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Abstract— We consider networks of locally input-to-state
stable (LISS) systems. Under a small gain condition the entire
network is again LISS. An efficient numerical test to check the
small gain condition is presented in this paper. An example
from applications serves as a demonstration for quantitative
results.

I. INTRODUCTION

This paper studies local stability properties of a system

ẋ = f(x, u) (1)

that can be viewed as a composite of subsystems

ẋi = fi(x1, . . . , xn, ui), i = 1, . . . , n, (2)

wherexi ∈ RNi , ui ∈ RMi , fi : R
P

j
Nj+Mi → RNi , i =

1, . . . , n, xT = (xT
1 , . . . , x

T
n ) ∈ RN , N =

∑n
i=1Ni, uT =

(uT
1 , . . . , u

T
n ), f(x, u)T = (f1(x, u1)

T , . . . , fn(x, un)T ). To
have existence and uniqueness of solutions of the subsystems
on their own, each functionfi is assumed to be continuous
and locally Lipschitz inx uniformly for ui in compact sets.

Stability properties of such an interconnection have been
studied in [1], [2], [3], [4], [5], [6]. A stability condition of
a small gain type for the interconnection (1) of input to state
stable (ISS) subsystems (2) was firstly derived in [1]. Some
interpretations and consequences following from this small
gain conditions can be found in [3], [5]. The construction
of an ISS Lyapunov function for (1) was given in [2],
[4]. These results generalize the known stability conditions
derived in [9], [10].

It is not an easy task to check this generalized small
gain condition in case of large scale interconnections. In this
paper we develop a numerical procedure which allows to
check this condition. Here we consider a local version of
the stability property which seems to be more relevant for
applications. Each subsystem (2) is assumed to be locally
input-to-state stable (LISS). We present a local small gain
condition (LSGC) for the stability of interconnection (1) and
a numerical test to check this condition, i.e., to assure that the
composite system is also LISS. This consists of two steps:
By a fixed point algorithm and a convergence argument a
region in the positive orthant is identified, where the gain
matrix is strictly decreasing. A local version of the small gain
theorem for general ISS networks then establishes LISS for
the composite system. A region of stability can be explicitly
stated. So far this estimate is still very conservative.

We organize this paper as follows: The next section
introduces the necessary notions. Some auxiliary results and
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the problem statement is given in Section III. Section IV
contains the main results of the paper. An illustrative example
is considered in section V. Section VI concludes the paper
and gives some remarks on the future directions of research.

II. N OTATION AND DEFINITIONS

A. Local Input-to-State Stability (LISS)

Let R+ denote the interval[0,∞) andRn
+ be the positive

orthant inRn. For anya, b ∈ Rn
+ let a < b ⇔ ai <

bi, i = 1, . . . , n and a ≤ b ⇔ ai ≤ bi, i = 1, . . . , n.
For a, b ∈ Rn

+ let [a, b] := {s ∈ Rn
+ : a ≤ s ≤ b} be a

rectangular set inRn
+ and ]a, b[:= {s ∈ Rn

+ : a < s < b}.
Let ‖x‖ denote the Euclidean norm ofx ∈ Rn. Before we
move on to the stability concepts, we first recall the definition
of comparison functions.

Definition 2.1: (i) A function γ : R+ → R+ is said to be
of classK if it is continuous, increasing andγ(0) = 0. It is
of classK∞ if, in addition, it is unbounded.

(ii) A function β : R+ × R+ → R+ is said to be of class
KL if, for each fixedt, the functionβ(·, t) is of classK and,
for each fixeds, the functionβ(s, ·) is non-increasing and
tends to zero at infinity.

The concept of input-to-state stability (ISS) has been first
introduced in [12]. Its local version was given by Sontag and
Wang in [13].

