21)

we obtain

V̇cl(x) ≤ −∑n
i=1 λi(Vi(xi))[(θi − ζi) ◦ αii(Vi(xi))]

+
∑n

i=1 γ̂r,i(|r|)
Sinceαii∈K implies (θi−ζi)◦αii ∈ K, we have

V̇cl(x) ≤ −
n∑

i=1

α̂i(Vi(xi)) +
n∑

i=1

γ̂r,i(|r|)

for someα̂i ∈ P, i = 1, 2, .., n, so that we can arrive at (3).
The properties (5) and (6) ensure that the functionsWi are
positive definite and radially unbounded. Thus,Vcl is an iISS
Lyapunov function of the networkΣ. If (18) and (19) hold
additionally, we obtain(θi − ζi) ◦ αii ∈ K∞ and α̂i ∈ K∞,
which implies thatVcl is an ISS Lyapunov function.

In the case ofn = 2, we can obtain a solutionΛ(s)
fulfilling all the requirements in Theorem 1 as explained in
the following.

Theorem 2:Let n = 2. Suppose that

{αii ∈ K\K∞ ⇒ γ3−i,i ∈ K\K∞ ∪ {0}}, i = 1, 2 (22)

holds. If there existβ1, β2 ∈ K∞ satisfying

D ◦ Γ(s) 6≥ A(s), ∀s ∈ R2
+ \ {0} (23)

there exists a solutionΛ(s) fulfilling all the requirements in
Theorem 1.

Proof: It can be verified that the condition (23) is
equivalent to the logical sum of

(Id + β1) ◦ γ12 ◦ α−1
22 ◦ (Id + β2) ◦ γ21(τ) < α11(τ),

∀τ ∈ (0,∞) (24)

and

(Id + β2) ◦ γ21 ◦ α−1
11 ◦ (Id + β1) ◦ γ12(τ) < α22(τ),

∀τ ∈ (0,∞) (25)

Note that (24) ((25)) implicitly requireslimτ→∞ α22(τ) ≥
limτ→∞ γ21(τ) (limτ→∞ α11(τ) ≥ limτ→∞ γ12(τ), respec-
tively). The existence ofβ1, β2 ∈ K∞ achieving the above
logical sum is the same as the existence ofβ1, β2 ∈ K∞
achieving≤ for s ∈ R+ instead of< for s ∈ R+\{0} in the
logical sum of (24) and (25). Indeed, the substitutionβi =
βi/2 allows us to change≤ into <. Hence, the condition
(23) is equivalent to the iISS small-gain condition presented
in [14]. The functionVcl in (14) is identical with the one
employed in [11], [14], and the corresponding inequality (17)
is the same as the one solved in [11], [14]. Moreover, the
property (22) implies that one of the properties
(A1) lim

τ→∞
α11(τ) = ∞ ∧ lim

τ→∞
α22(τ) = ∞,

(A2) lim
τ→∞

α11(τ) = ∞ ∧ lim
τ→∞

γ12(τ) < ∞,

(A3) lim
τ→∞

α22(τ) = ∞ ∧ lim
τ→∞

γ21(τ) < ∞,

(A4) lim
τ→∞

γ12(τ) < ∞ ∧ lim
τ→∞

γ21(τ) < ∞,

is satisfied. It is also verified that

(24)∧ (A2)∧ ¬(A1) ⇒ (A4)

(25)∧ (A3)∧ ¬(A1) ⇒ (A4)



hold. Hence, the non-decreasing functionsλ1(s1) andλ2(s2)
derived in [14] achieve all the requirements in Theorem 1
for n=2. If γi,j(sj)≡0 holds for somei 6=j, we can always
use sufficiently smallγi,j ∈K when we invoke [14].

In the n = 2 case, the componentsλ1(s1) and λ2(s2)
of Λ(s) are derived explicitly in [11], [14]. Forn ≥ 3, no
formula for solutionsΛ(s) to the problem posed in Theorem
1 has yet been known.

