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Abstract— In the framework of the ISS Lyapunov formu-
lation a small gain theorem has recently been proved which
allows the explicit construction of Lyapunov functions for
interconnected systems. In this note we recall the definitions of
ISS Lyapunov functions and the corresponding general small
gain theorems. These are then exemplarily used to prove input-
to-state stability of and to construct ISS Lyapunov functions for
four areas of applications: Linear systems, a Cohen-Grossberg
neuronal network, error dynamics in formation control, as well
as nonlinear transistor-linear resistor circuits.

Index Terms— Input-to-state stability (ISS), Lyapunov functi-
ons, general small-gain theorem, constructive method, example
applications

I. INTRODUCTION

For nonlinear systems it is often difficult to prove sta-
bility properties, especially if several such systems are in
a feedback interconnection. Stability of interconnections of
nonlinear systems can be studied in different frameworks
such as passivity, dissipativity [18], input-to-state stability
[19] and others. Knowledge of a Lyapunov function of
a system makes stability analysis simple, but finding a
Lyapunov function is an art of its own and generally also a
complicated task, especially for higher dimensional systems.

One approach is to split complicated high dimensional
systems into smaller, interconnected subsystems evolving
in lower dimensional spaces. The idea is to find Lyapu-
nov functions for the lower dimensional systems and then
combine these together to obtain a Lyapunov function for
the high dimensional system. Here it has to be taken into
account that the subsystems themselves are interconnected in
a nonlinear fashion and that there may exist external inputs
or disturbances that have to be accounted for.

In this paper we use the input-to-state stability (ISS)
framework introduced by Sontag [19]. Its equivalent Lyapu-
nov characterization [20] and the corresponding small gain
theorem [11] or its generalization to more than two inter-
connected systems [7], [9] can be implemented to establish
exactly the idea detailed above: A bottom-to-top stability
analysis of high dimensional nonlinear systems. See [8] for
an application of these results in a logistic system.

We consider several example applications of general ISS
small gain theorems provided by the authors in [3], [5], [7],
[6], [9]. In particular we apply the nonlinear Lyapunov ISS
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small-gain theorem for networks to interconnected linear sy-
stems a Cohen-Grossberg neuronal network, error dynamics
in formation control and the stability analysis of transistor
networks.

The paper is organized as follows. In the next section
we recall the necessary definitions and notation. In Section
III we quote the small gain type theorems related to ISS
networks. The main results of this paper are four example
applications that are given in Section IV. Section V conclu-
des the paper.

II. N OTATION AND DEFINITIONS

Consider several nonlinear systems with inputs given by

Σi : ẋi = fi(x1, . . . , xn, ui), i = 1, . . . , n, (1)

where xi ∈ RNi , ui ∈ RMi . The functions fi :
R
P

j Nj+Mi → RNi , i = 1, . . . , n, are assumed to be
such that there exists a unique solution for any given initial
condition and any essentially bounded, measurable inputs
xj , j 6= i, ui. We say thatxj is an internal input for the
systemΣi with i 6= j and ui is an external input toΣi.
Denotingx = (xT

1 , . . . , x
T
n )T ∈ RN , N =

∑n
i=1Ni, u =

(uT
1 , . . . , u

T
n )T , f(x, u) = (f1(x, u1)T , . . . , fn(x, un)T )T

we can represent the interconnection in the form

ẋ = f(x, u). (2)

An appropriate stability notion for such systems is input-to-
state stability as introduced in [19]. To recall the definition
we will need the following notation. LetR+ := [0,∞); a
function γ : R+ → R+ is said to be of classK if it is
continuous, increasing andγ(0) = 0. It is of classK∞ if, in
addition, it is unbounded. A functionβ : R+ × R+ → R+

is said to be of classKL if, for each fixedt, the function
β(·, t) is of classK and, for each fixeds, the function
β(s, ·) is non-increasing and tends to zero at infinity. Let
|x| denote the Euclidean norm ofx ∈ Rn, ‖ · ‖ be the
induced operator norm and|| · ||∞ be the standard norm
in the space of essentially bounded functionsL∞. By Rn

+

we denote the positive orthant inRn. For two vectorsa and
b in Rn we denotea ≥ b ⇔ ai ≥ bi, i = 1, . . . , n. The
relationa > b is defined in the same way. The negation of
the relationa ≥ b is denoted bya 6≥ b. This is equivalent
to the statement that there exists at least onei ∈ {1, . . . , n}
such thatai < bi. By id we will denote the identity map in
an appropriate space.