Definition 2.2: System (1) islocally input-to-state stable
(LISS), if there exists aρ > 0, a γ ∈ K∞, and aβ ∈ KL,
such that for all‖ξ‖ ≤ ρ, ‖u‖∞ ≤ ρ

‖x(t, ξ, u)‖ ≤ β(‖ξ‖, t) + γ(‖u‖∞) ∀ t ≥ 0, (LISS)

in this caseγ is called gain.
If ρ = ∞, then system (1) is calledinput-to-state stable
(ISS). It is known that ISS defined this way is equivalent to
the existence of an ISS Lyapunov function. Here we give the
definition of a LISS Lyapunov function:

Definition 2.3: A smooth functionV : RN → R+ is a
LISS Lyapunov functionof (1) if there existψ1, ψ2 ∈ K∞,
χ ∈ K∞, and a positive definite functionα such that

ψ1(|x|) ≤ V (x) ≤ ψ2(|x|), ∀x ∈ RN , (3)

V (x) ≥ χ(|u|) =⇒ ∇V (x) · f(x, u) ≤ −α(V (x)), (4)

for all ‖ξ‖ ≤ ρ, ‖u‖∞ ≤ ρ. Function χ in then called
Lyapunov gain. Ifρ = ∞ thenV is called an ISS Lyapunov
function.

A related and strictly weaker stability concept is that of
local stability:



Definition 2.4: System (1) islocally stable(LS), if there
existρ > 0, σ, γ ∈ K∞, such that for all‖ξ‖ ≤ ρ, ‖u‖∞ ≤ ρ

‖x(·, ξ, u)‖∞ ≤ σ(‖ξ‖) + γ(‖u‖∞). (LS)
Also related is the concept of asymptotic gains.
Definition 2.5: System (1) has thelocal asymptotic gain

property (LAG), if there existρ > 0, γ ∈ K∞, such that for
all ‖ξ‖ ≤ ρ, ‖u‖∞ ≤ ρ

lim sup
t→∞

‖x(t, ξ, u)‖ ≤ γ(‖u‖∞). (LAG)

Note that inequality (LAG) is equivalent to

lim sup
t→∞

‖x(t, ξ, u)‖ ≤ γ(ess.lim sup
t→∞

‖u‖). (LAG′)

B. Gain Matrices

There many nonlinear gains in case of an interconnected
system (2) which can be combined in a matrix in the
following way. Subsystemi is LISS, provided there exist
ρi > 0, γij , γi ∈ K∞, and aβi ∈ KL, such that for all
‖ξi‖ ≤ ρi, ‖ui‖∞ ≤ ρi

‖xi(t, ξi, xj : j 6= i, ui)‖ ≤ βi(‖ξi‖, t)
+

∑

j 6=i

γij(‖xj‖∞) + γi(‖ui‖∞) ∀ t ≥ 0. (5)

Remark 2.6:Note that instead of (5) we could also write

‖xi(t, ξi, xj : j 6= i, ui)‖ ≤ max{βi(‖ξi‖, t),
max
j 6=i

γij(‖xj‖∞), γi(‖ui‖∞)} ∀ t ≥ 0, (6)

which is qualitatively equivalent. Of course the gains in (5)
and (6) are in general different.

If all n subsystems are LISS then these estimates give rise
to a gain matrix

Γ = (γij)
n
i,j=1, with γij ∈ K∞ or γij ≡ 0, (7)

where we use the conventionγii ≡ 0 for i = 1, . . . , n.

C. The Small Gain Condition

The gain matrixΓ defines a monotone operatorΓ : Rn
+ →

Rn
+ by Γ(s)i :=

∑

j γij(sj) for s ∈ Rn
+.

Remark 2.7:If we used the notation (6) instead of (5),
then we would defineΓ(s)i := maxj γij(sj).

An operatorA : Rn
+ → Rn

+ is called monotone, ifr ≤ s
impliesA(r) ≤ A(s). By construction,Γ is monotone.

We say thatΓ satisfies thelocal small gain conditionon
[0, w∗], provided that

Γ(w∗) < w∗ andΓ(s) � s, ∀ s ∈ [0, w∗], s 6= 0. (LSGC)

Here s � r for r, s ∈ Rn
+ means that there is at least one

componenti wheresi < ri holds.
The global small gain condition assuring the ISS property

for an interconnection of ISS subsystems was derived in [1].
An alternative proof has been given in [5]. We quote the
following result from these papers.

