Numerical verification of local input-to-state stability for large netwoks
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Abstract—We consider networks of locally input-to-state the problem statement is given in Section Ill. Section IV
stable (LISS) systems. Under a small gain condition the entire contains the main results of the paper. An illustrative gxiam
network is again LISS. An efficient numerical test to check the is considered in section V. Section VI concludes the paper

small gain condition is presented in this paper. An example d ai K the fut directi f h
from applications serves as a demonstration for quantitative and gives SOme remarks ohn the ULLre directions orresearci.

results.
II. NOTATION AND DEFINITIONS

A. Local Input-to-State Stability (LISS)

. INTRODUCTION

This paper studies local stability properties of a system
Let R, denote the intervald, oo) andR”; be the positive

&= f(x,u) () orthant inR". For anya,b € R leta <b & a; <
that can be viewed as a composite of subsystems bi, i=1,...,nanda <b & a;<b,i=1,...,n
. , Fora,b € R} let [a,b] := {s € R} : a < s < b} be a
@i = filen, - Tnou), i=1..m, @ rectangular set iR and]a,b[:= {s € R? : a <s < b}.
wherez; € RV, y; € RMi| f; R2; NitMi _, gN: ; —  Let ||z|| denote the Euclidean norm aof ¢ R". Before we
1,...,n, 2T = (@T,... 2Ty e RN, N = SN, T = move on to the stability concepts, we first recall the debniti
T, ... ul), flz,u)T = (fi(z,u)T, ..., folz,u,)T). TO of comparison functions.

have existence and uniqueness of solutions of the subsystemDefinition 2.1: (i) A function v : Ry — R, is said to be
on their own, each functiorf; is assumed to be continuousof classk if it is continuous, increasing ang(0) = 0. It is
and locally Lipschitz inz uniformly for u; in compact sets. 0f classK if, in addition, it is unbounded.

Stability properties of such an interconnection have been (ii) A function g : Ry x Ry — R, is said to be of class
studied in [1], [2], [3], [4], [5], [6]. A stability conditim of KL if, for each fixedt, the functiong(-,t) is of classK and,
a small gain type for the interconnection (1) of input toestatfor each fixeds, the functionf(s,-) is non-increasing and
stable (ISS) subsystems (2) was firstly derived in [1]. Somkends to zero at infinity.
interpretations and consequences following from this kmal The concept of input-to-state stability (ISS) has been first
gain conditions can be found in [3], [5]. The constructiorintroduced in [12]. Its local version was given by Sontag and
of an ISS Lyapunov function for (1) was given in [2], Wang in [13].
[4]. These results generalize the known stability condigio  Definition 2.2: System (1) idocally input-to-state stable
derived in [9], [10]. (LISS), if there exists @ > 0, a~y € K, and ag € KL,

It is not an easy task to check this generalized smadiuch that for all|¢]| < p, ||ullec < p
gain condition in case of large scale interconnectionshik t
paper we develop a numerical procedure which allows to [1#(¢, & W)l < B(€]l, ) +v([[ull) V=0, (LISS)

check this condition. Here we consider a local version of , . . .
the stability property which seems to be more relevant for this casey is called gain.
= oo, then system (1) is callethput-to-state stable

applications. Each subsystem (2) is assumed to be Ioca, P : . . . .
input-to-state stable (LISS). We present a local small gai S). It is known that ISS defined this way is equivalent to

condition (LSGC) for the stability of interconnection (Tc the existence of an ISS Lyapunov function. Here we give the

a numerical test to check this condition, i.e., to assurettiea def|n|t_|o_n_ of a LISS Lyapunov fu_nctlon: N .
composite system is also LISS. This consists of two steps: Definition 2.3: A SmOOth fu_nctlonV : R —~Ryisa
By a fixed point algorithm and a convergence argument L|SS Lyapunov functioof (1) if there existyn, s € Koo,
region in the positive orthant is identified, where the gain® € Koo, and a positive definite function such that
matrix is strictly decreasing. A local version of the smalirg 1(|z]) < V(z) < ¥o(|z]), Vo eRY, ©)
theorem for general ISS networks then establishes LISS for - o
the composite system. A region of stability can be explicitl /() > y(|u|) = VV(2) - f(z,u) < —a(V(z)), (4)
stated. So far this estimate is still very conservative.