Definition 2.1: System (2) is called input-to-state stable
from u to x, if there exists aγ ∈ K∞, and aβ ∈ KL, such
that

|x(t)| ≤ β(|x(0)|, t) + γ(||u||∞) ∀ t ≥ 0, (3)



for all initial statesx(0) ∈ RN and inputsu ∈ L∞. In this
caseγ is called nonlinear gain.
It is known that ISS defined in this way is equivalent to the
existence of an ISS-Lyapunov function defined by

Definition 2.2: A smooth functionV : RN → R+ is
called ISS-Lyapunov function of (2) if there existψ1, ψ2 ∈
K∞, χ ∈ K∞, and a positive definite functionα such that

ψ1(|x|) ≤ V (x) ≤ ψ2(|x|), ∀x ∈ RN , (4)

V (x) ≥ χ(|u|) =⇒ ∇V (x) · f(x, u) ≤ −α(V (x)). (5)

The functionχ is then called Lyapunov gain.
In case of an interconnected system (1) there are possibly

multiple nonlinear gains related to different inputs in each
subsystem.

Typically one says thatΣi is ISS if there existγiu, γij ∈
(K∞ ∪ {0}) andβi ∈ KL so that all solutions satisfy

|xi(t)| < βi(|xi(t0)|, t− t0) +
∑
j 6=i

γij(||xj ||∞)

+γui(||ui||∞), t ≥ 0 .

Qualitatively equivalent, one could replace the sum
∑
j 6=i

with a maximizationmax
j 6=i

or similar terms; depending on

the application one formulation might be more natural and
give tighter estimates than others. To accommodate all such
possible formulations, we introduce the following general
definition:

Definition 2.3: A continuous functionµ : Rn
+ → R+ is

called a monotone aggregation function if it satisfies
(i) µ(0) = 0.

(ii) µ(s) ≥ 0 for all s ∈ Rn
+ andµ(s) > 0 if s > 0.

(iii) for any s1 > s2 ∈ Rn
+ it holds thatµ(s1) > µ(s2).

The space of monotone aggregation functions is denoted
by MAFn and MAFm

n denotesm-vectors of monotone
aggregation functions, i.e., mapsµ : Rm×n

+ → Rm
+ .

As a convention we assumeγii ≡ 0 for i = 1, . . . , n. Using
the MAF notation we say thatΣi is ISS if there existµi ∈
MAFn+1, γiu, γij ∈ (K∞ ∪ {0}) and βi ∈ KL so that all
solutions satisfy

|xi(t)| < µi(βi(|xi(t0)|, t− t0), γi1(||x1||∞),
. . . , γin(||xn||∞), γiu(||u||∞)).

Similarly, we define the concept of ISS-Lyapunov functions.
Assume that for each of the subsystemsΣi, i = 1, . . . , n we
are given a proper, positive definite functionVi : RNi → R+.
The functionVi : RNi → R+ is an ISS-Lyapunov function
for Σi if there existµi ∈ MAFn+1, γij ∈ (K∞∪{0}), γiu ∈
K∞ and a positive definite functionαi such that

Vi(xi) ≥ µi(γi1(V1(x1)), . . . , γin(Vn(xn)), γiu(|ui|)
=⇒ ∇Vi(xi)fi(x, u) < −α(|xi|) ,

(6)

again with the conventionγii = 0 for all i. The gainsγij

can be combined in again matrix Γ := (γij)i,j=1,...,n. If
we include the gainsγiu in the last column of this matrix,
then the obtained matrix is denoted byΓ. The expressions

in the above implication motivate the following definition of
a nonlinear map

Γµ : Rn+1
+ → Rn

+ (7)
s1
...
sn

r

 7→

 µ1(γ11(s1), . . . , γ1n(s2), γ1u(r))
...

µn(γn1(s1), . . . , γnn(sn), γnu(r))


The mapΓµ is defined similarly by

Γµ : Rn+1
+ → Rn

+ (8)
s1
...
sn

r

 7→

 µ1(γ11(s1), . . . , γ1n(s2), 0)
...