Theorem 2.8 (global small-gain theorem for networks):
Consider system (1) and suppose that each subsystem (2)
is ISS, i.e., condition (5) holds for allξi ∈ Rn

+, ui ∈ L∞,

i = 1, . . . , n. Let Γ be given by (7). If there exists an
α ∈ K∞, such that

(Γ ◦D)(s) 6≥ s, ∀s ∈ Rn
+ \ {0} , (8)

with D = diagn(id + α) then the system (1) is ISS fromu
to x.
Furthermore it is known that under the same small gain
condition stated for Lyapunov gains of subsystems (2) an ISS
Lyapunov function for (1) can be explicitly constructed as a
combination of the ISS Lyapunov functions of subsystems,
see [4]:

If we replace (4) for each subsystem (2) by

Vi(xi) ≥ χ(‖u‖) +
∑

j 6=i

γij(Vj(xj))

=⇒ ∇Vi(xi) · fi(x, u) ≤ −α(Vi(xi)),

(9)

for γij ∈ K∞ or γij ≡ 0, and defineΓ just as before, then
the following theorem holds.

Theorem 2.9:Let each subsystem (2) have an ISS Lyapu-
nov function Vi, i.e., Vi satisfiesVi(0) = 0, is radially
unbounded, proper, and locally Lipschitz, such that (9) holds
for i = 1, . . . , n. Let Γ be given by (7) but withγij the
Lyapunov gains. Assume thatΓ is irreducible. If there exists
anα ∈ K∞, such that

(Γ ◦D)(s) 6≥ s, ∀s ∈ Rn
+ \ {0} , (10)

with D = diagn(id + α) then

V (x) = max
i
σ−1

i (Vi(xi))

is an ISS Lyapunov function for the system (1), where
σ : R+ → Rn

+ is a function satisfying(Γ ◦ D)(σ(t)) <
σ(t), ∀t > 0, such that each component function is of
classK∞.
Note thatV (x) in this case is not smooth but Lipschitz con-
tinuous. A local version of the functionσ can be constructed
explicitly as we will show below.

In this paper we give a local result similar to Theorem 2.8.
The following lemmas will be used to obtain the main result.

III. A UXILIARY LEMMAS AND PROBLEM STATEMENT

Lemma 3.1:Let Γ be a gain matrix as in (7). For anyw∗ ∈
Rn

+ consider the trajectory{w(k)} of the discrete monotone
systemw(k + 1) = Γ(w(k)), k = 0, 1, 2 . . . with w(0) =
w∗. If w(k) → 0 for k → ∞ thenΓ satisfies the small gain
condition (LSGC) on[0, w∗].

Proof: Suppose this is not true, i.e., there exists a point
0 6= v ∈ [0, w∗] with

Γ(v) ≥ v (11)

andv 6= 0. SinceΓ is monotone, so isΓk, i.e., thek-times
application ofΓ. Hence (11) impliesΓk(v) ≥ v ≥ 0, so
Γk(v) does not tend to zero ask approaches infinity. But
v ≤ w∗ impliesΓk(v) ≤ Γk(w∗) = w(k), which is assumed
to tend to zero. A contradiction. Hence there cannot exist
such av and (LSGC) holds on all of[0, w∗].



Lemma 3.2:Let Γ ∈ (K∞ ∪ {0})n×n satisfy (LSGC) on
[0, w∗], such thatΓ has no zero rows. Then for allw1 ∈
]Γ(w∗), w∗[ there exists anα ∈ K∞, such that forD =
diagn(id + α)

D ◦ Γ(s) � s, ∀s ∈ [0, w1], s 6= 0.
Sketch of Proof.1. UsingΓ(w∗) < w∗ and monotonicity

of Γ one can easily show thatΓk(w∗) → 0, strictly
decreasing.

2. Note thatΓk+2(w∗) < Γk+1(w1) < Γk+1(w∗) <
Γk(w1), k=0, 2, . . ..

3. We have thenΓk(w1) → 0, strictly decreasing.
4. On a discrete set define a diagonal operatorD̃ induc-

tively by w2 = Γ(w∗) = D̃ ◦ Γ(w1), D̃ ◦ Γ(w2) = Γ(w1) =
w3, and so on,D̃ ◦ Γ(wi) = wi+1.

5. D̃ is defined on set of strictly decreasing points, con-
sider the componentwise slopes ofD̃ between these points
α̃i = minj{(D̃− id)(Γ(wi))j/Γ(wi)j} as a function of these
points Γ(wi), associate this tori := ‖Γ(wi)‖1. So {ri} is
null sequence, hencẽαi is function ofri.

