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Abstract—In the framework of the ISS Lyapunov formu-  small-gain theorem for networks to interconnected linear sy-
lation a small gain theorem has recently been proved which stems a Cohen-Grossberg neuronal network, error dynamics

allows the explicit construction of Lyapunov functions for iy formation control and the stability analysis of transistor
interconnected systems. In this note we recall the definitions of networks

ISS Lyapunov functions and the corresponding general small . . .
gain theorems. These are then exemplarily used to prove input- 1€ paper is organized as follows. In the next section
to-state stability of and to construct ISS Lyapunov functions for ~ we recall the necessary definitions and notation. In Section

four areas of applications: Linear systems, a Cohen-Grossberg ||| we quote the small gain type theorems related to 1SS
neuronal network, error dynamics in formation control, as well networks. The main results of this paper are four example

as nonlinear transistor-linear resistor circuits. applications that are given in Section IV. Section V conclu-
Index Terms— Input-to-state stability (ISS), Lyapunov functi- PP 9 )

ons, general small-gain theorem, constructive method, example des the paper.

applications
PP II. NOTATION AND DEFINITIONS

I. INTRODUCTION Consider several nonlinear systems with inputs given by

For nonlinear systems it is often difficult to prove sta- Nitdi = filxr, .. anuw), i=1...,n, (1)
bility properties, especially if several such systems are ignere z; € RN, u; € RMi. The functions f;
a feedback interconnection. Stability of interconnections Q§>>, Nj+M: _, pN: ; — 1, are assumed to be

nonlinear systems can be studied in different frameworkg,ch, that there exists a unique solution for any given initial
such as passivity, dissipativity [18], input-to-state stabilitygngition and any essentially bounded, measurable inputs
[19] and others. Knowledge of a Lyapunov function Oij,j # i, u;. We say thatz; is an internal input for the

a system makes stability analysis simple, but finding 8ystemy; with i # j andw; is an external input tds;.

Lyapunov function is an art of its own and generally also ®enotingz = (27,...,20)T € RN, N = S N, u =
complicated task, especially for higher dimensional system T DT few) = (fi(zun)T, .. fale,un)T)T

One approach is to split complicated high dimensiong)e can represent the interconnection in the form
systems into smaller, interconnected subsystems evolving

in lower dimensional spaces. The idea is to find Lyapu- &= f(z,u). 2

nov functions for the lower dimensional systems and thep, appropriate stability notion for such systems is input-to-

combine these together to obtain a Lyapunov function fQf,e stapility as introduced in [19]. To recall the definition
the high dimensional system. Here it has to be taken iNBe will need the following notation. LeR, := [0,00); &
account that the subsystems themselves are interconnecte(ﬂji'rlwctiOn v : R, — R, is said to be of+class§C 7if it,is

a nonlinear fashion and that there may exist external i”p“{:%ntinuous increasing ang0) = 0. It is of classK.., if, in
1 - . o0 1

or disturbances that have to be accounted for. addition, it is unbounded. A functiofi : R, x R, — R,

In this paper we use the input-to-state stability (ISSjs gaiqg to be of claskL if, for each fixedt, the function
framework introduced by Sontag [19]. Its equivalent Lyapuzg(ﬁ) is of class K and, for each fixeds, the function

nov characterization [20] and the corresponding small galfg(&.) is non-increasing and tends to zero at infinity. Let
theorem [11] or its generalization to more than two interM denote the Euclidean norm of € R”, | - || be the
connected systems [7], [9] can be implemented to establighy,ced operator norm an{l - ||~ be the standard norm

exactly the idea detailed above: A bottom-to-top stability,, e space of essentially bounded functidhs. By R”

analysis of high dimensional nonlinear systems. See [8] fQfe genote the positive orthant & For two vectors: and

an application of these results in a logistic system. bin R" we denotes > b & a; > b;, i =1,....n. The
We consider several example applications of general 1IS§|ationa > b is defined in the same way. The negation of

small gain theorems provided by the authors in [3], [3], [7lthe relationa > b is denoted bya # b. This is equivalent

[6], [9]- In particular we apply the nonlinear Lyapunov 1SSy, the statement that there exists at least oae{1, ..., n}

such thata; < b;. By id we will denote the identity map in
DSN is with the Center of Applied Mathematics, University of Bremen i < bi- BY y P

Germany,dsn@math.uni-bremen.de an appropriate space.