µn(γn1(s1), . . . , γnn(sn), 0)


Even if each subsystemΣi in (1) is ISS, their interconnec-

tion (2) can be unstable [5]. In the next section we recall
the small gain type condition which guarantees ISS of the
interconnection. We also recall the construction of an ISS-
Lyapunov function for the interconnected system.

III. SMALL GAIN THEOREMS

A stability condition of small gain type for arbitrary
interconnection of a finite number of ISS systems has been
obtained in [3], [5], [15]. For a Lyapunov version of this
result see [4], [7], [9], [15]. The general small gain theorem
and the corresponding construction of an ISS-Lyapunov
function generalize known results for the interconnection
of two ISS systems as in [12], [11]. We only quote the
Lyapunov result that will be applied in the following section.

Theorem 3.1:Let Γ ∈ (K∞ ∪ {0})n×n be a gain matrix
and µ ∈ MAFn

n. If there exists anα ∈ K∞ such that the
small gain condition

D ◦ Γµ(s) 6≥ s ∀s 	 0 (9)

holds with D := diag(id + α), then there exists ãD =
diag(id + α̃), α̃ ∈ K∞ and a continuous pathσ ∈ Kn

∞ with

(i) σ is locally Lipschitz continuous on(0,∞) and in
particular differentiable almost everywhere in[0,∞);

(ii) for every compactK ⊂ (0,∞) there are constants
0 < c < C such that for all points of differentiability
of σi and i = 1, . . . , n we have

0 < c ≤ σ′i(r) ≤ C ; (10)

(iii)
D̃(Γµ(σ(r))) < σ(r) , ∀r > 0 . (11)

Motivated by the existence of aΓµ-invariant decay set
Ω ⊂ Rn

+ where the path parameterized byσ evolves, in
the sequel we will call a functionσ ∈ Kn

∞ satisfying (11) an
Ω-path with respect toΓµ. See [4], [7], [15], [16] for details
concerningΩ.

We note that condition (10) guarantees, thatσ is locally
bi-Lipschitz on(0,∞). In the following result we see, that
regularity properties of the inverse component functions are
needed to obtain a Lyapunov function.



Theorem 3.2:Consider the interconnected systemΣ given
by (1), (2) where for each of the subsystemsΣi there exists
an ISS-Lyapunov functionVi and the corresponding gain
matrix defines a mapΓµ as in (7). Assume there are functions
σ = (σ1, . . . , σn) ∈ Kn

∞, ϕ ∈ K∞ such that

Γµ(σ(r), ϕ(r)) < σ(r) , ∀ r > 0 (12)

is satisfied, then an ISS Lyapunov function for the overall
system is given by

V (x) = max
i=1,...,n

σ−1
i (Vi(xi)) . (13)

If in addition eachµi is additive in the external input, i.e.,
µi(s1, . . . , sn, r) = µi(s1, . . . , sn, 0) + r and the small gain
condition (9) is satisfied, then there exists aσ ∈ Kn

∞ as in
Theorem 3.1 and an ISS Lyapunov function for the overall
system is given by (13).
For the proofs of these theorems we refer to [4], [7], where
they were given for some particularµ. Proofs with a general
µ are given in [9], [15], [16].

Note that by construction the Lyapunov functionV is not
smooth, even if the functionsVi for the subsystems are.
HoweverV is Lipschitz continuous and hence differentiable
almost everywhere. Methods of nonsmooth analysis [1], [2]
can be used in this case.

IV. A PPLICATIONS

In this section we give four examples illustrating the
effectiveness of the small gain theorem stated in the previous
section. The first example illustrates the construction method
for an ISS-Lyapunov function in the relative simple case
when the interconnection consists of linearly interconnected
linear subsystems. Further we will consider the a Cohen-
Grossberg neural network, an example related to formation
control, and nonlinear transistor-linear resistor circuits.