6. Let α̃i be bounded from below by some strictly decre-
asing null sequenceαi.

7. Define by linear interpolationD(s) = diag((αi−αi+1)·
‖s‖1−ri+1

ri−ri+1
+ (1 + αi+1) for ‖s‖1 ∈]ri+1, ri].

Then clearlyD ◦ Γ(w1) < w1, D ∈ diag(id + K∞), and
(D ◦ Γ)k(w1) → 0. Hence (D ◦ Γ)(s) � s for all s ∈
[0, w1], s 6= 0 by Lemma 3.1 applied toD ◦ Γ.

Note that by continuity ofΓ for w∗ such thatΓ(w∗) < w∗

we also have a diagonal operatorD such thatD ◦ Γ(w∗) <
w∗.

A. Problem Statement

We will consider the following questions. Suppose we
have a network ofn interconnected LISS systems like (2),
each satisfying (5),i = 1, . . . , n. Under what conditions
does the composite system (1) satisfy (LISS)? How can we
check this condition numerically by just looking atΓ? Can
we estimate the stability region in (LISS), i.e., determine
estimates forρ numerically?

In the next section we will show that (LSGC) is sufficient
for LISS of (1) and show how this condition can be checked.
We will see how the stability region can be estimated.

IV. MAIN RESULTS

A. The Numerical Test

The procedure to check the small gain condition explicitly
for a givenΓ ∈ (K∞ ∪ {0})n×n consists of two steps.

a) Step 1: Given a radiusr > 0, find a w ∈ Rn
+,

‖w‖1 :=
∑

wk = r, such thatΓ(w) ≤ w.
In [8] two algorithms are proposed to find distinguished

points in simplices. In that paper, usually fixed points are
under consideration, but the method is more general and
suitable for our purposes. For reasons of space, we just
indicate how the method is applicable to our setting:

The setS := Sr := {s ∈ Rn
+ : ‖s‖1 = r} defines an

(n− 1)-simplex. Let functionl : S → {1, . . . , n} be defined

by l(s) = li(s), where

i(s) = arg min
i
{si > 0 andΓ(s)i ≤ si},

defines a proper labeling, see [8] for the definition and
details, whereli is an-vector of zeros, with+1 at positioni
and−1 at positionn for i = 1 and at positioni−1 otherwise.
Note that for actual computations it is sufficient to consider
l(s) = i(s).

The algorithm described in§6 and§7 in [8] then finds a
point w ∈ Rn

+, ‖w‖1 = r, with Γ(w) ≤ w, provided such
a point exits. An even faster but more involved algorithm is
given in §8 of that paper.

b) Step 2: Given a pointw ∈ Rn
+, ‖w‖1 = r, with

Γ(w) ≤ w then, provided that (LSGC) can be satisfied at
all, in an arbitrary small neighborhoodU(w) of w, there
exists aw∗ such thatΓ(w∗) < w∗, see interpretations of the
small gain condition in [1].

Now consider the trajectory{w(k)} with w(0) = w∗ of
the discrete monotone systemw(k+1) = Γ(w(k)). If it tends
to zero, then this implies that on the set[0, w∗] the local small
gain condition (LSGC) is satisfied, see Lemma 3.1.

B. A Local Small Gain Theorem

In this section we state a small gain theorem for LISS
systems in the spirit of [1], [5].

The first step is a local version of the main ingredient used
to prove the other small gain theorems.

Lemma 4.1:Let w∗ ∈ Rn
+, w

∗ > 0. Let Γ satisfy (LSGC)
on [0, w∗]. Then there exists aϕ ∈ K∞, such that for all
w ∈ Rn

+, w ≤ w∗ and allv ∈ Rn
+ we have

(id − Γ)(w) ≤ v =⇒ ‖w‖ ≤ ϕ(‖v‖).
The proof is essentially the same as in [5, Lemma 13]. The

other important ingredient is an operatorD = diag(id+α) :
Rn

+ → Rn
+ for someα ∈ K∞.

Theorem 4.2:Let all subsystems (2),i = 1, . . . , n, sa-
tisfy (5). SupposeΓ satisfies (LSGC). Then there exists a
ρ > 0, a β ∈ KL, and aγ ∈ K∞, such that system (1)
satisfies (LISS).

The proof divides into the following steps: First we
establish that system (1) satisfies (LS) and (LAG), then we
constructβ for the (LISS) estimate. But beforehand we have
to establish existence of solutions for all times and findρ.