BSR is with the School of Electrical Engineering, and Definition 2.1: System (2) is called input-to-state stable
Computer Science, University of Newcastle, Australia,from « to z, if there exists ay € Ko, and ag € KL, such
Bjoern.Rueffer@newcastle.edu.au

FRW is with the Institute of Mathematics, University of UAzburg, that
Germany,wirth@mathematik.uni-wuerzburg.de lz(t)] < B(|z(0)],t) + v(||ul|ew) ¥Vt >0, 3



for all initial statesz(0) € RY and inputsu € L. In this  in the above implication motivate the following definition of

casev is called nonlinear gain. a nonlinear map

It is known that ISS defined in this way is equivalent to the T . gotl R? 7

existence of an ISS-Lyapunov function defined by BT - B Y
Definition 2.2: A smooth functionV : RY — R, is 51

called 1SS-Lyapunov function of (2) if there exigt, ¢, €

Kso» X € Koo, and a positive definite function such that

/~L1(”/11(81)7 e »71n(82)7’)’1u(7”))

o i (na(51), - Y (50, (1)
wl(‘xl) gV(x) §¢2(‘x|)’ VmERN7 (4) r n\"Jn1\91)sy s nn\°n ) Jnu
V(x) > X(|UD — VV({,C) . f(a:,u) < —a(V(x)). (5) The mapFM is defined similarly by
The functiony is then called Lyapunov gain. Ly Riﬂ - RY 8)
In case of an interconnected system (1) there are possibly 51 (711 (s1) (s2),0)
multiple nonlinear gains related to different inputs in each : pimiis T ' NnlS2),
subsystem. ' =

Sn

Typically one says thatl; is ISS if there existy;,, vi; € . tn (Yn1(81), -+ Yan(8n), 0)
(K U{0}) and 3; € KL so that all solutions satisfy
Even if each subsystel; in (1) is ISS, their interconnec-
tion (2) can be unstable [5]. In the next section we recall
the small gain type condition which guarantees ISS of the
interconnection. We also recall the construction of an ISS-

Hyui(luillee), 120 Lyapunov function for the interconnected system.
Qualitatively equivalent, one could replace the sum

|2i(t)] < Bilzi(to)],t —to) + Z’Yij(”xjuoc)
j#i

iz I11. SMALL GAIN THEOREMS
with a maximizationmix or similar terms; depending on A stability condition of small gain type for arbitrary
the application one formulation might be more natural anihterconnection of a finite number of ISS systems has been

give tighter estimates than others. To accommodate all suehtained in [3], [5], [15]. For a Lyapunov version of this
possible formulations, we introduce the following generatesult see [4], [7], [9], [15]. The general small gain theorem

definition: and the corresponding construction of an ISS-Lyapunov
Definition 2.3: A continuous functionu : R? — R, is  function generalize known results for the interconnection

called a monotone aggregation function if it satisfies of two ISS systems as in [12], [11]. We only quote the

(i) p(0)=0. Lyapunov result that will be applied in the following section.

(i) p(s)>0forall s € R? andpu(s) > 0 if s > 0. Theorem 3.}1:Let e (ICO? U {0})"*™ be a gain matrix

(iii) for any s; > s5 € R |t holds thatu(s1) > u(ss2). and p € MAF. If there exists amx € K., such that the

The space of monotone aggregation functions is denot@&na" gain cond|t|on

by MAF, and MAF]' denotesm-vectors of monotone DoT,(s)#s V¥s=0 9)

aggregation functions, i.e., maps: R"*" — R’ ) o _ -

As a convention we assumg; = 0 for i = 1,...,n. Using holds with D := diag(id + «), then there exists & =

the MAF notation we say thak, is ISS if there exisi; ¢~ diag(id+d), & € Ko and a continuous path € K5, with
MAF, 41, Yiu,Vij € (Koo U{0}) and3; € KL so that all (i) o is locally Lipschitz continuous orf0,oc) and in

solutions satisfy particular differentiable almost everywhere [ih oo);
(i) for every compactK C (0,00) there are constants
i) < pa(Bi(lzi(to)l, t = to), yir (|21 ]oo ), 0 < ¢ < C such that for all points of differentiability
s Yin([1Tnlloo)s Yiu([[ul]o0))- of o; andi =1,...,n we have