A. Linear systems

Consider linear interconnected systems

Σi : ẋi = Aixi +
n∑

j=1

∆ijxj +Biui, i = 1, . . . , n (14)

with xi ∈ RNi , ui ∈ RMi , and matricesAi, Bi of
appropriate dimensions. Each systemΣi is ISS from
(xT

1 , . . . , x
T
i−1, x

T
i+1, . . . , x

T
n , u

T
i )T to xi if and only if Ai

is Hurwitz. This can be seen for example with the Lyapunov
functionVi(xi) = xT

i Pixi, wherePi is a symmetric positive
definite solution ofAT

i Pi+PiAi = −Qi for some symmetric
positive definite matrixQi. It is known that there is a unique
s.p.d. solutionPi for any given s.p.d.Qi if and only if Ai is
Hurwitz. In that case, along trajectories of the autonomous
system

ẋi = Aixi

we have

V̇i = xT
i PiAixi + xT

i A
T
i Pixi = −xT

i Qixi ≤ −ci|xi|2

for ci := λmin(Qi) > 0, the smallest eigenvalue ofQ.

For the interconnected system (14) we obtain

V̇i = 2xT
i Pi

(
Aixi +

∑
j 6=i

∆ijxj +Biui

)
≤ −ci|xi|2 + 2|xi|‖Pi‖

( ∑
j 6=i

‖∆ij‖|xj |+ ‖Bi‖|ui|
)

≤ −εci|xi|2, (15)

where the last inequality (15) is satisfied for some small
ε > 0 if

|xi| ≥
2‖Pi‖
ci(1− ε)

( ∑
j 6=i

‖∆ij‖|xj |+ ‖Bi‖|u|
)

(16)

with u := (uT
1 , . . . , u

T
n )T . To write this implication in

the form of (6) we note thatλmin(Pi)|xi|2 ≤ Vi(xi) ≤
λmax(Pi)|xi|2. Let us denotea2

i = λmin(Pi), b2i =
λmax(Pi), the inequality (16) then is satisfied if

Vi(xi) ≥
(

2‖Pi‖bi
ci(1− ε)

)2( ∑
j 6=i

‖∆ij‖
aj

√
Vj(xj)+‖Bi‖‖u‖

)2

Using the fact that for nonnegative real numbersa, b, we
have(a+ b)2 ≤ 2a2 +2b2, we see that the functionVi is an
ISS-Lyapunov function forΣi with gains given by

γij(r) =
2‖Pi‖bi
ci(1− ε)

‖∆ij‖
aj

√
r

for i = 1, . . . , n, i 6= j, and

γiu(r) = 2
(

2‖Pi‖bi
ci(1− ε)

‖Bi‖r
)2

,

for i = 1, . . . , n, andr ≥ 0. Further we may take

µi(s, r) = 2
( n∑

j=1

sj

)2

+ r

for s ∈ Rn
+ andr ∈ R+. By definingγii ≡ 0 for i = 1, . . . , n

we can write

Γ =


0 γ12 · · · γ1n γ1u

γ21
... · · · γ2n γ2u

...
...

...
γn1 · · · γnn 0 γnu


and have

Γµ(s, r) =
2
(

2‖P1‖b1
c1(1−ε)

)2( ∑
j
‖∆1j‖

a1

√
sj

)2

+ 2
(

2‖P1‖b1
c1(1−ε) ‖B1‖r

)2

...(
2‖Pn‖bn

cn(1−ε)

)2( ∑
j
‖∆nj‖

an

√
sj

)2

+ 2
(

2‖Pn‖bn

cn(1−ε) ‖Bn‖r
)2


(17)

Interestingly, the choice of quadratic Lyapunov functions for
the subsystems naturally leads to a nonlinear mappingΓ.

Proposition 4.1:Let eachΣi in (14) be ISS with a qua-
dratic ISS-Lyapunov functionVi, so that the corresponding



operatorΓµ can be taken as in (17). If the spectral radius of
the associated matrix

G =
(√

2 2‖Pi‖bi

ci(1−ε)
‖∆ij‖

aj

)
ij

(18)

is less than 1, then the interconnection

Σ : ẋ = (A+ ∆)x+Bu

is ISS and its (nonsmooth) ISS-Lyapunov function can be
taken asV (x) = maxi

1
ŝi
x>i Pixi for some positive vector

ŝ ∈ Rn
+.