Proof: Throughout the proof letw∗ > 0 be given
by (LSGC),ϕ be given by Lemma 4.1. Letx ∈ RN , N :=
∑n

i=1Ni as in (1) be split into parts as in (2). We use
the notation‖ · ‖c to denote componentwise norm, i.e., for
x ∈ RN this yields‖x‖c = (‖x1‖, . . . , ‖xn‖)T , where‖xi‖
denotes the corresponding norm onRNi , i = 1, . . . , n.

LetC > 0 be the minimal constant, such that with‖x‖c ≤
v ∈ Rn

+ also ‖x‖ ≤ C · ‖v‖ holds for all x ∈ RN and all
v ∈ Rn

+.
In the following a vector notation will be extremely

useful: For now letβ(s, t) := (βi(si, t), i = 1, . . . , n)T and
G(‖u‖c,∞) := (γi(‖ui‖∞), i = 1, . . . , n)T .

STEP 0 – EXISTENCE AND ρ Let ε := minj w
∗
j > 0, so

that ‖x‖ < ε implies ‖x‖c < w∗. Let δ = ϕ−1(ε/2·C). For



actual computations one could choose special norms to get
C ≈ 1 and instead ofε/2·C one could use something just
below ε, to get less conservative numerical estimates.

Let ξ ∈ R
P

n
i=1

Ni be such that‖β(‖ξ‖c, 0)‖ < δ/2 and
‖ξ‖ < ε. Let u ∈ L∞(R+; R

P
i
Mi) as in (1) such that

‖G(‖u‖c,∞)‖ < δ/2.
Define T ∗ := min{t ≥ 0|‖x(t, ξ, u)‖ ≥ ε}. Clearly

‖x(·, ξ, u)‖[0,T∗] ≤ ε and hence‖x(·, ξ, u)‖c,[0,T∗] ≤ w∗.
So we may apply Lemma 4.1 to the following inequality
following from (5):

(id − Γ)(‖x(·, ξ, u)‖c,[0,T∗]) ≤ β(‖ξ‖c, 0) +G(‖u‖c,∞).

Hence

‖x(·, ξ, u)‖[0,T∗] ≤ C · ϕ(‖β(‖ξ‖c, 0)‖ + ‖G(‖u‖c,∞)‖)
< C · ϕ(δ/2 + δ/2)

= C · ϕ(δ)

= C · ε/2·C = ε/2.

This implies that there is no such minimal timeT ∗, such
that the norm of the trajectoryx(·, ξ, u) leaves theε-ball
around the origin. Hence this trajectory stays in that ball for
all times.

Now let ρ < sup{‖s‖ : s ∈ Rn, s ≤ w∗, ‖G(s)‖ <
δ/2, ‖β(s, 0)‖ < δ/2}.

Note that if LISS was defined as in (6), then in the above
estimates we would use a maximum instead of a sum.

STEP 1 – ESTABLISHING LS For‖u‖∞ ≤ ρ and‖ξ‖ < ρ
we saw that

‖x(·, ξ, u)‖∞ ≤ C · ϕ(‖β(‖ξ‖c, 0)‖ + ‖G(‖u‖c,∞)‖)

which by the weak triangular inequality is

≤ Cϕ(2‖β(‖ξ‖c, 0)‖) + Cϕ(2‖G(‖u‖c,∞)‖)
(12)

and hence

≤ σ(‖ξ‖) + γ(‖u‖∞)

for someσ, γ ∈ K∞. This establishes (LS).
STEP 2 – ESTABLISHING LAG ′ For u ∈ L∞, ‖u‖ ≤ ρ

and‖ξ‖ < ρ the LISS estimate for the subsystems gives us
for t > t0 > 0

‖x(t− t0, x(t0, ξ, u), u)‖c ≤ β(‖x(t0, ξ, u)‖c, t− t0)

+ Γ(‖x(·, x(t0, ξ, u), u)‖c,[t0,t]) +G(‖u‖c,∞).

For t0 = t/2 this becomes

‖x(t/2, x(t/2, ξ, u), u)‖c ≤ β(‖x(t/2, ξ, u)‖c, t/2)

+ Γ(‖x(·, x(t/2, ξ, u), u)‖c,[t/2,t]) +G(‖u‖c,∞)

and taking thelim sup for t → ∞, and by a result in [1],
[5] we obtain

l(ξ, u) := lim sup
t→∞

‖x(t/2, ξ, u)‖c ≤ Γ(l(ξ, u))+G(‖u‖c,∞).