Similarly, we define the concept of ISS—Lyapunov functions. 0<c<al(r)<C; (10)

Assume that for each of the subsysteRysi = 1,...,n we

are given a proper, positive definite functioh: RYV: — R, (iii) 3

The functionV; : R — R, is an I1SS-Lyapunov function D(T,(o(r))) <o(r), Vr>0. (11)

for 3, if there existu; € MAF,,11,7:; € (Koo U{0}),7:, € Motivated by the existence of &,-invariant decay set

K+ and a positive definite function; such that Q1 C R%} where the path parameterized byevolves, in

the sequel we will call a functios € K7 satisfying (11) an

Vi(@i) 2 pa(yin(Vi(@1)), - im (Vo (2n))s Vi fua) (6) Q-path with respect t@',,. See [4], [7], [15], [16] for details

= VVi(@i) fi(z,u) < —af|zi]), concerningf).
again with the convention;; = 0 for all i. The gainsy, We note that condition (10) guarantees, thais locally
can be combined in gain matrixI" := (v,;); =1, . If bi-Lipschitz on(0,c0). In the following result we see, that

we include the gains;, in the last column of this matrix, regularity properties of the inverse component functions are
then the obtained matrix is denoted by The expressions needed to obtain a Lyapunov function.



Theorem 3.2:Consider the interconnected syst&hgiven For the interconnected system (14) we obtain
by (1), (2) where for each of the subsystemsthere exists .
an 1SS-Lyapunov functior; and the corresponding gain Vi = 2] P, (Am + ZAM%‘ + Bz‘“i)
matrix defines a map,, as in (7). Assume there are functions J#i

7= (01, 0n) € Koy € Koo such that < —cilaaf? + 2l 1P (3 185 s + 1Bl ]
T.(o(r),o(r) <o(r), Yr>0 (12) 7

ulo(r),o(r)) <o(r) < ealnil, (15)
is satisfied, then an ISS Lyapunov function for the overall
system is given by where the last inequality (15) is satisfied for some small

e>0if
V(z) = max o7 (Vi(wi)). (13) 2P|
N o N il = S (S 1Ay llas + [Blll)  (@6)

If in addition eachy; is additive in the external input, i.e., i(1—¢) gy
pi(81, ..., 80,7) = pi(51,. .., 5,,0) + 7 and the small gain . o _ o
condition (9) is satisfied, then there existsrac K7 as in  With w := (u1,...,u,)". To write th|S2 implication in
Theorem 3.1 and an ISS Lyapunov function for the overafhe form °f2(6) we note thaﬁ\mi;(Pi)\xi\ < Vi(:v;) <
system is given by (13). Amax(P;)|7i|°. Let us denotea; = Amin(F),b; =

For the proofs of these theorems we refer to [4], [7], wherémax(F), the inequality (16) then is satisfied if
they were given for some particulatr Proofs with a general

e 2| ;b \* Ajj ?
y are given in [9], [15], 16]. v 2 (Z) (SIS

Note that by construction the Lyapunov functidhis not
sHmooth, Sv_e nL.n‘ thﬁtfunctltc_)nsfi for tgeh subs;g;;fems t‘f’“gl- Using the fact that for nonnegative real numbers$, we
oweverV is Lipschitz continuous and hence differential ave(a+b)? < 242 + 212, we see that the functiob, is an

almost everywhere. Methods of nonsmooth analysis [1], [3 S-Lyapunov function fok; with gains given by
can be used in this case. '
2Bl |85 -

IV. APPLICATIONS i (r) = -9 q
In this section we give four examples illustrating the
effectiveness of the small gain theorem stated in the previou%r i=1L..
section. The first example illustrates the construction method 2|| P |bs 2
for an 1SS-Lyapunov function in the relative simple case w(r) =2 (0,(1_5)3”7") ’
when the interconnection consists of linearly interconnected '