Proof: If the spectral radius ofG is less than one, then
there exists a positive vector̃s satisfyingGs̃ < s̃: Just add a
small δ > 0 to every entry ofG, so that the spectral radius
ρ(G̃) of G̃ = G+ δ is still less than one, due to continuity
of the spectrum. Then there exists a Perron-Frobenius vector
s̃ such thatGs̃ < G̃s̃ = ρ(G̃)s̃ < s̃.

Now defineŝ by ŝi = s̃2i for i = 1, . . . , n. We claim that
the straight half-line spanned by this vectorŝ in the positive
orthant is anΩ-path forΓµ.

Indeed, for allr > 0 we have

Γµ(ŝr)i = 2

∑
j

2‖Pi‖bi
ci(1− ε)

‖∆ij‖
aj

√
ŝjr

2

=

∑
j

√
2

2‖Pi‖bi
ci(1− ε)

‖∆ij‖
aj

s̃j

2

· r

< (s̃i)
2
r = ŝir.

The existence of an operator̃D is now straightforward. By
Theorem 3.2 an ISS-Lyapunov function can be taken as
V (x) = maxi

1
ŝi
x>i Pixi.

A different approach to the stability analysis of inter-
connected linear systems has been undertaken in [13], [10],
where stability conditions for interconnected systems have
been derived and where the problem of constructing qua-
dratic Lyapunov functions for the interconnected system is
investigated.

B. Neural networks

Consider a Cohen-Grossberg neural network, see [22],
e.g., given by

ẋi(t) = −ai(xi(t))
(
bi(xi(t))−

n∑
j=1

tijsj(xj(t))+Ji

)
, (19)

i = 1, . . . , n, n ≥ 2, where xi denotes the state of the
ith neuron,ai is a strictly positive amplification function,
bi typically has the same sign asxi and is assumed to
satisfy |bi(xi)| > b̃i(|xi|) for someb̃i ∈ K∞, the activation
function si is typically assumed to be sigmoid. The matrix
T = (tij)i,j=1,...,n describes the interconnection of neurons
in the network andJi is a given constant input from outside.
However for our consideration we allowJi to be an arbitrary
measurable function inL∞.

Note that for any sigmoid function there exists aγi ∈ K
such that|si(xi)| < γi(|xi|), following [22] we assume0 <
αi < ai(xi) < αi.

Recall the triangle inequality forK∞-functions: For any
γ, ρ ∈ K∞ and anya, b ≥ 0 it holds

γ(a+ b) ≤ γ ◦ (id + ρ)(a) + γ ◦ (id + ρ−1)(b).

DefineVi(xi) = |xi| then each subsystem is ISS since the
following implication holds by the triangle inequality

|xi| > b̃−1
i ◦ (id + ρ)

 αi

αi − ε

n∑
j=1

|tij |γj(|xj |)


+b̃−1

i ◦ (id + ρ−1)
(

αi

αi − ε
|Ji|

)

> b̃−1
i

 αi

αi − ε

( n∑
j=1

|tij |γj(|xj |) + |Ji|
) =⇒

V̇i = −ai(xi)
(
|bi(xi)| − signxi

n∑
j=1

tijsj(xj) + signxiJi

)
< −ε|bi(x)|

for someε satisfyingαi > ε > 0 and arbitrary function
ρ ∈ K∞.

In this case we have

µi(s, r) = b̃−1
i ◦ (id+ρ)(s1 + · · ·+sn)+ b̃−1

i ◦ (id+ρ−1)(r)

additive with respect to the external inputs and

γij =
αi|tij |
αi − ε

γj(|xj |), γiu =
αiid
αi − ε

.

Note that so far we have not imposed any restrictions on
the coefficientstij . Moreover the assumptions imposed on
ai, bi, si are essentially milder then in [22]. However to
obtain the ISS property of the network we need to require
more, i.e., a small gain condition has to be met, which
imposes restrictions on the coupling termstijsj(xj).

Theorem 4.2:Let Γµ be given by γij and µi, i, j =
1, . . . , n as calculated above for the Cohen-Grossberg neural
network (19). AssumeΓµ satisfies the small gain condition
(9). Then the Cohen-Grossberg neural network is ISS from
(J1, . . . , Jn)T to x.