Since l(ξ, u) ≤ w∗ we again may apply Lemma 4.1 to
get ‖l(ξ, u)‖ ≤ C · ϕ(‖G(‖u‖c,∞)‖) ≤ γ(‖u‖∞), which
establishes (LAG′).

STEP 3 – CONSTRUCTING THEKL-FUNCTION To this
end let

β̃(s, t) := sup
‖u‖∞≤ρ,‖ξ‖≤s

(‖x(t, ξ, u)‖ − γ(‖u‖∞))+,

where a+ denotesmax{a, 0}. By compactness of the set
where the supremum is taken, the supremum is attained,
finite, and for t → ∞ the function β̃ tends to zero. It is
clearly increasing ins and continuous and hence can be
bounded above by a functionβ of classKL, see for example
[11]. With this β andγ from step 2 we obtain the LISS for
(1). This completes the proof.

V. AN EXAMPLE

Remark 5.1:In Definition 2.2 of LISS or in (5) for the
case of several inputs we used the summation ofβ and
gain function(s). An equivalent formulation can be given
using a maximum of these terms, as in (6). The small gain
conditions (10) and (LSGC) for ISS or LISS do not change
in that case.

In the literature since [12] ISS using theβ + γ-estimates
has often been proved by showing first that there exists an
ISS Lyapunov function. We use the same approach here. The
gains we get using this approach are in our case also suitable
for the max{β, γ}-formulation of ISS.

The KL-functions βi, i = 1, . . . , n, will not be given
explicitly, but what is important to note is just thatβi(s, 0) =
s for all s ∈ R+.

A. A Network System

The following system onR6
+ is motivated by applications

in logistics, see [7]. Although we establish that the network
system is LISS, the estimates given by Lemmas 3.2 and 4.1
can be very conservative.

ẋ1 = u− ax1 + b
√
x1

1 + x2 + x3
(13)

ẋ2 =
1

3

ax1 + b
√
x1

1 + x2 + x3
+

1

2
min{b3, c3x3} − min{b2, c2x2}

(14)

ẋ3 =
1

3

ax1 + b
√
x1

1 + x2 + x3
+

1

2
min{b2, c2x2} − min{b3, c3x3}

(15)

ẋ4 =
1

3

ax1 + b
√
x1

1 + x2 + x3
+

1

2
min{b2, c2x2}

+ min{b3, c3x3} − min{b4, c4x4} (16)

ẋ5 =
1

2
min{b4, c4x4} − c5x5 (17)

ẋ6 =
1

2
min{b4, c4x4} − c6x6 (18)

This system can be seen as a composition of6 interconnec-
ted one dimensional systemsΣi, i = 1, . . . , n, each regarding
only xi as a state andxj , j 6= i, as inputs. The associated



graph of this network is depicted in figure 1. If the constants
a, b, b2, b3, b4, c2, c3, c4, c5 , andc6 are chosen properly, then
each subsystem should be LISS: Choosing

a = 1/4 b = 1/2

b2 = 5 b3 = 3

b4 = 4 c2 = 7/8

c3 = 5/4 c4 = 2/3

c5 = 1 c6 = 1

one can check that each subsystem is LISS using LISS
Lyapunov functionsVi(xi) = xi (see [4]) with the following
gains:

γ12(x2) = x2
2/m2 γ13(x3) = x2

3/m2

γ21(x1) =
√

x1/p2 γ23(x3) = x3/q2

γ31(x1) =
√

x1/p3 γ32(x2) = x2/q3

γ41(x1) =
√

x1/p4 γ42(x2) = x2/r42

γ43(x3) = x3/r43 γ1u(u) = u2
/c2

u

and

γ54(x4) = 1/2 min{b4/c5, c4/c5x4} + ε(x4)

γ64(x4) = 1/2 min{b4/c6, c4/c6x4} + ε(x4)

Hereε denotes some arbitrary slowly growingK∞ function
and

m = 9/15 cu = 1/5

p2 = 5 p3 = 4

p4 = 3/10

q2 = 8/3 q3 = 11/10

r42 = 16/70 r43 = 8/50.