Remark 3:When we only consider 0-GAS (i.e., global
asymptotic stability ofx = 0 for r(t) ≡ 0 or Γr(s) ≡ 0),
The functionsβi in Theorem 1 are only required to satisfy
βi ∈ P and Id + βi ∈ K∞ for i = 1, 2, ..., n. Note that
using< in (17) with D = Id cannot always ensure 0-GAS
since it cannot exclude the no-gap case, [1]. It is known
that in the no-gap case information onαii and γij is not
sufficient to conclude 0-GAS. Property (17) with positive
definite βi’s ensures that the no-gap case does not occur.
Likewise, inequality (23) withD = Id cannot guarantee the
0-GAS. In order to avoid the no-gap case, we need to add
an assumption as in [14].

V. M AX -TYPE CONSTRUCTION

Define a locally Lipschitz functionVcl : RN → R+ by

Vcl(x) = max
i=1,2,...,n

Wi(xi) (26)

Alternatively, we can write the aboveVcl as

Vcl(x) = max
i=1,2,...,n

ψ−1
i (Vi(xi)) (27)

whereψi ∈ K∞ is given by

ψ−1
i (si) =

∫ si

0

λi(τ)dτ (28)

Note that the right hand side of the above equation is
guaranteed to be of classK∞ by (5) and (6). An apparent
feature of the max-tye Lyapunov function (26) is its Lipschitz
continuity, while the sum-type Lyapunov function (14) is
continuously differentiable.

For interconnected ISS systems, some studies derive Lya-
punov functions of the form (27), e.g., [15], [6], [18]. The
following theorem demonstrates that the max-type Lyapunov
function is not useful if at least one subsystem is only iISS.

Theorem 3:Let Vcl be defined by (27), and letV ◦
cl(x; ẋ)

denote the Clarke generalized derivative atx in the direction
of ẋ. If there exist continuously differentiableψi ∈ K∞, i =
1, 2..., n, such that all differentiable trajectories1 x(t) ∈ RN

fulfilling (1) with αii ∈ K, γij ∈ K∪{0} for r(t) ≡ 0 satisfy

V ◦
cl(x; ẋ) ≤ 0, ∀x ∈ RN , (29)

then∑

j 6=i

lim
τ→∞

γij(τ) ≤ lim
τ→∞

αii(τ), i = 1, 2, ..., n (30)

Proof: To prove the claim by contradiction, suppose that
∑

j 6=i

lim
τ→∞

γij(τ) > lim
τ→∞

αii(τ) (31)

1Here, the trajectories are not necessarily associated with differential
equations of the forṁx = f(x, r). Using the technique developed in [13],
we can also address the existence of a corresponding differential equation
in Theorem 3.

holds for somei = p ∈ {1, 2, ..., n}. Let

Mp := {x ∈ RN : ψ−1
p (Vp(xp)) > ψ−1

j (Vj(xj)), ∀j 6= p}

Lp :=
{

x ∈ RN :
∑

j 6=p

γpj(Vj(xj)) > lim
τ→∞

αpp(τ)
}

Since theψ−1
i ’s are of classK∞, the setMp is unbounded

in all directions, i.e.,Mp contains a sequence{xp,k ∈ RN},
k = 1, 2, ..., such thatVi(x

p,k
i ) → ∞ for all i = 1, 2, ..., n

whenk →∞. This fact and (31) ensureMp∩Lp 6=∅. Property
(1) with r(t)≡0 yields V̇cl(x) ≤ ξ(x) for x∈Mp, where

ξ(x) := λp(Vp(xp))
{−αpp(Vp(xp)) +

∑

j 6=p

γpj(Vj(xj))
}

By assumption, in the setMp, the function ξ(x) is the
smallest upper bound oḟVcl(x) covering all trajectories
x(t) ∈ RN defined with (1). The definition ofLp implies

ξ(x) > 0, ∀x ∈ Mp ∩ Lp (32)

Although Vcl defined in (27) is only locally Lipschitz, it
is differentiable onMp ∩ Lp. Since the Clarke generalized
derivative agrees with the directional derivative ofVcl at
differentiable points. the property (32) contradicts (29).

The property (30) means that each subsystemΣi is ISS
with respect to inputxj , j 6= i and statexi [21]. Theorem
3 can be interpreted as follows: In the construction of
a Lyapunov function of the form (27), the functionψ−1

i

needs to ensure that if the maximum of (27) is attained
for the i-th subsystem, then the decay of the particular
subsystem appears as the decrease of the functionVcl. Thus,
the max-type construction requires that each subsystem be
contractive when its state is large. However, this property is
not guaranteed when a subsystem is iISS.