,n, i # 7, and

linear subsystems. Further we will consider the a Cohefo' ¢ = 1,...,n, andr > 0. Further we may take
Grossberg neural network, an example related to formation n 9
control, and nonlinear transistor-linear resistor circuits. wi(s,r) = 2(25]-) +r

=1
A. Linear systems J. )
for s € R’} andr € R,. By definingy;; =0fori=1,...,n

Consider linear interconnected systems we can write

Sit @ =Awi+ Y Ayrj+ By, i=1,...,n (14) 0 72 7e Y

j=1 Yor et Yon V2w

=
Il

with z; € RM,u; € RM: and matricesA;, B; of

appropriate dimensions. Each systemy is ISS from
(zf, . a2l ... 2l ul)T to z; if and only if A,

is Hurwitz. This can be seen for example with the Lyapuno@nd have

functionV;(z;) = = P,z;, whereP; is a symmetric positive Tu(s,r) =

definite solution ofA” P, + P; A; = —Q, for some symmetric Sl ) 2 1A 2 A 2
positive definite matrixQ;. It is known that there is a unique 2(%) (Zj Ti]\/g) +2 (clll(fﬂgﬁ ||Bl||7‘>
s.p.d. solutionP; for any given s.p.dQ; if and only if A; is :

Hurwitz. In that case, along trajectories of the autonomou '

2 2 2
2|| Pr|lbn Apj 2|| P |bn
system . (C!LOL)) (Zj %ﬁ) +2 (Cl(lﬂg) ||Bn||?")
@ = A an
we have Interestingly, the choice of quadratic Lyapunov functions for
Vi = 2T P Ay + 2T AT Py — —aT Qui < —cil 2 the subsystems naturally leads to a nonlinear mapping

Proposition 4.1: Let eachX; in (14) be ISS with a qua-
for ¢; := Amin(Q;) > 0, the smallest eigenvalue 6. dratic 1SS-Lyapunov functior;, so that the corresponding



operatorT,, can be taken as in (17). If the spectral radius of Recall the triangle inequality fok'..-functions: For any

the associated matrix v, p € Koo and anya, b > 0 it holds
¢= (ﬁi%—”:; Hiij : )ij (18) Y(a—+b) <o l(id+ p)(a)+ o (id+ p~')(b).
is less than 1, then the interconnection DefineV;(z;) = |x;| then each subsystem is ISS since the

following implication holds by the triangle inequalit
Y: &=(A+A)xr+ Bu g 1mp Y g auaty

is ISS and its (nonsmooth) ISS-Lyapunov function can be

— n
taken asV (z) = max; -a P;z; for some positive vector |zi| > b o (id + p) i Z Itiilvi(125))
5eRY. &~
Proof: If the spectral radius ofs is less than one, then _
there exists a positive vect@rsatisfyingGs < s: Just add a +1}i—1 o(id+p™1) < & |Ji>
small § > 0 to every entry ofG, so that the spectral radius Q- ¢

p(G) of G = G + 4 is still less than one, due to continuity

of the spectrum. Then there exists a Perron-Frobenius vector ~ o n

5 such thatG3 < G5 = p(G)5 < 3. > bt : (Z [t |vs (Jz5]) + Jil) =
Now defines by 8, = 32 for i = 1,...,n. We claim that &~ e\

the straight half-line spanned by this vectoin the positive n

orthant is anQ2-path forT',,. Vi = —aq(x;) (|bi($i)| — signz; Ztijsj(a:j) + signxiJi)
Indeed, for allr > 0 we have

j=1
< —¢lbi(z)|

2
N 2 R bi Ai‘ =
IM(S? )i - 2 E C.( || ) H J” / j

a; for somee satisfyinga, > ¢ > 0 and arbitrary function
5 p € Koo

1Al In this case we have

igj oy

N 2||.P;11bs
J Cz(l —8) a;

< (3)%r =& additive with respect to the external inputs and

pi(s,m) = by o (id+p)(s1+---+s5,) +b; Lo (id+p")(r)