We organize this paper as follows: The next sectiofor all ||€|| < p,
introduces the necessary notions. Some auxiliary resnéts aLyapunov gain. Ifp = co thenV is called an ISS Lyapunov

function.

UnT\?eisiﬁ?UtESmeﬁ’re P(V)”;{?ach‘“e%(ii”gf“”;gg&“g‘:g?{:ﬁfheg‘;ﬂ;nyy A related and strictly weaker stability concept is that of

{dsn, ruef fer, f abi an}@rat h. uni - br enen. de local stability:

lu|[«« < p. Function y in then called



Definition 2.4: System (1) idocally stable(LS), if there i = 1,...,n. Let I" be given by (7). If there exists an
existp > 0, 0,7 € K, such that for all|¢|| < p, |lu]leoc <p a € K, such that

(-, & ulloo < a(lIE]) +(llulloo)- (LS) (ToD)(s) 25, VseR}\{0}, @)
Also related is the concept of asymptotic gains. _ ) i _
Definition 2.5: System (1) has théocal asymptotic gain With D = diag,,(id + o) then the system (1) is ISS from

property (LAG), if there existp > 0, v € K, such that for to z.

all €]l < pv Jlulloo < p Furthermore it is known that under the same small gain
B B condition stated for Lyapunov gains of subsystems (2) an ISS
limsup ||z(t, &, u)|| < v(||ullso0)- (LAG)  Lyapunov function for (1) can be explicitly constructed as a
Note that inte_dﬂoality (LAG) is equivalent to combination of the ISS Lyapunov functions of subsystems,
) _ see [4]:
lim sup [2(t, & uw)l < 7(93311350210 [ull).  (LAG) If we replace (4) for each subsystem (2) by
B. Gain Matrices Vi(z:) = x(||u]) + Z%j(Vj(:cj))
There many nonlinear gains in case of an interconnected J#i 9)
system (2) which can be combined in a matrix in the = VVi(z;) - fi(z,u) < —a(Vi(z:)),

following way. Subsystem is LISS, provided there exist
pi > 0, vi5,% € Koo, and ag; € KL, such that for all the following theorem holds.

Iill < pi [luilloe < pi Theorem 2.9:Let each subsystem (2) have an ISS Lyapu-
L nov functionV;, i.e., V; satisfiesV;(0) = 0, is radially
ARSI 7 yug)|| < Bi(||&]], T ! .
it &, 2 5 7 4 ua)| < Bull&] 9 unbounded, proper, and locally Lipschitz, such that (9)&ol
+ 3 vi(ljlloe) + vllluilloe) VE>0. (5) for i = 1,...,n. Let T be given by (7) but withy;; the
JFi Lyapunov gains. Assume thatis irreducible. If there exists
Remark 2.6:Note that instead of (5) we could also writean a € K, such that

for v;; € K Or 7v;; = 0, and definel’ just as before, then

et vy 25 # i w)l| < max{Bi(ll 1), ToD)s)Zs, Vs €RLALOL  (10)
mase sy ([;loc). vi(lulloc)} V220, (6)  with D = diag, (id +a) then

which is qualitatively equivalent. Of course the gains i (5 V(x) = max o; ' (Vi(xi))

and (6) are in general different.

If all . subsystems are LISS then these estimates give rige " 1SS Lny“”OV function for the system (1), where
to again matrix o : Ry — R% is a function satisfying(I" o D)(o(t)) <

o(t), Vt > 0, such that each component function is of
T = (7i)} =1, With 7;; € Koo OF 735 = 0, (7)  classKe.
Note thatV(x) in this case is not smooth but Lipschitz con-

where we use the convention; =0 fori =1,...,n. tinuous. A local version of the functiam can be constructed
C. The Small Gain Condition explicitly as we will show below.