If we restrict our attention to networks of ISS subsystems.
we can derive stability based on the max-type Lyapunov
function. Using the mapping fromR+ → Rn

+ defined by

Ψ(τ) = [ ψ1(τ), ψ2(τ), . . . , ψn(τ) ]T (33)

the following demonstrates this fact.
Theorem 4:Suppose that there exist continuous functions

λi : R+ → R+, i = 1, 2, ..., n, such that (5), (6) (7) and

D ◦ Γ(Ψ(τ)) ≤ A(Ψ(τ)), ∀τ ∈ R+ (34)

are satisfied for someβ1, β2, ...,βn∈K∞. Then, the network
Σ is iISS with respect to inputr and statex. If (18) and (19)
are satisfied additionally, the networkΣ is ISS. Furthermore,
an iISS (ISS) Lyapunov function is given by (26).

Proof: Suppose thatψi ∈ K∞, i = 1, 2, ..., n fulfill
all the requirements in Theorem 4. Assume for the moment
that, for x 6= 0, the maximum in (26) is attained uniquely
by the i = p ∈ {1, 2, ..., n}, i.e.,

ψ−1
p (Vp(xp)) > ψ−1

j (Vj(xj)), ∀j 6= p (35)

Let [Γ(s)]p denote thep-th component of the vectorΓ(s).
Then, forVcl(x) defined in (26), the inequality (12) yields

V̇cl(x) ≤ λp(Vp(xp))
{−(Id + εp)−1αpp(Vp)

+ [Γ(V )]p
}

+ ηp(|r|)γr,p(|r|) (36)



Since the definition ofΓ and (35) ensure

[Γ(V )]p = [Γ([ψ1◦ ψ−1
1 (V1(x1)), ..., ψn◦ ψ−1

n (Vn(xn))])]p
≤ [Γ(Ψ ◦ ψ−1

p (Vp(xp)))]p ,

we obtain

V̇cl(x)≤λp(Vp(xp))
{−(Id+εp)−1◦αpp(ψp◦ ψ−1

p (Vp(xp)))

+[Γ(Ψ ◦ ψ−1
p (Vp(xp)))]p

}
+ ηp(|r|)γr,p(|r|)

from the definition ofA. Now, let θp ∈ K∞ be computed
with (20). Pickζp ∈ K∞ satisfyingθp− ζp ∈ K∞. From the
p-th row of (34),ψp ∈ K∞ and (21) it follows that

V̇cl(x) ≤ −λp(Vp(xp))[(θp−ζp) ◦ αpp(Vp(xp))] + γ̂r,p(|r|)
holds for γ̂r,p := ηpγr,p ∈ K ∪ {0}. Therefore, there exists
α̂i ∈ P such that

V̇cl(x) ≤ −α̂p(Vp(xp)) + γ̂r,p(|r|) (37)

is satisfied. The functions(θp−ζp)◦αpp andα̂p are of class
K∞ if (18) and (19) hold. Repeating (37) forp ∈ {1, 2, ..., n}
and usingVcl(x) = ψ−1

p (Vp(xp)) implied by (35), we have

V̇cl(x) ≤ −max
i

α̂i ◦ ψi(Vcl(x)) + max
i

γ̂r,i(|r|) (38)

for all x ∈ RN where the maximization in (26) is uniquely
defined. The set of such points is an open and dense inRN .
For the rest of the proof, we can employ the arguments in [4],
[3], [8]. Since the locally Lipschitz continuous functionVcl is
the maximization ofC1 functionsVi, the Clarke subgradient
of Vcl in x ∈ Rn can be computed by the set

∂ClVcl(x) = conv { 5 (
σ−1

i ◦ αi ◦ Vi

)
(xi) :

σ−1
i ◦ αi(Vi(xi)) = Vcl(x)} ,

where conv {·} denotes the convex hull. As we have (38)
for each of the extremal points of∂ClVcl(x), the dissipation
inequality (38) holds in terms of the Clarke generalized
derivative for eachζ in the Clarke subgradient. Thus, the
function Vcl given in (26) is a Lipschitz continuous iISS
(ISS) Lyapunov function for the networkΣ.