Namely the following holds true: Fori = 1 we have

x1 > max
j>1

{γ1j(xj), γ1u(u)}

u
Σ1 Σ2

Σ3 Σ4

Σ5 Σ6

Fig. 1. The example in Section V consists of a strongly connected
component and a cascade of subsystems. This translates into the block form
of Γ.

implies
ẋ1 < 0

and forx2 ≤ 9/10, x3 ≤ 12/5, andx4 ≤ 6 it holds that

xi > max
j 6=i

γij(xj)

implies
ẋi < 0

for i = 2, . . . , 6.
The gain matrixΓ in this example looks like

Γ =

















0 γ12 γ13 0 0 0
γ21 0 γ23 0 0 0
γ31 γ32 0 0 0 0
γ41 γ42 γ43 0 0 0
0 0 0 γ54 0 0
0 0 0 γ64 0 0

















.

We see thatΓ is lower block triangular with an upper left
3 × 3 irreducible block and a lower right nilpotent3 × 3
block on the diagonal. We like to find a vectorw∗ satisfying
Γ(w∗) < w∗. A few basic considerations lead us to the
following vector

w∗ =

















2
0.3
0.4
5
2
2

















.

This vector will be the starting point of the numerical test
described in Section IV-A. We could also use the algorithm
proposed in [8] for some given radiusr to find another
w∗. Now we can apply Lemma 3.1 to see if the small gain
condition is met on the set[0, w∗] \ {0}.

The condition (LSGC) is satisfied by Lemma 3.1. By
the method given in the proof of Lemma 3.2 we find an
operatorD. Figure 2 shows the computed sequence{α̃}k0

k=1

0 1 2 3 4 5 6 7
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

 

 

{α̃}k0

k=1

{α}k0

k=1

{rk}k0

k=1

Fig. 2. Constructing the operatorD: The sequences̃α andα plotted versus
the sequencer up to some indexk0.

as function of{rk}k0

k=1 and a bounding sequence{α}k0

k=1

needed for the construction ofD. Here we used the notation
given in the proof of Lemma 3.2.



Next we are interested in the functionϕ of Lemma 4.1,
as it gives us the gain fromu to (x1, . . . , xn)T andϕ−1 is
involved in the computation ofρ > 0, which gives us the
region where LISS holds.

The functionϕ can be found by the method in the proof
of Lemma 4.1, see [1] or [5] for details, in our case this
estimate forϕ is just

ϕ(s) = ‖(D ◦ (D − id)−1 ◦ (id + Γ))4(s · e)‖∞, (19)

where s ∈ R+ and e = (1, . . . , 1)T . Unfortunately this is
not only not a sharp estimate but in fact quite conservative,
since in the above mentioned proof at several steps very
rough estimates are made. The functionϕ given by (19)
is plotted in Figure 3. Now givenϕ, this allows us to

0 1 2 3 4 5 6

x 10
−5

0

2

4

6

8

10

12

Fig. 3. The functionϕ constructed in the proof of Lemma 4.1 is too
conservative for practical applications.

chooseδ∗ < ϕ−1(0.3), which leads toρ∗ := sup{‖s‖ :
s ∈ Rn, s ≤ w∗, ‖G(s)‖ < δ∗/2, ‖β(s, 0)‖ < δ∗/2}.
This ρ∗ bounds the initial values‖xi‖, ξ ∈ R6

+, and inputs
‖u‖∞, u ∈ L∞(R+,R+). For actual applications this is too
conservative, since alreadyδ∗ is very small. Better estimates
for ϕ have to be found. Hence for‖u‖∞ ≤ ρ∗ and‖ξ‖ ≤ ρ∗

the system (13)—(18) satisfies (LISS) whereγ can be taken
from (12).

VI. CONCLUSIONS AND FUTURE WORK

A. Conclusions

We have presented an efficient tool for numerical ve-
rification of the stability properties of an interconnection
of several locally input to state stable systems. The local
small gain condition can be checked using this algorithm.
An example illustrates how this method works. A drawback
is the conservative estimate for the region, where the local
stability property actually holds.

B. Future Work

Better estimates forϕ in Lemma 4.1 should be possible
and are needed for actual applications of this result. The
next step is to extend this method on the systems satisfying
practical stability property.
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