Remark 4.3:In [22] the authors have proved that there
exists a unique equilibrium point for the network and given
constant external inputs. They also have proved the exponen-
tial stability of this equilibrium. We have considered arbitrary
external inputs in the network and proved the ISS property
for the interconnection.

C. Formation control

In [21] formations of vehicles on the plane as in Figure 1
have been considered. Using feedback linearization local
controllers have been designed that render the formation
error between two consecutive vehicles input-to-state stable
with respect to the up-link formation error. Since cascades
of ISS systems are ISS it could be shown that cascades of
vehicles are “leader-to-formation” stable (ISS).
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Fig. 1. A formation of four vehicles (1–3) following a designated leader
(P).

Due to the converse ISS Lyapunov theorems, it is clear that
there has to exist an ISS Lyapunov function for the entire
formation error; here we show how to find it.

The dynamics for each vehiclei in Figure 1 is given by

ẋi = vi cos θi, ẏi = vi sin θi, θ̇i = wi, (20)

(xi, yi, θi) being the absolute position and orientation of the
ith vehicle. In the following the modelling parameterd deno-
tes the distance from the wheel axis to the reference point on
each vehicle. The control inputs(vi, wi) are the translational
and rotational velocity. The separation distance between two
consecutive vehicles, a leaderi and a followerj, is denoted
by lij , and the relative bearing between them isψij . For both
values constant specification parameterslspec

ij , ψspec
ij are fixed

and describe the formation. The formation error is

z̃ij := (l̃ij , ψ̃ij)> := (lspec
ij − lij , ψ

spec
ij − ψij)>. (21)

The control objective is to drivẽzij to 0. In [21] a controller
is proposed that renders̃zij ISS with respect tõzki, where
k denotes the number of the vehicle in front of vehiclei. It
is shown that the Lyapunov function candidate

Vij(z̃ij) =
1

2kj
1

|l̃ij |2 +
1

2kj
2

|ψ̃ij |2 (22)

satisfies the implication

|z̃ij | ≥
max{ki

1, k
i
2}(d+ lspec

ki + |z̃ki|)|z̃ki|
(1− ε)dmin{kj

1, k
j
2}

=⇒ V̇ij ≤ −ε|z̃ij |2 ,
(23)

whereKi = (ki
1, k

i
2)

T is the feedback gain used in the
feedback linearization construction of the controller. Impli-
cation (23) is implied by

Vii(z̃ij) ≥max{ki
1, k

i
2}

(
d+ lspec

ki +
√
Vki(z̃ki)

) √
Vki(z̃ki)

√
2 min

{√
ki
1,

√
ki
2

}
(1− ε)dmin{kj

1, k
j
2}

2

=⇒ V̇ij ≤ −ε|z̃ij |2. (24)

which is in the form of (6). For a cascade formation ofn
vehicles the gain matrix takes the form

Γ =


0 . . . . . . 0

γ21 0
...

...
...

...
...

γn1 . . . γn,n−1 0

 (25)

whereγij is given according to (24) andµi is summation
for i = 1, . . . , n. Observe that if each vehicle follows
exactly one other vehicle, each row except the first one
in Γ contains at exactly one nonzero element. AnΩ-path
σ = (σ1, . . . , σn)> ∈ Kn

∞ can now iteratively constructed
as follows: Pickσ1 = id ∈ K∞. Iteratively, fori = 2, . . . , n,
chooseσi ∈ K∞ such that

∑i−1
j=1 γij ◦ σj < σi. Clearly that

is always possible, as a sum ofK∞ functions can always be
bounded from above by aK∞ function.

The ISS Lyapunov function for the formation error is now
given according to formula (13).