The gain matrix” defines a monotone operatDr 7} — 1 1S PEREL MR 9 B Oes e i rocult
R? by [(s); := 32, 7ij(s;) for s € R7. 9 :

Remark 2.7:1f we used the notation (6) instead of (5),
then we would defind'(s); := max; v;;(s;). ) ) )
An operatorA : R — R” is called monotone, i < s nLemmg 3.1:LetF_be a gain matrix as in (7). For amy* €
implies A(r) < A(s). By construction[ is monotone. R”} consider the trajectoryw(k)} of the discrete monotone

We say thatl satisfies thdocal small gain conditioron  SYStemw(k +1) = (w(k)), k = 0,1,2... with w(0) =

1. AUXILIARY LEMMAS AND PROBLEM STATEMENT

[0, w*], provided that w*. If w(k) — 0 for k — oo thenT satisfies the small gain
Y condition (LSGC) on[0, w*].
I(w*) <w* andl'(s) %5, Vs € [0,w'], s #0. (LSGC) Proof: Suppose this is not true, i.e., there exists a point

e
Heres # r for r,s € R” means that there is at least ong) 7 v € [0, w"] with

componenti wheres; < r; holds. L(v) > v (11)
The global small gain condition assuring the ISS property

for an interconnection of ISS subsystems was derived in [1&ndv # 0. SinceT is monotone, so i, i.e., thek-times

An alternative proof has been given in [5]. We quote th@pplication of . Hence (11) implied™(v) > v > 0, so

following result from these papers. I'*(v) does not tend to zero ds approaches infinity. But
Theorem 2.8 (global small-gain theorem for networks): v < w* impliesI'*(v) < I'*(w*) = w(k), which is assumed

Consider system (1) and suppose that each subsystem t@)tend to zero. A contradiction. Hence there cannot exist

is ISS, i.e., condition (5) holds for al; € R”, u; € Ly, Suchavand (LSGC) holds on all ofo, w*]. u



Lemma 3.2:LetI' € (K U {0})"*" satisfy (LSGC) on by [(s) = l;(5), where
[0,w*], such thatl’ has no zero rows. Then for all; €
JT'(w*), w*[ there exists anx € K, such that forD =

diag,,(id + a) defines a proper labeling, see [8] for the definition and
DoT(s) # s, Vs € [0,wi], s # 0. details, wheré, is an-vector of zeros, with+-1 at position:

Sketch of Proof.1. UsingI'(w*) < w* and monotonicity and—1 at positionn for : = 1 and at positiori—1 otherwise.
of T one can easily show thaf*(w*) — 0, strictly Note that for actual computations it is sufficient to conside

i(s) = argmin{s; > 0 andI'(s); < s;},

decreasing. (8) =ils). L . .
2. Note thatD*+2(w*) < DFl(w;) < DFI(w*) < The algorithm described if6 and§7 in [8] then finds a
Pk(;ul) k=0.92. .. pointw € R%, ||w||y = r, with I'(w) < w, provided such

3. We have theri™(w;) — 0, strictly decreasing. a point exits. An even faster but more involved algorithm is

4. On a discrete set define a diagonal operdoinduc- given in§8 of that paper.

; _ N - _ _ b) Step 2: Given a pointw € R%, ||w|; = r, with
tively b =T =Dol , Dol =T = . S
vely by w, = I (u") o D(ws), Dol (ws) (wr) I'(w) < w then, provided that (LSGC) can be satisfied at

ws, and so on,D o I'(w;) = w;41. _ . .
5. D is defined on set of strictly decreasing points, congn’ in an arbitrary small neighborhootl (w) of w, there

sider the componentwise slopes Bf between these points eX'StIT aw” sucf&{haﬂ“.(w*l) < w", see interpretations of the
i = min, {(D—id)(T(w;));/T(w;);} as a function of these SMall gain condition in [1]. |

i i : = : Now consider the trajectoryw(k)} with w(0) = w* of
points I'(w; ), associate this te; := ||T'(w;)||1. So {r;} is the discret " temik 1) — T(w(k). If it tend
null sequence, hencg; is function ofr;. e discrete monotone systentk+1) = I'(w(k)). If it tends

6. Let &; be bounded from below by some strictly decre© 2810 th_e_n this |mpI|es_ that_on_ the g&tw"] the local small
. gain condition (LSGC) is satisfied, see Lemma 3.1.
asing null sequence;.

7. Define by linear interpolatio®(s) = diag((a;—ai+1)-  B. A Local Small Gain Theorem
Lelizries 4 (1 4 ag4q) for ||sly €]rira, ri)-

Ti—Tit1 ) In this section we state a small gain theorem for LISS

Then clearlyD o I'(w1) < wq, D € diag(id + K), and systems in the spirit of [1], [5].

(D o I)*(wi) — 0. Hence (D o I)(s) # s for all s € The first step is a local version of the main ingredient used
[0,w1],5 # 0 by Lemma 3.1 applied td o I'. ® {0 prove the other small gain theorems.