It is stressed that sinceψi’s are classK∞ functions, the
condition (34) implies (30). This fact is consistent with
Theorem 3. Theorem 4 does not require theαii’s to be of
classK∞ which are assumed in [15], [8], [18]. Although
both Theorem 4 and the results in [15], [8], [18] deal
with ISS subsystems, Theorem 4 allows us to get rid of
transformation intoαii∈K∞ which gives rise to unnecessary
conservativeness in practice. In contrast to Theorem 4 of the
max type, the sum-type construction presented in Section
IV can deal with iISS subsystems which are not ISS. The
limiting value of (17) does not result in a restriction like
(30) since the parameterΛ(s) is “multiplied” on both sides
of (17). In fact, in the case ofn=2, the inequality (24) can
be satisfied even ifγ12(∞)>α11(∞) as long asγ21(∞)<
α22(∞). In the same way, the inequality (25) can be satisfied
even if γ21(∞) > α22(∞) as long asγ12(∞) < α11(∞).
Note that, to obtain iISS ofΣ, some of the subsystemsΣi

is necessarily ISS but not all, which is proved in [13].
Now, we address the existence of solutionsΨ to (34).

The following theorem presents a condition guaranteeing the

existence, which is a consequence of the results developed
in [8], [18].

Theorem 5:Assume thatαii, i = 1, 2, ..., n, are of class
K∞ andC1, and thatΓ is irreducible, [8]. Suppose that there
exist β1, β2, ..., βn ∈ K∞ satisfying

D ◦ Γ(s) 6≥ A(s), ∀s ∈ Rn
+ \ {0} (39)

Then, there exist continuously differentiable functionsψi ∈
K∞, i = 1, 2, ..., n such that (34) and

d

dτ
ψi(τ) > 0, ∀τ ∈ (0,∞), i = 1, 2, ..., n (40)

lim sup
τ→∞

d

dτ
ψi(τ) < ∞, i = 1, 2, ..., n (41)

are satisfied.
Proof: By virtue of αii ∈ K, (39) is equivalent to

D ◦ Γ ◦A−1(s) 6≥ s, ∀s ∈ Rn
+ \ {0} (42)

The results in [8], [18], [9] with smoothing guarantees the
existence ofC1 functionsψ̂i ∈ K∞, i = 1, 2, ..., n satisfying

D ◦ Γ ◦A−1(Ψ̂(τ)) < Ψ̂(τ), ∀τ ∈ (0,∞) (43)
d

dτ
ψ̂i(τ) > 0, ∀τ ∈ (0,∞), i = 1, 2, ..., n (44)

lim sup
τ→∞

d

dτ
ψ̂i(τ) < ∞, i = 1, 2, ..., n (45)

where Ψ̂ = [ψ̂1, ψ̂2, ..., ψ̂n]T . Note that if (45) is not
satisfied by a particular̂Ψ, we can always find a continuously
differentiable ρ ∈ K∞ such that replacingΨ̂ by Ψ̂(ρ)
achieves (43), (44), and (45). SettingΨ(τ) = A−1 ◦ Ψ̂(τ),
we arrive at (34). The property (44) and the differentiability
of αii ensure (40). The property (41) follows from (45).

Note that the propertiesψi ∈ K∞, i = 1, 2, ..., n, and (40)
imply (5) and (6). The property (41) ensures (19). Hence,
the above theorem guarantees the existence of solutions
{λi} to the problem posed by Theorem 4 in the case of
α11, ..., αnn ∈ K∞. Jiang et al.[15] proved Theorem 5 in the
case where the networkΣ consists of two ISS subsystems.

The condition (39) is identical to (23) forn = 2.
According to Theorem 3, the gap between (39) and (34)
requiringψi ∈ K∞ is larger than the one between (39) and
(17) when the subsystems are only iISS.