D. Transistor networks

In [14] a nonlinear transistor-linear resistor model is
considered, which is characterized by the set of equations

żi +Aifi(zi) +Bigi(zi) = bi(t), i = 1, . . . , n, (26)

where zi ∈ RNi , Ai = (ai
kl), Bi = (bikj) are constant

square matrices withai
kk > 0 and bikk > 0, wherefi, gi :

RNi → RNi are continuously differentiable inzi, satisfy
fi(zi) = 0 and gi(zi) = 0 if and only if zi = 0, and
further it may be assumed that in factf i

k(zi) = f i
k(zi

k) and
gi

k(zi) = gi
k(zi

k) where fi(zi) = (f i
1(zi), . . . , f i

Ni
(zi))>,

gi(zi) = (gi
1(zi), . . . , gi

Ni
(zi))>, and zi = (zi

1, . . . , z
i
Ni

)>.
As in [17] it is assumed thatf i

k(zi
k)/zi

k ≥ δ > 0 and
gi

k(zi
k)/zi

k ≥ δ for all zi
k 6= 0 and that∂/∂zi

kf
i
k(0) ≥ δ

and∂/∂zi
kf

i
k(0) ≥ δ. As in [14] we content ourselves with

the case
bi(t) ≡ 0, i = 1, . . . , n.

The interconnection between the subsystems (26) is des-
cribed via termsCijgj(zj), whereCij are constant matrices
of appropriate dimensions, leading to subsystem dynamics

żi+Aifi(zi)+Bigi(zi)+
∑
j 6=i

Cijgj(zj) = 0, i = 1, . . . , n.

(27)
This may be written as

ż +Af(z) +Bg(z) = 0, (28)

where z> = (z>1 , . . . , z
>
n ), f> = (f>1 , . . . , f

>
n ), g> =

(g>1 , . . . , g
>
n ), A accommodates the matricesAi on the

diagonal, andB accommodates the matricesBi andCij in
the obvious manner.

Due to the nonlinear termsfi a quadratic Lyapunov
function Vi(zi) = z>Pizi with PAi + A>i Pi = −Qi for
some positive definite matrixQi bears some difficulties when
it comes to consider the interconnection structure and to
derive gains between the subsystems. Instead, we decompose
system (28) into its scalar subsystems

˙̃zλ =− aλλf̃λ(z̃λ)− bλλg̃λ(z̃λ)

−
∑
ν 6=λ

(aλν f̃ν(z̃ν) + bλν g̃ν(z̃ν)), (29)

for λ = 1, . . . , N =
∑

iNi, A = (aλν), B = (bλν) and
where f̃λ and g̃λ denote the component functions off and
g, respectively, andz is decomposed intõz1, . . . , z̃N .



Using a small ε > 0, standard estimates, and the
Lyapunov function candidatesVλ(z̃λ) = 1

2 z̃
2
λ, we arrive at

V̇λ ≤ −(aλλ + bλλ)δεz̃2
λ (30)

if |z̃λ| ≥
∑
ν 6=λ

γ̃λν(|z̃ν |) (31)

where

γ̃λν(s) =
1

(1− ε)δ(aλλ + bλλ)

·
[
aλν max

{
f̃ν(s),−f̃ν(−s)

}
+ bλν max {g̃ν(s),−g̃ν(−s)}

]
. (32)

Now we note that due to the properties of the functionsf̃λ

and g̃λ, the functionγ̃λν is of classK∞ or equals constantly
zero. Hence for the functionsγλν given by γλν(s) =
γ̃λν(

√
2s), we have

Vλ(z̃λ) ≥ 1
2

( ∑
ν 6=λ

γλν(Vν(z̃ν))
)2

=⇒ V̇λ ≤ −2(aλλ + bλλ)δεz̃2
λ

(33)

i.e., the defining implication form (6) for an ISS Lyapunov
function.

Now, if the small gain condition is satisfied forΓ = (γλν)
andµλ(s) = 1

2 (
∑

ν sν)2, then the trivial solution of (28) is
globally asymptotically stable, and a Lyapunov function is
given by (13).

V. CONCLUSIONS

In this paper we have considered several applications of
the general ISS Lyapunov small gain theorem. In particular
we have shown how ISS Lyapunov functions can be con-
structed in a bottom-to-top design fashion for linear systems,
neural networks, vehicle formation control systems, and for
transistor networks.
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Informatik, Universiẗat Bremen, Germany, August 2007. Available
online: http://nbn-resolving.de/urn:nbn:de:gbv:46-diss000109058.

[16] B. S. R̈uffer. Monotone inequalities, dynamical systems, and paths in
the positive orthant of euclideann-space.Positivity, 2008. submitted.

[17] I. W. Sandberg. Some theorems on the dynamic response of nonlinear
transistor networks.Bell System Tech. J., 48:35–54, 1969.
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