The existence of an operatd? is now straightforward. By - az‘\tij|7_(|x_|) o = aiid
Theorem 3.2 an ISS-Lyapunov function can be taken as Ty Y a;—¢
V(z) = max; %%TPZ% - ) B Note that so far we have not imposed any restrictions on
A different approach to the stability analysis of inter-the coefficientst;;. Moreover the assumptions imposed on
connected linear systems has been undertaken in [13], [191,’ b;, s; are essentially milder then in [22]. However to
where stability conditions for interconnected systems havgptain the 1SS property of the network we need to require
been derived and where the problem of constructing quayore, i.e., a small gain condition has to be met, which
dratic Lyapunov functions for the interconnected system iﬁnposes restrictions on the coupling termss; (z;).
investigated. Theorem 4.2:Let T, be given by~;; and u;, i,j =
B. Neural networks 1,...,n as calculated above. fqr the Cohen—Grqssberg_neural
etwork (19). Assumé’,, satisfies the small gain condition
). Then the Cohen-Grossberg neural network is ISS from
(Ji,.. oy dn)T to z.
) B " Remark 4.3:In [22] the authors have proved that there
(t) = _“i(xi(t))(bi(xi(t))_ztijsj(xj(t))*"]i)’ 19 exists a unique equilibrium point for the network and given
. =t constant external inputs. They also have proved the exponen-
i =1,...,n, n > 2, wherez; denotes the state of the tja| stability of this equilibrium. We have considered arbitrary

ith neuron,a; is a strictly positive amplification function, external inputs in the network and proved the ISS property
b; typically has the same sign as and is assumed tO for the interconnection.

satisfy |b;(x;)| > b;(|z;|) for someb; € K., the activation _

function s; is typically assumed to be sigmoid. The matrixC- Formation control

T = (t;;)i,j=1,....n. describes the interconnection of neurons In [21] formations of vehicles on the plane as in Figure 1

in the network andJ; is a given constant input from outside. have been considered. Using feedback linearization local

However for our consideration we alloyy to be an arbitrary controllers have been designed that render the formation

measurable function i . error between two consecutive vehicles input-to-state stable
Note that for any sigmoid function there existsyac K  with respect to the up-link formation error. Since cascades

such that|s;(z;)| < v (|z:]), following [22] we assum® <  of ISS systems are ISS it could be shown that cascades of

a; < a;(x;) <@y vehicles are “leader-to-formation” stable (ISS).

Consider a Cohen-Grossberg neural network, see [2
e.g., given by



Fig. 1.
(P).

A formation of four vehicles (1-3) following a designated leadeddOUNded from above by B

where~;; is given according to (24) and; is summation
for ¢ = 1,...,n. Observe that if each vehicle follows
exactly one other vehicle, each row except the first one
in T' contains at exactly one nonzero element. @spath
o = (01,...,0,)7 € K can now iteratively constructed
as follows: Picko; = id € K, Iteratively, fori =2,...,n,
chooser; € K, such thatz ,1 Yij o 0j < 0. Clearly that
is always possible, as a sum Kf,, functions can always be
function.

The ISS Lyapunov function for the formation error is now
given according to formula (13).

Due to the converse ISS Lyapunov theorems, it is clear thgf. Transistor networks

there has to exist an ISS Lyapunov function for the entire

formation error; here we show how to find it.
The dynamics for each vehiclein Figure 1 is given by

i?i = V; COS 91', yz = V; sin 01-, 91 = W, (20)

(s, v, 0;) being the absolute position and orientation of thavhere z; € RN 4; =

ith vehicle. In the following the modelling parametédeno-

In [14] a nonlinear transistor-linear resistor model is
considered, which is characterized by the set of equations

2 + Ai fi(zi) + Bigi(zi) = bi(t), (26)

; (a;:cl)’Bi =
square matrices witla;,, > 0 and b,

1=1,...,n,

(b;;) are constant
> 0, where f;, g; :

tes the distance from the wheel axis to the reference point 81" — R": are continuously differentiable in;, satisfy
each vehicle. The control inputs;, w;) are the translational fi(z;) = 0 and g;(z;) = 0 if and only if z; = 0, and

and rotational velocity. The separation distance between tWigrther it may be assumed that in fag}(z;) =

consecutive vehicles, a leadeand a followerj, is denoted
by l;;, and the relative bearing between thempjs. For both
values constant specification parametgfs’, v;7“ are fixed
and describe the formation. The formatlon error is