Note that by continuity of" for w* such thaf(w*) < w* Lemma 4.1:Letw* € R, w* > 0. LetT satisfy (LSGC)
we also have a diagonal operatbrsuch thatD o I'(w*) < on [0, w*]. Then there exists & € K., such that for all
w” w e RY, w<w* and allv € R} we have
A. Problem Statement (id—T)(w) <v = |lw]| < p(|lv]]).

We will consider the following questions. Suppose we |Nhe proofis essentially the same as in [5, Lemma 13]. The
have a network of: interconnected LISS systems like (2),0ther important ingredient is an operator= diag(id + o) :
each satisfying (5); = 1,...,n. Under what conditions R% — Rl for somea € K. ‘
does the composite system (1) satisfy (LISS)? How can we Theorem 4.2:Let all subsystems (2); = 1,...,n, sa-
check this condition numerically by just looking B Can USfy (5)- Supposd’ satisfies (LSGC). Then there exists a
we estimate the stability region in (LISS), i.e., determing > 0, @3 € KL, and ay € K, such that system (1)
estimates fop numerically? satisfies (LISS). . . .

In the next section we will show that (LSGC) is sufficient "€ proof divides into the following steps: First we
for LISS of (1) and show how this condition can be checked®Stablish that system (1) satisfies (LS) and (LAG), then we
We will see how the stability region can be estimated. ~ constructs for the (LISS) estimate. But beforehand we have

to establish existence of solutions for all times and find

IV. MAIN RESULTS Proof: Throughout the proof letv* > 0 be given

by (LSGC),» be given by Lemma 4.1. Let ¢ RY, N :=
> N; as in (1) be split into parts as in (2). We use
The procedure to check the small gain condition explicitlthe notation|| - ||. to denote componentwise norm, i.e., for

A. The Numerical Test

for a givenT" € (ICoc U {0})"*™ consists of two steps. r € RN this yields||z||. = (||z1]],- -, ||za])T, where| z;]|
a) Step 1: Given a radiusr > 0, find aw € R7%, denotes the corresponding norm B+, i = 1,...,n.
lwl]l1 := > wy =r, such thafl'(w) < w. Let C > 0 be the minimal constant, such that with||. <

In [8] two algorithms are proposed to find distinguishedh € R” also ||z|| < C - |[v|| holds for allz € RY and all
points in simplices. In that paper, usually fixed points are € R”}.
under consideration, but the method is more general andin the following a vector notation will be extremely
suitable for our purposes. For reasons of space, we jusseful: For now let3(s,t) := (Bi(s;,t),i = 1,...,n)T and
indicate how the method is applicable to our setting: G(|[ulle.c0) == (Vi(l|tilloo),i = 1,...,n)T.

The setS := S, := {s € R} : ||s|y = r} defines an  STEPO — EXISTENCE AND p Let ¢ := min; w} > 0, SO
(n—1)-simplex. Let function : S — {1,...,n} be defined that|z| < ¢ implies ||z|. < w*. Let § = p~1(¢/2.c). For



actual computations one could choose special norms to dg&ince I(£,u) w* we again may apply Lemma 4.1 to
C ~ 1 and instead of/2.c one could use something justget ||I(¢,u)|| C - o(lG(|lulle,o)]) < Y(|lte]loo), Which
below ¢, to get less conservative numerical estimates. establishes (LAG.

Let ¢ € R2:=1Ni pe such that|3(||¢].,0)| < ¢/2 and STEP 3 — CONSTRUCTING THEXL-FUNCTION To this
€]l < e. Letw € L™®(R,;RX:Mi) as in (1) such that end let
NG (ulle.o0) < 5/2. -

Define 7* — min{t > 0||z(t.€.u)| > e}. Clearly B(s,t) := Ilu”wilg)”g”<s(||x(t,€,U)||—W(HuHoo))h
Hx(.’g’u)”[O»T*] <€ and hence“w('vgaU)HC,[O,T*] < w*. - B
So we may apply Lemma 4.1 to the following inequalitywhere a™ denotesmax{a,0}. By compactness of the set