In the case of linearA, Γ, D, both the problems posed in
Theorem 1 and Theorem 4 can be solved by theorems of the
Perron-Frobenius type. A necessary and sufficient condition
for the solvability isρ(ΓA−1) < 1, whereρ(·) denotes the
spectral radius[5]. The functionsΛ andΨ are obtained as a
suitable lefteigenvector and a right eigenvector, respectively.

Remark 4:When we only consider 0-GAS, the condition
(34) can be replaced byΓ(Ψ(τ)) < A(Ψ(τ)), ∀τ ∈ R+\{0}.

VI. T WO ISS SUBSYSTEMSCASE

In (14) and (26) two different ways for the construc-
tion of Lyapunov functions forΣ are presented. Because
of the difference in the construction we cannot expect to
have simple relations between conditions under which the
composed functionsVcl computed by (14) and (26) serve as
iISS/ISS Lyapunov functions of the network. Nevertheless, if



we restrict our attention to networks of two ISS subsystems,
some relations between the sum and the max formulations
can be obtained. The following is a direct consequence of
Theorems 2 and 5.

Proposition 1: Let n = 2. Assumeαii ∈ K∞ ∩ C1 for
i = 1, 2. Suppose that there existβ1, β2 ∈ K∞ satisfying
(23). Then, the following hold:

(i) There exist continuous functionsλ1, λ2 : R+ → R+

such that (5), (6) (17) and (19) are satisfied.
(ii) There exist continuous functionsψ1, ψ2 ∈ K∞ such

that (34) and (19) are satisfied.
Thus, under the unified condition (23), we can obtain

ISS Lyapunov functions for the networkΣ based on the
two approaches. The extension of this fact to the generaln
subsystems case has not yet been accomplished. Proposition
1 has been first demonstrated for the linear case in [5].

In the rest of this section, we relate the solutionΛ in
the max-type construction to the solutionΨ in the sum-type
construction in then = 2 case. For simplicity, we consider

βi(τ) = ciτ, i = 1, 2 (46)

The following theorem constructs anC1 iISS Lyapunov
function for Σ by exploiting the solution in the max-type
construction, which results inλi’s different from [11], [14].

Theorem 6:Let n = 2. Assumeα11, α22 ∈ K∞. Suppose
that there existψ1, ψ2 ∈ K∞ such that (34) is satisfied with
(46) for somec1, c2 > 2. Then, the choice

Λ(s) =
[

λ1(s1)
λ2(s2)

]
=

[ −P2 ◦ ψ ◦ ψ−1
1 (s1)

−P1 ◦ ψ ◦ ψ−1
2 (s2)

]
(47)

P (s)=
[

P1(s)
P2(s)

]
=−D−1

H ◦A(s) + Γ(s), DH(s)=

[
c1
2 s1

c2
2 s2

]

satisfies (5), (6) (17) and (19) with (46) for another pair of
c1, c2 > 1.

Theorem 6 provides a new way to construct{λ1, λ2} for
the iISS Lyapunov function in the sum from (14) forn = 2.
Although different pairs of solutions are available in [11],
[14], making a choice from many Lyapunov functions is
sometimes advantageous in systems analysis and design. The
solutions{λ1, λ2} presented in [11], [14] are better than the
solutions obtained through Theorem 6 in the sense not only
that c1, c2 > 2 is not needed in [11], [14], but also that
the solutions in [11], [14] can establish the stability of the
network even when some subsystems are only iISS.

VII. C ONCLUDING REMARKS

This paper has demonstrated that the sum-type construc-
tion not only provides us with continuously differentiable
Lyapunov functions directly, but also covers the class of
iISS subsystems which are not ISS, while the max-type con-
struction based on Lipschitz continuous Lyapunov functions
requires the subsystems to be ISS. Solutions fulfilling the
stability condition derived in the max-type construction are
available in [15] for two subsystems, and [8], [18] forn
subsystems. In contrast, solving the stability condition in the
sum-type construction has been harder, and formulas of solu-
tions are only available in the case ofn = 2 [11], [14]. This
situation seems natural since the sum-type construction deals

with the broader class of systems. However, the relationship
between the solutions in the sum-type construction and the
max-type construction had not yet been known even in the
case of ISS systems. This paper has shown several relations
by unifying the solvability conditions and deriving a new
solution to the sum-type construction from the solution to
the max-type one then = 2 case.
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