Zij 1= (L, ig) T o= (0% = Ly, 957 — i) T (21)
The control objective is to drive;; to 0. In [21] a controller
is proposed that rendefs; 1SS with respect tc;, where

k denotes the number of the vehicle in front of vehitldt
is shown that the Lyapunov function candidate

Vi) = gl + gl @)
satisfies the implication
2 5 Mk Y@+ B+ )
T (1 — &)dmin{k], k3 } (23)
= Vi; < —¢lzy]*,
where K¢ = (ki, k)T is the feedback gain used in the

feedback Ilnearlzatlon construction of the controller. Impli-

cation (23) is implied by
Vii(Zij) =
max{ki, ki) (d el 4 \/Vki(zm-)) Vi)

\fmln{\/ki, \/kz} (1 —e)dmin{k, k3}
— Vvij < _5|2ij| . (24)
which is in the form of (6). For a cascade formationrof
vehicles the gain matrix takes the form

0o ... 0

(25)

Yn,n—1 0

) y | , fi(%,) and
9i(z:) = gi(21) where fi(z) = (fi(z:),-.., fa,(z:)7,
9i(zi) = (91(zi), - g, (z)) T, and z; = (2,...,2},) "

As in [17] it is assumed thaffi(z;)/z;, > ¢ > 0 and
gi(z1)/z > ¢ for all 2z} # 0 and thatd/dz} fi(0) > &
and 9/0z} fi(0) > 4. As in [14] we content ourselves with
the case

bz<t) = 0)

1=1,...,n.

The interconnection between the subsystems (26) is des-
cribed via termsC;;g,(z;), whereC;; are constant matrices
of appropriate dimensions, leading to subsystem dynamics

G+ Aifi(z:)+Bigi(zi)+ Y Cijgi() =0, i=1,...,n.
J#i
(27)
This may be written as
2+ Af(z) + Bg(z) =0, (28)
where zT = (2],....20), fT = (f,.... ), g7 =
(g97,...,9)), A accommodates the matrice4; on the

diagonal, andB accommodates the matricés and C;; in
the obvious manner.

Due to the nonlinear termg; a quadratic Lyapunov
function V;(z;) = 2T P,z; with PA;, + A/ P, = —Q, for
some positive definite matrigg; bears some difficulties when
it comes to consider the interconnection structure and to
derive gains between the subsystems. Instead, we decompose
system (28) into its scalar subsystems

2y = —anfa(Er) — baada(Er)
- Z(a)\ufu(gu) + b)\ugu(gl/))a (29)
VF#EN
forA=1,...,N =>,N;, A= (an,), B = (bx) and

where f\ and j, denote the component functions fand

g, respectively, and is decomposed intéy, ..., Zy.



Using a smalle > 0, standard estimates, and the Center 637 “Autonomous Cooperating Logistic Proces-

Lyapunov function candidateig, () = %éi we arrive at

V)\ < —(a)\,\ + b)\,\)6€5§ (30)
if - - -
EXED IR (31)
VF#EN
where
auls) = .
T (1 —¢)d(axr +bax)

. {a)\u max {fv(s)a 7f~u(*8)}
+ bay max {3, (), =3 (~5)} | . (32)
Now we note that due to the properties of the functighs
andg,, the functiony,, is of classk, or equals constantly

zero. Hence for the functions,, given by ~,,(s)
Aaw (V25), we have

) 2 (i)

V#N
— V)\ < —Q(CL)\)\ +b)\)\)565§

DN =

(33)

i.e., the defining implication form (6) for an ISS Lyapunov

function.
Now, if the small gain condition is satisfied for= (v, )
andpx(s) = 3 (3, s,)°, then the trivial solution of (28) is

Ses
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globally asymptotically stable, and a Lyapunov function is[9]

given by (13).

V. CONCLUSIONS

[10]

In this paper we have considered several applications of
the general ISS Lyapunov small gain theorem. In particuldt!]
we have shown how ISS Lyapunov functions can be con-
structed in a bottom-to-top design fashion for linear system§,2]
neural networks, vehicle formation control systems, and for

transistor networks.
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