<
<

following from (5): where the supremum is taken, the supremum is attained,
_ finite, and fort — oo the functiong tends to zero. It is
(id = D)(lz(-, & W)l jo.r+1) < BUIEle:0) + G(llulle,0)-  clearly increasing ins and continuous and hence can be

bounded above by a functighof classK L, see for example

Hence [11]. With this 3 and~ from step 2 we obtain the LISS for
leC, &l < C- BN 0)l + 1G(lulleeo)ll)  (1)- This completes the proof. "
< C-9(0/2+6/2) V. AN EXAMPLE
C-(9) Remark 5.1:In Definition 2.2 of LISS or in (5) for the
C-¢/2.c=¢/2. case of several inputs we used the summationsoénd

gain function(s). An equivalent formulation can be given
h using a maximum of these terms, as in (6). The small gain
conditions (10) and (LSGC) for ISS or LISS do not change
in that case.
In the literature since [12] ISS using the+ ~-estimates
has often been proved by showing first that there exists an
6/2,16(s, 0| < 6/2}. ISS Lyapunov function. We use the same approach here. The

Note that if LISS was defmed_ asin _(6)’ then in the abov‘f:]ains we get using this approach are in our case also suitable
estimates we would use a maximum instead of a sum. ¢ W max{, v }-formulation of ISS

STEP1 — ESTABLISHING LS For|julls < pand|&|| < p

This implies that there is no such minimal tiMi&, suc
that the norm of the trajectory(-,&,u) leaves thes-ball
around the origin. Hence this trajectory stays in that bail f
all times.

Now let p < sup{|ls|]] : s € R, s < w*, ||G(s)] <

h The KL-functions 3;, i = 1,...,n, will not be given
we saw that explicitly, but what is important to note is just that(s, 0) =
12(- &, 1)l < C - (IBUIENe; )| + G (lteleso0)]]) sforall s €R.

A. A Network System

The following system orRS. is motivated by applications
< Co2lIBIE]le, 0)]) 4+ Co20|G(l1w]|e.00) ) in logistics, see [7]. Although we establish that the networ
(12) system is LISS, the estimates given by Lemmas 3.2 and 4.1
can be very conservative.

which by the weak triangular inequality is

and hence
. axy + by/z1
< =y —Y 13
< a(ll€l) +v(lullo) hr=u- (13)
for someo, vy € K. This establishes (LS). . lari+byrr 1 o
STEP 2 — ESTABLISHING LAG’ Foru € L, |ju|l < p 2T 3T Y ap a5 3 min{bs, cara} —min{bz, cora}
and||¢]| < p the LISS estimate for the subsystems gives us (14)
fort >ty >0 1 by/ 1
0 T3 = az1 + 0y + — min{bs, coxo} — min{bs, c3x3}

§1+IL'2+(E3 2
[#(t — to, z(to, &, u) u)lle < B(llz(to, & u)lle, t — to) (15)

T S x(t G .00 ) . 1 b 1.
+ (Hx( 737( 0757“)7“’)”67[%,15]) + (HUH s ) iy = 7aa?1 + \/‘E + 7m1n{b2’02w2}
For to, = t/2 this becomes Sltwatas 2
0= + min{bs, c3z3} — min{by, cyx4} (16)
||;L‘(t/2,a:(t/2,§,u),u)||c < 5(||l(t/27£7u)”67t/2) I5 = %min{b4’04gj4} — C5X5 (]_7)
+ L([z(, 2(t/2,& u), w)lle,p2.4) + Gllulle,00) 1

Te = —min{by, c4xq} — csT6 18

and taking thelim sup for ¢t — oo, and by a result in [1], 72 {ba, caa} = cos (18)
[5] we obtain This system can be seen as a compositiofi infterconnec-
ted one dimensional systerhs, i = 1,...,n, each regarding

UE ) = “iiigp (/2 & w)lle < PUUE u) +G(lullec)- oniy 4, as a state and;, j # i, as inputs. The associated



graph of this network is depicted in figure 1. If the constantanplies

a,b,ba, b3, by, co,c3,c4,c5 , andcg are chosen properly, then

each subsystem should be LISS: Choosing

a=1/4 b=1/2
ba =5 bs =3
by =4 co=T/8
cg = 5/4 cy = 2/3
cs =1 cg=1

T <0
and forzs < 9/10, x3 < 12/5, andx4 < 6 it holds that
x; > maxy;;(z;)
j#
implies
z; <0

fori=2,...,6.
The gain matrix" in this example looks like

one can check that each subsystem is LISS using LISS

Lyapunov functions/;(z;) = z; (see [4]) with the following
gains:

Yi2(22) = ¥3/m? Y13(23) = ¥3/m>
Y21(21) = Vo/ps Y23(3) = *3/q2
Y31(21) = VZ1/ps Y32(x2) = ©2/gs
Ya1(21) = V¥1/py Va2 () = T2/rss
Ya3(23) = #3/ras Yu(u) = v/

and
’)/54(.’)34) 1/2 min{b4/05,c4/05$4} + 8(%4)
Yoa(x4) amin{ba/cs, c4/coxs} + €(x4)

Heree denotes some arbitrary slowly growir@,, function
and

m =9/15 cu =15
p2 =9 ps =4

pa =3/10

g2 =83 g3 = 11/10
r42 = 16/70 r43 = 8/50.

Namely the following holds true: Far= 1 we have

Ty > maX{%j(ﬂ?j)’%u(u)}
j>1

U
_ P Yo
Y3 b
5 Y6

Fig. 1. The example in Section V consists of a strongly corewkct

component and a cascade of subsystems. This translateserottk form
of I'.

0 Y12 Y13 0 0 0

Y21 0 Y23 0 0 0
1 2 O 0 0 O
S var a2 a3 00 0
0 0 0 4 0 O

0 0 0 74 0 O

We see thaf" is lower block triangular with an upper left
3 x 3 irreducible block and a lower right nilpoterst x 3
block on the diagonal. We like to find a vector satisfying
I'(w*) < w*. A few basic considerations lead us to the

following vector
2

0.3
. |04
5
2
2

This vector will be the starting point of the numerical test
described in Section IV-A. We could also use the algorithm
proposed in [8] for some given radius to find another
w*. Now we can apply Lemma 3.1 to see if the small gain
condition is met on the sd0,w*] \ {0}.

The condition (LSGC) is satisfied by Lemma 3.1. By
the method given in the proof of Lemma 3.2 we find an
operatorD. Figure 2 shows the computed sequel{lfy@’,j“:1

{ape,
47{Q}Zi1

Wobkk % % * *

WEEE Kk

z 3
{Tk}Zi1

Fig. 2. Constructing the operat@: The sequencesd anda plotted versus
the sequence up to some indexy.

as function of{r;}}°, and a bounding sequende};°
needed for the construction éf. Here we used the notation
given in the proof of Lemma 3.2.



Next we are interested in the functiam of Lemma 4.1, VIl. ACKNOWLEDGMENTS
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The functiony can be found by the method in the proof
of Lemma 4.1, see [1] or [5] for details, in our case this
estimate forp is just

p(s) = [I(Do (D —id)~ o (id+ 1) (s e)llw, (19)

wheres € Ry ande = (1,...,1)T. Unfortunately this is
not only not a sharp estimate but in fact quite conservative[2]
since in the above mentioned proof at several steps very
rough estimates are made. The functipngiven by (19)

(1]

is plotted in Figure 3. Now givenp, this allows us to [3]
12
(4]
101 4
(5]
sk i
(6]
oL i
i 1 [7]
2L i
(8]
% 1 2 s . 5 6 [°]
x10°
[10]
Fig. 3. The functiony constructed in the proof of Lemma 4.1 is too
conservative for practical applications.
[11]
choosed* < »~1(0.3), which leads top* := sup{||s|| :
s € R's < w [[G(s)|| < 67/2,[18(s,0) < 0%/2}. 2

This p* bounds the initial value§zi||, £ € RS, and inputs
l[ull oo, u € L (R4, R, ). For actual applications this is too (13!
conservative, since already is very small. Better estimates

for ¢ have to be found. Hence fdu|| .. < p* and||£]| < p*

the system (13)—(18) satisfies (LISS) wherean be taken
from (12).

VI. CONCLUSIONS AND FUTURE WORK
A. Conclusions

We have presented an efficient tool for numerical ve-
rification of the stability properties of an interconneatio
of several locally input to state stable systems. The local
small gain condition can be checked using this algorithm.
An example illustrates how this method works. A drawback
is the conservative estimate for the region, where the local
stability property actually holds.

B. Future Work

Better estimates fop in Lemma 4.1 should be possible
and are needed for actual applications of this result. The
next step is to extend this method on the systems satisfying
practical stability property.
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